共查询到20条相似文献,搜索用时 0 毫秒
1.
An ideal surface for many biomedical applications would resist non-specific protein adsorption while at the same time triggering a specific biological pathway. Based on the approach of selectively binding albumin to free fatty acids, stearyl groups were immobilized onto poly(styrene) backbone via poly(ethylene oxide) side chains. X-ray photoelectron spectroscopy (XPS) analysis indicates substantial surface enrichment of the stearyl poly(ethylene oxide) (SPEO). In an aqueous environment, the surface rearrangement is limited, as proved by dynamic contact angle tests. The comb-like copolymer presents a special hydrophobic surface with high SPEO surface density, which may be due to the 'tail like' SPEO architecture at the copolymer/water interface. Protein adsorption tests confirm that the comb-like surfaces adsorb high levels of albumin and resist fibrinogen adsorption very significantly. The surfaces prepared in this research attract and reversibly bind albumin due to the synergistic action of the PEO chains and the stearyl end groups. 相似文献
2.
Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide) 总被引:7,自引:0,他引:7
Polydimethylsiloxane elastomers were surface modified with passivating polyethylene oxide (PEO) polymers of different molecular weights, both monofunctional and bifunctional. Following the introduction of Si-H groups on the surfaces by acid-catalyzed equilibration in the presence of polymethylhydrosiloxane, the PEO was linked by platinum-catalyzed hydrosilylation. ATR-FTIR, X-ray photoelectron spectroscopy (XPS) and water contact angle results confirmed that the PEO was successfully grafted to the silicone rubber. Atomic force microscopy and XPS suggested that surface coverage with PEO was very high on the modified surfaces but not complete. The protein-resistant properties of the PEO-modified surfaces were demonstrated by measuring the adsorption of fibrinogen from both buffer and plasma. Fibrinogen adsorption from buffer to the PEO-modified surfaces was reduced by more than 90% compared with controls. 相似文献
3.
Szott LM Stein MJ Ratner BD Horbett TA 《Journal of biomedical materials research. Part A》2011,96(1):150-161
Nonspecific protein adsorption, particularly fibrinogen (Fg), is thought to be an initiating step in the foreign body response (FBR) to biomaterials by promoting phagocyte attachment. In previous studies, we therefore prepared radiofrequency glow discharge (ethylene oxide)-like tetraglyme (CH(3)O(CH(2)CH(2)O)(4)CH(3)) coatings adsorbing <10 ng/cm(2) Fg and showed that they had the expected low monocyte adhesion in vitro. However, when these were implanted in vivo, many adherent inflammatory cells and a fibrous capsule were found, suggesting the role of alternative proteins, such as activated complement proteins, in the FBR to these materials. We therefore investigated complement interactions with the tetraglyme surfaces. First, because of its well-known role in complement C3 activation, we measured the hydroxyl group (-OH) content of tetraglyme, but found it to be low. Second, we measured C3 adsorption to tetraglyme from plasma. Low amounts of C3 adsorbed on tetraglyme, although it displayed higher binding strength than the control surfaces. Finally, complement activation was determined by measuring C3a and SC5b-9 levels in serum after incubating with tetraglyme, as well as other surfaces that served as positive and negative controls, namely poly(vinyl alcohol) (PVA) hydrogels, Silastic sheeting, and poly(ethylene glycol) self-assembled monolayers with different end groups. Despite displaying low hydroxyl group concentration, relatively high C3a and SC5b-9 levels were found in serum exposed to tetraglyme, similar to the values in our positive control, PVA. Our results support the conclusion that complement activation by tetraglyme is a possible mechanism involved in the FBR to these biomaterials. 相似文献
4.
《Journal of biomaterials science. Polymer edition》2013,24(10):1123-1146
A tri-block-coupling polymer of stearyl poly(ethylene oxide)-4,4′-methylene diphenyl diisocyanate-stearyl poly(ethylene oxide)(MSPEO), was used as a surface modifying additive (SMA) and the MSPEO-modified poly(ether urethane) (PEU) surfaces were prepared by the process of dipcoating. The surface analysis by XPS revealed the surface enrichment of poly(ethylene oxide) (PEO). On the coating-modified surfaces, the bovine serum albumin (BSA) adsorption, respectively, from the low and high BSA bulk concentration solutions was correspondingly characterized by the methods of radioactive 125I-probe and ATR-FTIR. The bovine serum fibrinogen (Fg)-adsorption from the Fg bulk solution and the BSA-Fg competing adsorption from the BSA-Fg binary solutions were also characterized by radioactive 125I-probe. The reversible BSA-selective in situ adsorption on MSPEO-modified PEU surfaces were achieved, and the performance of blood compatibility on the coating-modified surfaces was also confirmed, respectively, by plasma recalcification time (PRT) and prothrombin time (PT) tests. 相似文献
5.
