首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous studies have shown that when slices of the rat superior colliculus (SC) are exposed to a solution containing 10 microM bicuculline and a low concentration of Mg2+ (0.1 mM), most neurons in the intermediate gray layer (stratum griseum intermediale; SGI), wide-field vertical (WFV) cells in the optic layer (stratum opticum; SO), and a minor population of neurons in the superficial gray layer (stratum griseum superficiale; SGS) exhibit spontaneous depolarization and burst firing, which are synchronous among adjacent neurons. These spontaneous and synchronous depolarizations were thought to share common mechanisms with presaccadic burst activity in SGI neurons. In the present study, we explored the site responsible for generation of synchronous depolarization of SGI neurons by performing dual whole cell recordings under different slice conditions. A pair of SGI neurons recorded in a small rectangular piece of the SGI punched out from the SC slice showed synchronous depolarization but far less frequently than those recorded in a small rectangular piece including SGS and SO. This suggests that the superficial layers are needed for triggering synchronous depolarization in the SGI. Furthermore, we recorded spontaneous depolarizations in pairs of neurons belonging to the different layers. Analysis of their synchronicity revealed that WFV cells in the SO exhibit synchronous depolarizations with both SGS and SGI neurons, and the onset of spontaneous depolarization in WFV cells precedes those of neurons in other layers. Further, when SGS and SGI neurons exhibit synchronous depolarizations, SGI neurons usually precede the SGS neurons. These observations give further evidence to the existence of interlaminar interaction between superficial and deeper layers of the SC. In addition, it is suggested that WFV cells can trigger burst activity in other layers of the SC and that there is an excitatory signal transmission from the deeper layers to the superficial layers.  相似文献   

2.
Summary After WGA-HRP injections in the pontine grey involving the dorsolateral pontine nucleus, a great number of labeled cells were found in the superficial layers of the ipsilateral superior colliculus. The majority of these cells were located in the stratum griseum superficiale (SGS). Few labeled cells were found in the stratum opticum, and the stratum zonale (SZ) showed no labeled cells. Labeled cells in the SGS formed a rather homogeneous population as most of them had fusiform somata with an upper dendritic process which runs vertically to reach the SZ. These cells were mainly located in the middle third of the SGS, forming a sublamina in this layer. These results demonstrate the participation of the superficial tectal layers in the ipsilateral descending pathway of the superior colliculus, allowing visual information to reach precerebellar stations at the dorsolateral pontine nucleus.  相似文献   

3.
We studied the distribution of the calcium-binding proteins calbindin, parvalbumin and calretinin, in the superior colliculus and in the lateral geniculate nucleus of Cebus apella, a diurnal New World monkey. In the superior colliculus, these calcium-binding proteins show different distribution patterns throughout the layers. After reaction for calretinin one observes a heavy staining of the neuropil with few labeled cells in superficial layers, a greater number of large and medium-sized cells in the stratum griseum intermediale, and small neurons in deep layers. The reaction for calbindin revealed a strong staining of neuropil with a large number of small and well stained cells, mainly in the upper half of the stratum griseum superficiale. Intermediate layers were more weakly stained and depicted few neurons. There were few immunopositive cells and little neuropil staining in deep layers. The reaction for parvalbumin showed small and medium-sized neurons in the superficial layers, a predominance of large stellate cells in the stratum griseum intermediale, and medium-sized cells in the deep layers. In the lateral geniculate nucleus of Cebus, parvalbumin is found in the cells of both the P and M pathways, whereas calbindin is mainly found in the interlaminar and S layers, which are part of the third visual pathway. Calretinin was only found in cells located in layer S. This pattern is similar to that observed in Macaca, showing that these calcium-binding proteins reveal different components of the parallel visual pathways both in New and Old World monkeys.  相似文献   

