首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of single neurons in the caudate nucleus (CD), globus pallidus (GP), substantia nigra pars reticulata (SNr), and ventral tegmental area (VTA) was recorded during an operant feeding task in the monkey. The task had three phases: recognition of the food or nonfood stimulus (1st phase), bar pressing to obtain access to the stimulus (2nd phase), and ingestion (3rd phase). Data were collected from 351 neurons in CD, 344 in GP, 261 in SNr, and 275 in VTA. Neurons in the dorsolateral part of the CD, GP, and SNr responded primarily to motor events of feeding, i.e., extension/flexion of the arm, bar pressing, chewing, grasping or gazing. Neurons in the ventromedial part of the CD and rostroventral part of the GP exhibited differential responses to the presentation of food and nonfood during the recognition and bar pressing phases of the task. Neurons in the VTA increased their firing early in the bar pressing phase and then decreased their firing during ingestion. The data suggest that the dorsolateral part of the basal ganglia is involved mainly in motor function, while the ventromedial part may reflect the connection between motivation and motor output.  相似文献   

2.
Ono  T.  Nishijo  H.  Nishino  H. 《Journal of neurology》2000,247(5):V23-V32

It has been suggested that the cortico- and limbic-striatal systems are important in various motor functions such as motivated behaviors. In this paper we review our previous studies to investigate neuronal mechanisms of feeding behaviors. We recorded neuronal activity from the amygdala, caudate nucleus, globus pallidus, and substantia nigra during feeding behavior in monkeys, and compared neuronal responses recorded from these brain areas. First, of 710 amygdalar neurons tested, 129 (18.2%) responded to single sensory stimulation (48 to vision, 32 to audition, 49 to ingestion), 142 (20%) to multimodal stimulation, and 20 to only one item with affective significance. Eight food related amygdalar neurons were tested in reversal by salting food or introducing saline, and all responses were modulated by reversal. These results suggest that the amygdala might be important in ongoing recognition of the affective significance of complex stimuli (food-nonfood discrimination).

Second, activity was recorded from 351 neurons in the head of the caudate nucleus of monkeys during an operant feeding task. The 16% of these neurons responded in the discrimination phase. Some of these neurons responded specifically to food. The magnitude of these food-specific neurons depend on the rewarding nature of the food (reward value), and was inversely related to the latency of the onset of bar press. Of the caudate neurons, 10% responded in the bar press phase. Activity of most neurons which responded in the bar press phase was not correlated to individual bar presses. Cooling of the dorsolateral prefrontal cortex abolished sustained responses during bar pressing, but did not abolish the feeding behavior. However, bar press speed tended to be delayed by prefrontal cooling.

Third, activity of 358 neurons was recorded from the monkey globus pallidus, and 204 neurons responded during the feeding task. In the globus pallidus, few neurons responded to food in the discrimination phase. On the other hand, activity of most responsive neurons changed during bar press and/or ingestion phases. Activity of about half of these responsive neurons was directly related to specific feeding motor acts such as arm extension, flexion, bar pressing, grasping, chewing, etc. Some of these neurons showed motor-related responses with gradual and preparatory responses. These motor-related neurons were located mainly in the caudodorsal part of the globus pallidus. On the other hand, about one third, especially in the rostroventral part of the globus pallidus, showed dissociating responses in that they responded during bar pressing for food or during ingestion in an operant task, but not during bar pressing for nonfood or during forcible ingestion. The response magnitude of the neurons during arm extension and bar pressing depended on the nature of the food.

Fourth, activity of 261 neurons was recorded from the substantia nigra pars reticulata. Most of responding neurons (more than two-thirds of the recorded neurons) responded during the bar press and/or ingestion phases. Activity of the one-third of neurons was related to specific motor execution such as arm extension, flexion and bar pressing, but not to motor preparation. These neurons were located mainly in the rostral part of the nucleus. More than one-third of the recorded neurons responded during feed and/or drinking acts and intra- and perioral sensory stimuli, and were located mainly in the caudomedial part of the nucleus.

Based upon these responses and known anatomical evidence, various information including that from the amygdala and prefrontal cortex is integrated in the basal ganglia, and converted to coordinated motivated behaviors such as feeding behavior.