A tri-block-coupling polymer of stearyl poly(ethylene oxide)-4,4'-methylene diphenyl diisocyanate-stearyl poly(ethylene oxide) (MSPEO), was used as a surface modifying additive (SMA) and the MSPEO-modified poly(ether urethane) (PEU) surfaces were prepared by the process of dip-coating. The surface analysis by XPS revealed the surface enrichment of poly(ethylene oxide) (PEO). On the coating-modified surfaces, the bovine serum albumin (BSA) adsorption, respectively, from the low and high BSA bulk concentration solutions was correspondingly characterized by the methods of radioactive 125I-probe and ATR-FTIR. The bovine serum fibrinogen (Fg)-adsorption from the Fg bulk solution and the BSA-Fg competing adsorption from the BSA-Fg binary solutions were also characterized by radioactive 125I-probe. The reversible BSA-selective in situ adsorption on MSPEO-modified PEU surfaces were achieved, and the performance of blood compatibility on the coating-modified surfaces was also confirmed, respectively, by plasma recalcification time (PRT) and prothrombin time (PT) tests. 相似文献
6.
Biodegradable poly(ethylene oxide)/poly(epsilon-caprolactone) multiblock copolymers. 总被引:3,自引:0,他引:3
Daniel Cohn Theodor Stern M Fernanda González Julia Epstein 《Journal of biomedical materials research》2002,59(2):273-281
A series of poly(ethylene oxide) (PEO)/poly(epsilon-caprolactone) (PCL) containing biodegradable poly(ether ester urethane)s, covering a wide range of compositions, were synthesized and characterized. The synthesis consisted of a two-step process. During the first step, the ring-opening reaction of epsilon-caprolactone was carried out, initiated by the hydroxyl terminal groups of the PEO chain. The second step involved the chain extension of these PCL-PEO-PCL trimers with hexamethylene diisocyanate. By varying either the ethylene oxide/epsilon-caprolactone ratio or the length of both segments, we obtained a series of polymers having different morphologies and displaying a broad range of properties. 相似文献
7.
Aiming at developing new reverse thermo-responsive polymers, poly(ethylene oxide)-poly(propylene oxide) multiblock copolymers were synthesized by covalently binding the two components using carbonyl chloride and diacyl chlorides as the coupling molecules. The appropriate selection of the various components allowed the generation of systems displaying much enhanced rheological properties. For example, 15 wt% aqueous solutions of an alternating poly(ether-carbonate) comprising PEO6000 and PPO3000 segments, achieved a viscosity of 140,000 Pas, while the commercially available Pluronic F127 displayed 5,000 Pas only. Furthermore, the structure of the chain extender played a key role in determining the sol-gel transition. While poly(ether-ester)s containing therephtaloyl (para) and isophtaloyl (metha) coupling units failed to gel at any concentration, a 15 wt% aqueous solution of the polymer chain-extended with phtaloyl chloride (ortho) gelled at 43 degrees C. The water solutions were also studied by dynamic light scattering and a clear influence of the PEO/PPO ratio on the aggregate size was observed. By incorporating short aliphatic oligoesters into the backbone, prior to the chain extension stage, reverse thermal gelation-displaying biodegradable poly(ether-ester-carbonate)s, were generated. 相似文献
8.