4.
The expression of the immediate early gene NGFI-A in the nervous system is induced by sensory stimulation and seems to be related to long-term synaptic plasticity. We have used double-labeling immunohistochemistry to identify calbindin (CB)(+), parvalbumin (PV)(+) and neuronal nitric oxide synthase (nNOS)(+) neurons that also expressed the protein encoded by this immediate early gene after light-exposure on in the superficial layers of the rat superior colliculus (sSC). The majority of the NGFI-A(+) cells were not double-labeled for the tested markers. In the stratum zonale+stratum griseum superficiale (SZ/SGS), only 17.8%, 8.0% and 12.1% of NGFI-A(+) cells were also labeled for CB, PV or nNOS, respectively. In the stratum opticum (SO), only 10.5% of the NGFI-A(+) cells were also CB(+). Furthermore, only a small subset of each population expressed the NGFI-A protein after light-exposure. In the SZ/SGS, 35.7% of the CB(+), 32.1% of the PV(+) and 26.6% of the nNOS(+) neurons also expressed the NGFI-A. In the SO, 31.7% of the CB(+) neurons also expressed the NGFI-A. The proportional distribution of the nNOS(+)/NGFI-A(+) neurons throughout the SZ/SGS layers showed a slight but significant rostro-caudal gradient. No significant difference was observed for the other markers, indicating homogeneous activation of these populations throughout the retinotopic map. Our results suggest that the visually-driven NGFI-A expression is not restricted to a specific population of the sSC and that visual processing in this structure, as assessed by the expression of this candidate-plasticity protein, involves the activation of subsets of ascending and non-ascending projection neurons.  相似文献   

5.
Summary Tecto-thalamic projections in the hereditary bilaterally microphthalmic rat were studied by means of WGA-HRP injection into the dorsal lateral geniculate nucleus (LGNd) and the lateroposterior thalamic nucleus (LP). Histological study in the mutant rats showed that whereas LGNd and superficial layers of the superior colliculus (SC) suffered from a remarkable reduction in size, LP had no histological changes as compared to the normal animals. Unilateral injection of the tracer into the microphthalmic LGNd showed that WGA-HRP positive neurons were present mostly in the ipsilateral str. griseum superficiale (SGS) of the SC. However, the number of labeled SGS neurons of the microphthalmic animals was about 3% of the normal. Although cell bodies of the normal tecto-LGNd neurons in the SGS were spindle-form in shape and issued one or two proximal dendrites from each pole, the microphthalmic tecto-LGNd neurons showed an irregular contour and their dendrites were not so intensively labeled. Unilateral injections of WGA-HRP into the LP revealed that the tecto-LP neurons were mainly distributed in the ipsilateral str. opticum of the colliculus. (SO) in both normal and microphthalmic animals. However, the number of labeled SO cells in the microphthalmic rat was about one-half of the normal. Furthermore, the size of labeled tecto-LP neurons was smaller than that of the normal ones, and they showed irregular round to oval cell bodies with equivocally labeled dendrites, in contrast to the normal tecto-LP neurons with polygonal cell bodies extending three or more dendrites in a radial fashion. These results indicate that there exist the tecto-LGNd and -LP projection neurons in the microphthalmic rat and that their laminally segregated projection is fundamentally preserved. However, the number of the tecto-thalamic projection neurons, especially of the tecto-LGNd cells, was markedly diminished in the mutant tectum compared to normals.Abbreviations CST cortico-spinal tract - DRN dorsal raphe nucleus - DTN dorsal tegmental nucleus - LGNd pars dorsalis of the lateral geniculate nucleus - LLN nucleus of the lateral lemniscus - LM medial lemniscus - LP lateroposterior thalamic nucleus - MGN medial geniculate nucleus - MRF midbrain reticular formation - OT optic tract - P pretectal area - PAG periaqueductal gray - PB parabigeminal nucleus - PN pontine nuclei - PCS superior cerebellar peduncle - SGS superficial gray layer of the superior colliculus - SO stratum opticum of the superior colliculus - SN substantia nigra - Vm motor nucleus of the trigeminar nerve - Vs sensory nucleus of the trigeminar nerve  相似文献   

6.
Several studies have reported the morphological changes induced by unilateral enucleation during early neonatal life on the developing visual system. This study has examined cellular changes in the superior colliculi by removal of a single eye in adult rats. Anaesthetised male hooded rats aged 90 d had their right eyes removed. Groups of nonenucleated control and enucleated rats were killed when aged either 150 or 390 d. The brains were removed and both the right and left superior colliculi dissected out. The volume of the stratum griseum superficiale (SGS) within these colliculi was estimated stereologically by light microscopy, as well as the numerical density and total number of neurons within this cell layer. The volume of the cell layer was reduced by about 40% on the side contralateral to the enucleated eye but not on the ipsilateral side at both survival periods examined. The numerical density of neurons within the SGS was unaffected by the enucleation so that the colliculi contralateral to the enucleated eye showed a substantial loss of neurons within this cell layer. This study demonstrates the importance of the retinal ganglion cell input, even in adult animals, for maintaining the viability of neurons in the SGS layer of the superior colliculus.  相似文献   