  相似文献   

3.
Activity was recorded from 351 neurons in the head of the caudate nucleus (CD) of monkeys during an operant feeding task consisting of: (1) food or non-food presentation (P); (2) bar pressing (B); and (3) food acquisition and ingestion (I). Of 45 neurons which responded in the P phase and were tested systematically, 27 responded to visual presentation of both food and non-food (non-specific response), and 18 responded to food presentation only (food specific response). The magnitude of food specific responses depended on the nature of the food and was inversely related to the latency of the onset of bar pressing. Thirty-five neurons responded in the B phase: 28 changed firing rate continuously with no correlation to individual bar presses, while the activity of the other 7 was related to each bar press. In the I phase, 62 neurons responded to separate events: the activity of more than half (39 neurons) was often related to chewing movement or gustatory stimuli, and that of one third (23 neurons) changed during individual arm movements. The neurons which responded in the P phase were found to be distributed widely in the head of the CD except for its central zone, while the neurons which responded in the I phase were in the medial part. Cooling of the dorsolateral prefrontal cortex abolished the continuous responses seen in the B phase, but did not abolish the feeding behavior. The data suggest that in the head of the CD there are several groups of neurons that have different functions and different distributions: food specific, sensory integration responses, non-motor responses driven by the frontal cortex, motor responses coupled to various movements, and sensory responses which apparently originate in the intra-oral cavity. These functions may arise sequentially, or in correspondence with integration of the sensory and motor systems to produce coordinated behavior.  相似文献   

4.
Single neuron activity was recorded from monkey lateral hypothalamus to investigate neuronal events correlated with operant bar press feeding behavior. The behavioral paradigm was divided into three phase: visual (discrimination), bar press (procurement), and ingestion (consummatory). Of 669 neurons tested, 158 (24%) responded in one or more phases. During the visual phase, 106 neurons (16%) responded. Of 80 neurons that responded in the visual phase and were tested systematically, 33 (41%, 33/80) responded selectively to the sight of food or nonfood objects associated with a juice reward, but not to the sight of nonfood or objects associated with aversive saline. Neuronal activity related to discrimination was modulated by satiation and learning (i.e., acquisition and extinction). During the bar press phase, 51 neurons (7.6%) responded. These responded tonically during the early or late stage of the bar press period, but did not depend on individual bar pressing motions. During ingestion, 90 neurons (13%) responded. The ingestion response was modulated by palatability of food and satiation. Data suggest that the LHA is deeply involved in operant feeding behavior; discrimination of food, drive to get food, and perception of reward, all of which are affected by learning and internal states such as hunger and satiety.  相似文献   

5.
Single neuron activity was recorded from monkey lateral hypothalamic area (LHA) to relate neuronal events to food discrimination and initiation of procurement movement in operant bar press feeding behavior. Of 429 neurons tested, 68 (16%) responded during visual phase. Of these, 30 (7%) responded selectively to the sight of food or non-food associated with a juice reward, but not to the sight of meaningless non-food or food associated with aversive saline. Neuronal activity related to discrimination was readily influenced by extinction, reversal or satiation. The strength of visual responses was correlated with latency of bar press initiation and speed of bar pressing, but was not related directly to bar press movement. These suggest that the LHA is deeply involved in discrimination of reinforcement or non-reinforcement, and might be associated with higher functions to regulate internal states such as physiological need to get food during operant feeding behavior.  相似文献   

6.
Activity was recorded from 358 neurons in the globus pallidus (GP) of monkeys (Macaca fuscata) during an operant feeding task consisting of 3 stages: (1) food or non-food presentation (1st stage); (2) bar pressing (2nd stage); and (3) food acquisition and ingestion (3rd stage). There were two kinds of neurons, one with high and the other with very low (almost silent), spontaneous firing rates. Two hundred and four neurons (57%) responded in one or more of the feeding stages. Of the 21 neurons which responded in the 1st stage, two responded selectively to food presentation, and 19 responded to both food and non-food visual presentation. One hundred and seventy-four neurons (49%) and 107 neurons (30%) responded in the 2nd and 3rd stages, respectively, and 106 (30%) of these were directly related to specific feeding motor acts such as arm extension, flexion, bar pressing, grasping, chewing etc. Both high and low firing neurons responded to motor acts with sharp or gradual onset. More than half of those that responded to arm extension showed laterality (contra or ipsi)- and function (extension or flexion)-dependent responses. The incidence of the motor related neurons was higher in the caudodorsal part of the GP. On the other hand, about one third, especially in the rostroventral part of the GP, showed dissociating responses in that they responded during bar pressing for food or during ingestion in an operant task, but not during bar pressing for non-food or during forcible ingestion. The magnitude of firing changes during arm extension and bar pressing depended on the nature of the food. Moreover, in trials using new food or false (model) food, firing changes during bar press appeared or disappeared within a few trials with no correlation to bar press movement. These data suggest heterogeneous functions within the GP; the caudodorsal part is strictly concerned with motor execution and preparation, while the rostroventral part is not related to motor function directly, but may rather be important in coupling internal, motivational information to the motor system.  相似文献   