Amphiphilic PEO–silanes (a–c) having siloxane tethers of varying lengths with the general formula α-(EtO)3Si–(CH2)2–oligodimethylsiloxanen-block-poly(ethylene oxide)8–OCH3 [n = 0 (a), n = 4 (b), and n = 13 (c)] were grafted onto silicon wafers and resistance to adsorption of plasma proteins was measured. Distancing the PEO segment from the hydrolyzable triethoxysilane [(EtO)3Si] grafting group by a oligodimethylsiloxane tether represents a new method of grafting PEO chains to surfaces. Properties of surfaces grafted with a–c were compared to surfaces grafted with a traditional PEO–silane containing a propyl spacer [(EtO)3Si–(CH2)3–poly(ethylene oxide)8–OCH3, PEO control]. As the siloxane tether length increased, chain density of PEO–silanes grafted onto oxidized silicon wafers decreased and hydrophobicity of the PEO–silane increased which led to a decrease in surface hydrophilicity. Despite decreased surface hydrophilicity, resistance to the adsorption of bovine serum albumin (BSA) increased in the order: PEO control < a < b ≈ c and to human fibrinogen (HF) increased in the order: PEO control < a < b < c. 相似文献
9.
Three different methods to synthesize star-shaped poly(ethylene oxide) are discussed in the present article. In all three cases, the branches are grown from a plurifunctional initiator. It is established that even though the early stages of the polymerization occur in heterogeneous phase, the consequences on the polymers formed are of minor importance. The most significant method is a core-first process, involving multifunctional poly-DVB cores as the initiating species, made anionically in dilute solution. Although strong association phenomena are occurring during the growth of the branches, star-shaped poly(ethylene oxide)s with a high number of functionalized branches are obtained. The polymers arising from all three methods were characterized accurately. 相似文献
10.
《Journal of biomaterials science. Polymer edition》2013,24(12):963-982
Alkyl-poly(ethylene oxide) (PEO) surfactants containing a terminal hydroxyl, sulfate, or carboxylate group were grafted at the surface of poly(ethylene) (PE) samples to improve their blood compatibility. Grafting was achieved by immobilizing PEO surfactants on PE using an argon plasma treatment. The sulfate group containing PEO surfactant was synthesized by sulfating polyoxyethylene(20)stearylether (Brij78®; B) with chlorosulfonic acid. A carboxylate-terminated surfactant was synthesized by a substitution reaction of the sodium alkoxide form of B with sodium iodoacetate. XPS analysis of the modified PE samples showed that at short plasma treatment times of up to 5 s the structure of the immobilized surfactants is largely retained. When plasma treatment times longer than 30 s were applied, the PEO chains of the surfactants were degraded. The wettability of the modified PE samples was improved compared to the unmodified PE samples. The wettability of the modified samples did not change when they were stored in air at room temperature for at least 12 weeks. 相似文献
11.
Kerstin Drexler Roland Meisel Ingrid Grassert Eckhard Paetzold Hans Fuhrmann Günther Oehme 《Macromolecular chemistry and physics.》2000,201(13):1436-1441
The first application of (EO)n‐(PO)m‐(EO)n triblock copolymers as surfactants in asymmetric hydrogenation is described. We observed a dependence of the activity and enantioselectivity on the asymmetric hydrogenation of methyl (Z)‐α‐acetamidocinnamate on the length of the (PO)m domain of the copolymer. The activity and enantioselectivity were observed to be independent of the hydrophilic‐lipophilic‐balance (HLB) or the critical micelle concentration (cmc) of the copolymer. The size of the (EO)n unit does not play an important role, however the addition of a small amount of SDS enhances the enantioselectivities significantly. The triblock copolymers were also successfully used as phase transfer reagent in two‐phase Suzuki carbon‐carbon coupling reactions. The use of polymeric reagents in micellar and phase‐transfer systems has the advantage that these reagents can be easily separated from the reaction mixture by means of a membrane. 相似文献
12.
Akira Hirao Seiichi Nakahama Mitsuru Takahashi Noboru Yamazaki 《Macromolecular chemistry and physics.》1978,179(7):1735-1741
The additive effect of poly(ethylene oxide) (PEO) in the Williamson reaction between sodium phenolate and butyl bromide was investigated. Under certain conditions a remarkable rate acceleration by PEO was observed in this reaction, which is explained by the fact that a cooperative coordination of oxygen atoms of PEO with metal cations promotes ion dissociation. The relationship between the formation of a PEO-sodium phenolate complex and the reaction rate, and also the dependency of the reaction rate on the molecular weight of PEO were examined. 相似文献
13.