7.
The topographic alternation of vasoactive intestinal peptide (VIP) immunoreactivity after long-term bilateral eye enucleation (80 days) was investigated in the suprachiasmatic nucleus (SCN) and the superior colliculus of the adult rat with the peroxidase-antiperoxidase method. In the SCN, the immunostaining of VIP-immunoreactive (IR) cell bodies increased, and the intensity and density of VIP-IR fibers and terminals were markedly enhanced after eye enucleation. On the other hand, after eye enucleation, no VIP-IR cell bodies and fibers were visible in the stratum griseum superficiale of the superior colliculus, although fusiform-shaped VIP-IR neurons were distributed in the layer of unoperated control rats. The present results, therefore, have revealed that the long-term blockage of retinal input induces changes of VIP immunoreactivity in different manners, according to the target brain areas.  相似文献   

8.
The expression pattern of two calcium binding proteins (CaBP), calbindin D28k (CB) and parvalbumin (PV), in the superior colliculus (SC) of the adult rabbit, as well as the morphology of the immunoreactive cells were examined. The study was performed on 12 rabbits. Coronal sections from postmortem SC were analyzed by light microscopy, and drawings of CaBP-labeled cells were obtained using a drawing tube. No previous information is available on either the CB/PV expression or the morphology of CB/PV positive cells in the SC of the adult rabbit. Therefore, in this study we show that CB neurons and neuropil form three main tiers: the first located within the stratum zonale (SZ) and the upper part of the stratum griseum superficiale (SGS), the second located within the stratum griseum intermedium (SGI), and the third, located within the medial and central areas of the stratum griseum profundum (SGP). In contrast to this layer labeling, almost no CB-positivity is found within the other collicular layers. On the other hand, the densest concentration of PV labeled cells and terminals is found within a single dense tier that spanned the ventral part of the startum griseum superficiale (SGS) and the dorsal part of the stratum opticum (SO). Anti-PV neurons are also scattered through the deeper layers below the dense tier. In contrast, almost no anti-PV labeled neurons or neuropil are found within the stratum zonale (SZ) and upper SGS. This distribution represents a new pattern of sublamination in the SC of this species. All the previously described cell types in other mammals are observed in the rabbit SC: marginal cells, horizontal cells, pyriform cells, narrow-field vertical cells, wide-field vertical cells, and stellate/multipolar cells. Detailed drawings of all these cellular types are represented to show their complete morphology. The results of this study indicate that both CB and PV are present in a variety of neurons, which present a number of homologies between mammals, but have a different location and/or distribution, according to the different species. These findings are thus relevant to better understand the organisation of the SC in mammals.  相似文献   