7.
Recent lesion and non-invasive studies identify the medial temporal lobe, including the amygdala, not only with emotion but also with working memory in relation to the prefrontal cortex. In the present study, amygdalar neuronal activity was recorded from monkeys during performance of discrimination tasks that led to presentation of emotion-related (rewarding or aversive) stimuli. The task had three phases: (1) discrimination (visual, auditory), (2) operant response (bar pressing) and (3) ingestion (reward) or avoidance (aversion). These neurons were further analyzed by a short-term memory task, delayed pair comparison (DPC) using colored lamps. Of 585 amygdalar neurons, 107 responded primarily to single sensory stimulation (40 vision related, 26 audition related, 41 ingestion related), 117 to multimodal stimulation (multimodal) and 14 responded selectively to only one item (selective). Of 417 neurons tested by the DPC, 122 responded in one or more phases. Of these 122 neurons, 10.7% responded in the delay period. These delay-responsive neurons also responded to various objects with positive and negative affective significance. These results suggest that amygdalar neurons are not specifically related to working memory, as are those in the inferotemporal and prefrontal cortices, but are related to more general non-specific functions or processes such as arousal or attention during the cognitive tasks. A functional role of the amygdala in working memory is discussed in terms of recent non-invasive studies suggesting a functional coupling between the amygdala and prefrontal cortex.  相似文献   

8.
Neuronal activity in the amygdala (AM) was recorded from alert monkeys during performance of tasks that led to presentation of rewarding or aversive stimuli. The tasks had 3 phases: (1) discrimination (visual, auditory), (2) operant response (bar pressing), and (3) ingestion (reward) or avoidance (aversion). Neuronal activity was analyzed and compared during each of these phases. Of 585 AM neurons tested, 312 (53.3%) responded to at least one stimulus in one or more of 5 major groups: vision related, audition related, ingestion related, multimodal, and selective. Forty neurons (6.8%) in the anterior dorsolateral capsule of the basolateral nuclei responded exclusively to visual stimuli (vision related). Twenty-six neurons (4.4%) further posterior in the basolateral group responded only to auditory stimuli (audition related). During ingestion an additional 41 neurons (7.0%) increased their activity (ingestion related). These were in the corticomedial group and at the boundaries between the nuclei of the basolateral group. Of these, 27 responded only in the ingestion phase, 11 during ingestion and at the sight of food, and 3 during ingestion and to certain sounds. Throughout the AM other neurons (n = 117, 20.0%) responded to visual, auditory, and somesthetic stimuli and, when tested, to involuntary ingestion of liquid (multimodal). Of these, 40 responded transiently (phasic; 36 excited, 4 inhibited). The remaining 77 maintained their altered activity into the subsequent phases of the task (tonic; 69 excited, 8 inhibited). In each of these 4 categories, most cells were activated primarily by novel or unfamiliar stimuli, and their responses habituated during repeated stimulation. A small number of cells in the basolateral and the basomedial nuclei (n = 14, 2.4%) were highly selective in that they responded specifically to one biologically significant object or sound more than to any other stimuli (selective). Some of these neurons responded to both sight and ingestion of a specific food. In summary, most AM neurons responded vigorously to novel stimuli, and some of the neurons had multimodal responsiveness. These results suggest the AM is related to processing of new environmental stimuli and to those cross-modal association.  相似文献   

9.
Extracellular single unit recording during high fixed ratio bar press behavior, guided by multimodal cue stimuli for food intake, revealed functional heterogeneity in the monkey dorsolateral prefrontal cortex. Cells were found significantly more often in the ventral arcuate concavity, the dorsal arcuate concavity, the principal sulcal area and the inferior convexity which responded, respectively, to visual events, auditory events, visual plus auditory events and bar press.  相似文献   