Poly(ethylene oxide) brushes have been covalently bound to glass surfaces and their presence was demonstrated by an increase in water contact angles from fully wettable on glass to advancing contact angles of 54 degrees, with a hysteresis of 32 degrees. In addition, electrophoretic mobilities of glass and brush-coated glass were determined using streaming potential measurements. The dependence of the electrophoretic mobilities on the ionic strength was analyzed in terms of a softlayer model, yielding an electrophoretic softness and fixed charge density of the layer. Brush-coated glass could be distinguished from glass by a 2-3-fold decrease in fixed charge density, while both surfaces were about equally soft. Adhesion of Staphylococcus epidermidis HBH276 to glass in a parallel plate flow chamber was extremely high and after 4 h, 19.0 x 10(6) bacteria were adhering per cm2. In contrast, the organisms did not adhere to brush-coated glass, with numbers below the detection limit, i.e. 0.1 x 10(6) per cm2. These results attest to the great potential of polymer brushes in preventing bacterial adhesion to surfaces. 相似文献
14.
Toshio Shimada Norimasa Okui Thoru Kawai 《Macromolecular chemistry and physics.》1980,181(12):2643-2654
The discontinuous change of the lamellar thickness with crystallization temperature was studied for low molecular weight fractions of OH-terminated poly(ethylene oxide) (PEO). IR analyses demonstrated that almost all of the molecular chain ends were associated in the molten state, whereas a large part of their ends were free in dilute solution. Discontinuous changes were observed for low molecular weight PEO fractions crystallized from the melt, whereas continuous changes were found both for PEO's crystallized from dilute solution and those with phenylated end groups crystallized from the melt. Accordingly, it was pointed out that the association of the end groups could play an important role in the crystallization mechanism and the conformation of the resultant PEO crystals. 相似文献
15.
Implanted biomaterials are coated immediately with host plasma constituents, including extracellular matrix (ECM); this reaction may be undesirable in some cases. Poly(L-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG) has been shown to spontaneously adsorb from aqueous solution onto metal oxide surfaces, effectively reducing the degree of non-specific adsorption of blood and ECM proteins, and decreasing the adhesion of fibroblastic and osteoblastic cells to the coated surfaces. Cell adhesion through specific peptide-integrin receptors could be restored on surfaces coated with PLL-g-PEG functionalized with peptides of the RGD (Arg-Asp-Gly) type. To date, no study has examined the effect of surface modifications by PLL-g-PEG-based polymers on bacterial adhesion. The ability of Staphylococcus aureus to adhere to the ECM and plasma proteins deposited on biomaterials is a significant factor in the pathogenesis of medical-device-related infections. This study describes methods for visualizing and quantifying the adhesion of S. aureus to smooth and rough (chemically etched) titanium surfaces without and with monomolecular coatings of PLL-g-PEG, PLL-g-PEG/PEG-RGD and PLL-g-PEG/PEG-RDG. The different surfaces were exposed to S. aureus cultures for 1-24h and bacteria surface density was evaluated using scanning electron microscopy and fluorescence microscopy. Coating titanium surfaces with any of the three types of copolymers significantly decreased the adhesion of S. aureus to the surfaces by 89-93% for PLL-g-PEG, and 69% for PLL-g-PEG/PEG-RGD. Therefore, surfaces coated with PLL-g-PEG/PEG-RGD have the ability to attach cells such as fibroblasts and osteoblasts while showing reduced S. aureus adhesion, resulting in a selective biointeraction pattern that may be useful for applications in the area of osteosynthesis, orthopaedic and dental implantology. 相似文献
16.
In vitro protein adsorption, platelet adhesion and activation on new hydrogel surfaces, composed of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) or poly(dimethyl siloxane) (PDMS), were investigated. By varying PEO length (MW = 2000 or 3400), hydrophobic components (PTMO or PDMS) or polymer topology (block or graft copolymers), various physical hydrogels were produced. Their structures were verified by 1H NMR and ATR-IR and the molecular weights were determined by gel permeation chromatography. The hydrogels were soluble in a variety of organic solvents, while absorbed a significant amount of water with preserved three-dimensional structure by physical crosslinking. The dynamic contact angle measurement revealed that the surface hydrophilicity increased by incorporating longer PEO, PEO grafting, and adopting PDMS as a hydrophobic segment instead of PTMO. It was observed from in vitro protein adsorption study that the hydrogels exhibited significantly lower adsorption of human serum albumin (HSA), human fibrinogen (HFg), and IgG, when compared with Pellethane, a commercial polyurethane taken as a control. The hydrogels were attractive for HSA but not sensitive to HFg and IgG. And more than 65% of the proteins detected on the surfaces of the hydrogels were reversibly detached by being treated with an SDS solution. It was evident that the hydrogels synthesized in this study were much more resistant to platelet adhesion than the control, which might depend on the composition of proteins adsorbed on the surfaces and their degree of denaturation. Among the hydrogels tested, PEO3,4kPDMS exhibited albumin-rich and platelet-resistant surfaces, implying a potential candidate for biomaterial. 相似文献
17.