9.
Summary In the well laminated superior colliculus of the grey squirrel the cells of origin of the crossed descending pathway to the brainstem gaze centers are contained within the inner sublamina of the intermediate grey layer. The technique of anterograde transport of horseradish peroxidase was used to determine whether the pathway from the cerebellum to the superior colliculus terminates in this region. The technique of retrograde transport of horseradish peroxidase was used to localize the source of this pathway within the cerebellum and to determine the morphology of the cerebellotectal neurons. The grey squirrel cerebellotectal pathway provides two terminal fields to the superior colliculus: a diffuse projection into the deep grey layer and a more concentrated, interrupted projection into the inner sublamina of the intermediate grey layer. The more concentrated projection overlies precisely the tectal sublamina that contains the cells of origin of the predorsal bundle. In contrast to animals with frontal eyes, the cerebellotectal pathway in the grey squirrel was found to project almost entirely contralaterally and the vast majority of the cells of origin for the pathway were distributed ventrally, in the caudal pole of the posterior interpositus nucleus and the adjacent region of the dentate. The labelled cells in both cerebellar nuclei were large and displayed similar morphologies.Abbreviations BC Brachium conjunctivum - BP Brachium pontis - CN Cochlear nuclei - D Dentate nucleus of the cerebellum - DLG Dorsal lateral geniculate nucleus - DLPG Dorsal lateral pontine grey - I Interpositus nucleus of the cerebellum - IC Inferior colliculus - III Oculomotor nucleus - IO Inferior olive - ITB Ipsilateral tectobulbar pathway - F Fastigial nucleus of the cerebellum - MG Medial geniculate nucleus - NRTP Nucleus reticularis tegmenti pontis - OPT Stratum opticum - PAG Periaqueductal grey - PDB Predorsal bundle - PB Parabigeminal nucleus - PH Prepositus hypoglossi - PUL Pulvinar nucleus - PT Pretectum - RN Red nucleus - SAI Stratum album intermediale (intermediate white layer) - SAP Stratum album profundum (deep white layer) - SGI Stratum griseum intermediale (intermediate grey layer) - SGP Stratum griseum profundum (deep grey layer) - SGS Stratum griseum superficiale (superficial grey layer) - SN Substantia nigra - sV Sensory division of the trigeminal complex - Ve Vestibular nuclei - VII Facial nucleus - VLG Ventral lateral geniculate nucleus  相似文献   

10.
We have investigated the cellular localization of opioid peptides and binding sites in the cat's superior colliculus by testing the effects of retinal deafferentation and intracollicular excitotoxin lesions on patterns of enkephalin-like immunostaining and opiate receptor ligand binding. In normal cats, enkephalin-like immunoreactivity marks a thin tier in the most dorsal stratum griseum superficiale, small neurons of the stratum griseum superficiale, and patches of fibers in the intermediate and deeper gray layers. Eliminating crossed retinotectal afferents by contralateral eye enucleation had little immediate effect on this pattern, although chronic eye enucleation from birth did reduce immunoreactivity in the superficial layers. By contrast, fiber-sparing destruction of collicular neurons by the excitotoxins N-methyl-D-aspartate and ibotenic acid virtually eliminated enkephalin-like immunoreactivity in the neuropil of the upper stratum griseum superficiale, presumably by killing enkephalinergic cells of the superficial layers. Such lesions did not eliminate the patches of enkephalin-like immunoreactivity in the deeper layers. In normal cats, opiate receptor ligand binding is dense in the stratum griseum superficiale, particularly in its upper tier, and moderately dense in the intermediate gray layer. Contralateral eye removal had no detectable effect on the binding pattern, but excitotoxin lesions of the colliculus dramatically reduced binding in both superficial and deep layers. Some ligand binding, including part of that in the upper stratum griseum superficiale, apparently survived such lesions. Similar effects were observed in the lateral geniculate nucleus: enucleation produced no change in binding, whereas excitotoxin lesions greatly reduced specific opiate binding. We conclude that in the superficial collicular layers, both enkephalin-like opioid peptides and their membrane receptors are largely expressed by neurons of intrinsic collicular origin. The close correspondence between the location of these intrinsic opioid elements and the tier of retinal afferents terminating in the upper stratum griseum superficiale further suggests that opiatergic interneurons may modulate retinotectal transmission postsynaptically.  相似文献   