10.
Extracellular single neuron activity was recorded in the dorsolateral prefrontal cortex (DL) during bar pressing for food reward. Most of the reward-related neurons were located around the rostral end of the principal sulcus. Neuronal activity was diminished, abolished, or reversed when quinine adulterated food (aversive food) was given as a reinforcement. Cue-related neurons tended to be located more caudally in the DL. The activity of these neurons was not modulated by the nature of the reward as much as that of the reward-related neurons. The results suggest that DL neurons are not functionally homogeneous.  相似文献   

11.
Extracellular single neuron activity of the dorsolateral prefrontal cortex (DL) was recorded in the monkey, during bar pressing for reward. The bar press-related neurons which exhibited excitation or inhibition during the bar press period were found to be scattered diffusely in the DL. Activity changes that arose during the bar press period also appeared when the experimenter pressed the bar for the monkey. When delivery of food was delayed for a random time after cue tone on, bar press responses were still confined to the bar press period and did not extend beyond the cue tone. These results, together with the lesion studies, suggest that bar press-related neurons are involved in the animal's concentration during the bar press period.  相似文献   

12.
The functional role of the catecholaminergic mechanism in the lateral hypothalamus (LHA), in feeding behavior of the monkey was investigated by single neuron activity recording and electrophoretic application of dopamine (DA), noradrenaline (NA) and their antagonists. The feeding paradigm had 4 phases: cue light (CL) signaled start of bar press; bar press (BP, 20-30 times); short cue tone (CT) triggered by last bar press signaled presentation of food; and ingestion-reward (RW). Of 312 neurons tested, 189 (61%) responded in one or more phases of the feeding task. Two types of response were observed: CL- or CT-related transient, and BP- or RW-related long-lasting responses. These feeding-related responses depended on the nature of the food and on the hunger-satiety level. DA excited or inhibited different neurons, while NA mainly inhibited firing. DA-sensitive neurons responded more often in the feeding task than insensitive neurons due mainly to differences in responsiveness to CL on (chi 2 test, P less than 0.01), at motor initiation, and during BP (P less than 0.05). Spiperone blocked the former two responses. NA-sensitive neurons responded more often in the feeding task due to responsiveness during BP and RW (P less than 0.01). Sotalol blocked some BP-related responses, and phenoxybenzamine and sotalol blocked the CT-related responses. The data suggest that dopaminergic and noradrenergic inputs in the LHA are crucial in task initiation and reward processing, respectively. Integration of these catecholaminergic and other inputs in the LHA might be important in accomplishing motivated feeding.  相似文献   

13.
Neuronal activity of 58 dopaminergic (DA) and 200 non-dopaminergic (non-DA) neurons in the ventral tegmental area (VTA) of female monkeys was recorded, and correlation to bar press feeding, sensory stimulation and change in motivation was investigated. DA neurons, judged by duration of action potentials (more than 2.5 ms) and responsiveness to apomorphine, had lower firing rates (0-8 impulses/s); non-DA neurons had intermediate firing rates (10-30 impulses/s). Two-thirds of the DA and non-DA neurons responded in bar press feeding; the former with mostly tonic and the latter with phasic responses. Fifteen neurons (5%) responded phasically to arm extension toward the bar, 124 (excitation 88, inhibition 36, 45%) during bar press (BP), and 91 (excitation 32, inhibition 59, 33%) during ingestion reward (RW). Most BP responses (84/124, 68%) continued tonically throughout the BP period with no correlation to each BP movement. In 14 neurons (14/124, 11%), firing showed a specific variation: transient early BP responses shifted to tonic steady ones in palatable food trials, and the shifts correlated well with BP speed. In 20 other neurons, firing increased during BP hip lifting, and at specific vocalization to ask for food; it decreased during food ingestion, drinking and inguino-crural stimulation. Apomorphine administration decreased firing for the first 5-15 min, then increased it with frequent lip smacking, nausea, involuntary movement and vocalization. Thus VTA neurons showed mostly steady tonic responses but some specific phasic responses. They responded not only to motor events but also in close relation to changes of motivational aspects. Neuronal responses were excitation during procurement of reward and inhibition during or after perception of reward. This modulation in firing, might be important in the initiation and execution of movement and/or motivated behavior.  相似文献   