Akira Hirao Seiichi Nakahama Mitsuru Takahashi Noboru Yamazaki 《Macromolecular chemistry and physics.》1978,179(4):915-925
The additive effect of poly(ethylene oxide) (PEO) in several nucleophilic reactions, such as the oxidation of trans-stilbene with potassium permanganate, the alkylation of potassium acetate and diethyl benzylsodiomalonate as well as the Williamson reaction of sodium phenoxide with alkyl bromides was investigated and compared with that of dibenzo-18-crown-6 (crown ether). A marked effect by PEO was observed under certain conditions, which was explained by a cooperative coordination of the oxygen atoms of PEO with metal cations promoting ion dissociation and resulting in the observed remarkable rate acceleration. 相似文献
18.
《Journal of biomaterials science. Polymer edition》2013,24(10):839-855
Cellular interaction and platelet adsorption were investigated on poly(ethylene oxide) (PEO) immobilized silicone rubber membrane (SR) which has polyacrylic acid grafts on the surfaces. Polyacrylic acid (PAA) had been introduced to the SR surface after Ar plasma treatment of SR surfaces to introduce peroxide groups. Surface characterizations were made using ATR-FTIR, ESCA, SEM, and contact angle measurements. Experimental results obtained by ESCA high resolution curve fitting spectra indicated that the amount of bisamino PEO of different molecular weights immobilized onto SR surfaces were similar, which showed that the influence of the length of molecular chains (-C-C-O-) on the reactivity of terminal amino group is negligible. The wettability of modified SR surfaces increased with an increase in PEO molecular weight. Biological studies such as corneal epithelial cell culture and blood platelet adhesion were performed to understand the biocompatibility of modified SR surfaces. Biological studies using corneal epithelial cells showed that cell migration, attachment and proliferation onto PEO-20000 immobilized SR surface were suppressed, whereas these biological activities on PEO-600 were enhanced. Another study on platelet adhesion revealed that many platelets attached to PEO-600 immobilized SR, while platelet deposition was rarely observed on SR grafted with PEO-3350. The effects of different PEO molecular chains on biological response were discussed. 相似文献
19.
20.
To investigate the effects of polymer chemistry and topology (linear or graft copolymer) on in vivo biocompatibility and biostability based on cage implant system, various hydrogels, composed of short hydrophilic [polyethylene oxide (PEO)] and hydrophobic block, were prepared by polycondensation reaction. Poly(tetramethylene oxide) (PTMO) or poly(dimethyl siloxane) (PDMS) was chosen as a hydrophobic block because of their wide utilization as a biomaterial. By using the specimens retrieved from rats killed after 1, 2, 3, 5, and 7 weeks' implantation, cellular and material responses were assessed. Most hydrogels showed a comparable value of macrophage density to Pellethane(R), control polymer, whereas they did significantly lower foreign body giant cell (FBGC) density and coverage because of the presence of PEO. However, PEO block length and polymer topology did not affect macrophage adhesion and FBGC formation in our polymer composition. The hydrogel based on PDMS alone showed significantly lower macrophage density and FBGC density than Pellethane(R), indicating that PDMS plays a role in inhibiting cellular adhesion. The results obtained from gel permeation chromatography curve and Fourier transform infrared spectra exhibited that all the polymers were susceptible to oxidative degradation in vivo. Although Pellethane(R) revealed surface degradation by 5 weeks in vivo, hydrogels showed rapid degradation in the bulk within 2 weeks because of the penetration of oxidative chemicals released from phagocytic cells into PEO domain of phase-separated hydrogels. The more significant degradation was observed in the hydrogels with longer PEO block and PTMO as a hydrophobic block instead of PDMS. It was evident that the minor degradation could be achieved by grafting PEO and adopting PDMS as a hydrophobic block in the hydrogel. 相似文献