14.
To investigate neuronal processing during monkeys' performance of a visual conditional discrimination task, recordings were made from four areas of prefrontal cortex (ventromedial, orbitofrontal, dorsolateral and anterior cingulate) where lesions have been shown to produce impairment of such tasks. Of 1911 recorded neurons, 573 (31%) responded to elements of the task. This proportion was less than the 50% previously reported as responsive in temporal cortex under the same conditions, suggesting sparser encoding in prefrontal than temporal cortex. Of the responsive prefrontal neurons, 165 (29%) responded differently on the different types of trial, so signalling various types of information relevant to task performance and cognition. In line with recent lesion findings, in the dorsolateral region the incidence of such differentially responsive neurons was only an eighth that in the other regions. The relatively high incidence of neuronal responses that encoded a potential instruction cue rather than specific individual stimulus arrangements was consistent with the animals solving the task by using such information, though other neuronal responses could have enabled the task to have been solved by rote learning. Compared to temporal neurons, prefrontal responses more frequently coded information relating to the planned behavioural response rather than perceptual aspects of the task. Population differential response latencies were long (> approximately 225 ms) in prefrontal cortex. A comparison of such differential latencies between temporal and prefrontal cortex indicated that potential information flow was likely to be primarily from temporal to prefrontal cortex rather than vice versa.  相似文献   

15.
Feeding-related neuronal activity of lateral hypothalamic glucose-sensitive and glucose-insensitive neurons was investigated in behaving monkeys. The behavioral paradigm was a high fixed ratio of bar pressing for food reward signaled by light and tone cues. Twenty-seven percent of the neurons tested were glucose-sensitive. The population of neurons which changed in firing rate during the feeding task was higher among glucose-sensitive cells than among glucose-insensitive cells. The activity of many glucose-sensitive neurons decreased during the bar pressing and reward periods. A small population of glucose-sensitive neurons responded to cue stimuli. The results suggest that glucose-sensitive neurons are mainly involved in the drive and/or reward mechanism of feeding behavior, and that these cells may have specific roles in neural control of hunger-motivated food acquisition.  相似文献   

16.
The concept of receptive field (RF) describes the responsiveness of neurons to sensory space. Neurons in the primate association cortices have long been known to be spatially selective but a detailed characterisation and direct comparison of RFs between frontal and parietal association cortices are missing. We sampled the RFs of a large number of neurons from two interconnected areas of the frontal and parietal lobes, the dorsolateral prefrontal cortex (dlPFC) and ventral intraparietal area (VIP), of rhesus monkeys by systematically presenting a moving bar during passive fixation. We found that more than half of neurons in both areas showed spatial selectivity. Single neurons in both areas could be assigned to five classes according to the spatial response patterns: few non‐uniform RFs with multiple discrete response maxima could be dissociated from the vast majority of uniform RFs showing a single maximum; the latter were further classified into full‐field and confined foveal, contralateral and ipsilateral RFs. Neurons in dlPFC showed a preference for the contralateral visual space and collectively encoded the contralateral visual hemi‐field. In contrast, VIP neurons preferred central locations, predominantly covering the foveal visual space. Putative pyramidal cells with broad‐spiking waveforms in PFC had smaller RFs than putative interneurons showing narrow‐spiking waveforms, but distributed similarly across the visual field. In VIP, however, both putative pyramidal cells and interneurons had similar RFs at similar eccentricities. We provide a first, thorough characterisation of visual RFs in two reciprocally connected areas of a fronto‐parietal cortical network.  相似文献   

17.
Single neuron activity was recorded in the monkey anterior putamen to compare visuomotor-related responses during operant bar-press behavior with visual discrimination of objects. Of 615 neurons recorded 9.8% ( ) responded to the presentation of food during forced delay of access to the bar. Of these 60 neurons, 38 were also tested with nonfood, and 19 of these responded to the nonfood objects regardless of the following movement. The amplitude of the visual-related responses of some differential neurons was graded for different objects to reflect the relative degree of preference for the food presented. However, these responses disappeared in reaction time tasks in which the bar could be accessed for pressing immediately upon presentation of an object. The visual response latency of differential neurons ranged from 50 to 700 ms (mean ± SD, 386 ±211 ms), which was longer than that of the nondifferential responses (207 ± 204 ms). These results suggest that anterior putamen neurons might participate in estimation of visual information that could be related to forecasting movement.  相似文献   

18.
The activity of 394 neurons in the head of the caudate nucleus and the most anterior part of the putamen was analyzed in 3 behaving rhesus monkeys in order to analyze the functions of this part of the striatum. Of these neurons, 64.2% responded in the tests used in relation to, for example, environmental events, movements made by the monkey, the performance of a visual discrimination, or during feeding. However, only relatively small proportions of these neurons had responses which were unconditionally related to visual (9.6%), auditory (3.5%), or gustatory (0.5%) stimuli, or to movements (4.1%). Instead, the majority of the responsive neurons had activity in relation to stimuli or movements which was conditional, in that the responses occurred in only some test situations, and were often dependent on the performance of a task by the monkeys. Thus, it was found in the visual discrimination task that 14.5% of the neurons responded during a 0.5 sec tone/light cue period which signalled the start of each trial; 31.1% responded in the period in which the discriminative visual stimuli were shown, with 24.3% of these responding more to either the visual stimulus which signified food reward or to that which signified punishment; and 6.2% responded in relation to lick responses. Yet these neurons typically did not respond in relation to the cue stimuli, to the visual stimuli, or to movements, when these occurred independently of the task, or when performance of the task was prevented. Comparably, of the neurons tested during feeding, 25.8% responded when the food was seen by the monkey, 6.2% when he tasted it, and 22.4% during a cue given by the experimenter that a food or non-food object was about to be presented. However, only few of these neurons had responses to the same stimuli presented in different situations.It is concluded that many neurons in the head of the caudate nucleus and the most anterior part of the putamen respond in relation to events which are used as cues to prepare for the performance of tasks, including feeding, in which movements must be initiated. Other neurons respond in relation to the stimuli used and the movements made in these tasks. However, the majority of these neurons do not have unconditional sensory or motor responses. It is therefore suggested that the anterior neostriatum contains neuronal mechanisms which are important in the process by which environmental cues are used in the preparation of behavioral responses, and in the initiation of particular behavioral responses made in particular situations to particular environmental stimuli. Deficits in the initiation of movements following damage to striatal pathways may arise in part because of interference with these functions of the anterior neostriatum.  相似文献   

19.
To elucidate the roles of glucose-sensitive (GS) and glucose-insensitive (GIS) cells of the lateral hypothalamic area (LHA), single neuron activity was recorded during 1) microelectrophoretic administration of chemicals, 2) a conditioned bar press feeding task, 3) gustatory, 4) olfactory, and 5) electrical brain stimulation. GS and GIS neurons showed different firing rate changes during phases of the task, and the responses were highly influenced by the palatability of the food and the motivational (hunger or satiety) state of the animal. The two groups of cells also differed in their responsiveness to gustatory and olfactory stimuli: GS neurons were more likely to respond to tastes and odors than GIS cells. Taste- and odor-responsive GS neurons were primarily suppressed by electrophoretically applied noradrenaline and were localized ventromedially within the LHA. The chemosensitive GIS cells, being organized along a dorsolateral axis, were especially excited by dopamine. The two sets of neurons had distinct connections with associative (orbitofrontal, prefrontal) cortical areas. GS and GIS cells, thus, appear to have differential and complex attributes in the control of feeding.  相似文献   

20.
The dorsal premotor cortex residing in the dorsolateral aspect of area 6 is a rostrocaudally elongated area that is rostral to the primary motor cortex (M1) and caudal to the prefrontal cortex. This region, which is subdivided into rostral [pre‐dorsal premotor cortex (pre‐PMd)] and caudal [dorsal premotor cortex proper (PMd)] components, probably plays a central role in planning and executing actions to achieve a behavioural goal. In the present study, we investigated the functional specializations of the pre‐PMd, PMd, and M1, because the synthesis of the specific functions performed by each area is considered to be essential. Neurons were recorded while monkeys performed a conditional visuo‐goal task designed to include separate processes for determining a behavioural goal (reaching towards a right or left potential target) on the basis of visual object instructions, specifying actions (direction of reaching) to be performed on the basis of the goal, and preparing and executing the action. Neurons in the pre‐PMd and PMd retrieved and maintained behavioural goals without encoding the visual features of the visual object instructions, and subsequently specified the actions by multiplexing the goals with the locations of the targets. Furthermore, PMd and M1 neurons played a major role in representing the action during movement preparation and execution, whereas the contribution of the pre‐PMd progressively decreased as the time of the actual execution of the movement approached. These findings revealed that the multiple processing stages necessary for the realization of an action to accomplish a goal were implemented in an area‐specific manner across a functional gradient from the pre‐PMd to M1 that included the PMd as an intermediary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号