11.
In order to investigate the nigro-tecto-spinal pathway in the rat, the pattern of termination of nigrotectal fibres and the distribution of tectospinal neurons have been investigated in a light and electron microscopic study of the superior colliculus. In addition, the pattern of termination of nigrotectal fibres was compared to the pattern of acetylcholinesterase staining. The light microscopic studies showed that the nigrotectal fibres, which had been identified by anterograde transport of horseradish peroxidase from the substantia nigra, terminated in a distinctive clustered pattern throughout the rostrocaudal extent of the stratum griseum intermedium, stratum album intermedium and adjacent dorsal portion of the stratum griseum profundum of the ipsilateral superior colliculus. The clusters of nigrotectal terminals formed a series of branching, interconnected longitudinal columns which largely corresponded with the pattern of acetylcholinesterase staining. The tectospinal neurons, which had been identified by retrograde transport of horseradish peroxidase from the spinal cord, had mainly large-sized somata, were stellate in shape with multiple long dendrites, and formed variable-sized clusters of 4-15 neurons within lateral regions of the ventral stratum album intermedium and dorsal stratum griseum profundum. In experiments where both the nigrotectal terminals and the tectospinal neurons were labelled by the transport of horseradish peroxidase, the clusters of tectospinal neurons largely corresponded with the regions of densest nigrotectal fibre termination in the lateral regions of the superior colliculus. In addition, a small contralateral nigrotectal projection was localized in the rostrolateral region of the superior colliculus where the crossed fibres terminated in a clustered pattern in alignment with clusters of tectospinal neurons in this region. Electron microscopic examination of the superior colliculus following ibotenic acid lesions in the substantia nigra and horseradish peroxidase injections in the spinal cord showed multiple degenerating nigrotectal boutons in synaptic contact with the soma and the mainstem and secondary dendrites of labelled tectospinal neurons in the lateral regions of the stratum album intermedium and stratum griseum profundum of the superior colliculus. The majority of the degenerating nigrotectal boutons showed electron-lucent degenerative changes and were in axodendritic contact. All of the identified nigrotectal synapses were of the symmetrical type.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The effects of neonatal enucleation on the final adult pattern of retrospleniocollicular connection in the rat was studied using the anterograde tracer biotindextranamine 10,000 (BDA) iontophoretically injected in different anteroposterior locations of the retrosplenial cortex. Retrosplenial afferents are normally distributed in all collicular layers beneath the stratum griseum superficiale (SGS) throughout almost the entire rostrocaudal and lateromedial collicular axes. Neonatal enucleation caused an invasion of lower SGS by abundant retrosplenial afferents, whose distribution remained unaltered in intermediate and deep collicular layers. Axons entering the deafferented SGS showed variable morphologies and arborization patterns. Some of them ran lateromedially close to the SGS-stratum opticum (-SO) limit, giving rise to many collaterals which invaded the lower part of the SGS; whereas others formed narrow terminal arbors, mostly branching in the SO. In the intermediate layers, synaptic profiles were mainly found close to the borders of acetylcholinesterase (AChE) patches in both control and enucleated animals, indicating that neonatal enucleation does not alter the final pattern of retrospleniocollicular afferents to these collicular regions. The results presented here demonstrate that neonatal enucleation leads to the development of an aberrant projection from the retrosplenial cortex to the deafferented superficial layers of the superior colliculus. These results provide new information regarding the reorganization of connections subsequent to neonatal enucleation and suggest that, in enucleated animals, nonvisual multisensorial information could be relayed to central circuits which in intact animals belong to the visual system.  相似文献   

13.
Summary Groups of pregnant rats were injected with two successive daily doses of 3H-thymidine from gestational day 12 and 13 (E12+E13) until the day before parturition (E21+22) in order to label all the multiplying precursors of neurons. At 60 days of age the proportion of neurons generated (or no longer labelled) on specific days was determined in the separate layers of the superior colliculus. Neurogenesis begins with the production of a few large multipolar neurons in layers V and IV on day E12; the bulk (87%) of these cells are generated on day E13. This early-produced band of large neurons, the intermediate magnocellular zone, divides the superior colliculus into two cytogenetically distinct regions. In both the deep and the superficial superior colliculus neuron production is relatively protracted. In the deep superior colliculus neuron production peaks on day E15 in layer VII, on day E15 and E16 in layer VI, and on day E16 (the large neurons excluded) in layer V, indicating an inside-out sequence. In the superficial superior colliculus peak production time of layer III cells is on day E15 and of layer IV cells on day E16; peak production time of both layer I and II is on day E16 but in the latter region neuron production is more prolonged and ends on day El8. One interpretation of these results is that the two pairs of superficial layers are produced in an outside-in sequence. These three cytogenetic subdivisions of the superior colliculus may be correlated with its structural-functional parcellation into an efferent spinotectal, a deep somatomotor and a superficial visual component.A comparison of neurogenesis in different components of the visuomotor and visual pathways of the rat indicates that the motor neurons of the extraocular muscles, the abducens, trochlear and oculomotor nuclei, and neurons of the nucleus of Darkschewitsch are produced first. Next in line are source neurons of efferents to the bulb and the spinal cord: those of the Edinger-Westphal nucleus and the intermediate magnocellular zone of the superior colliculus. These are followed by the relay neurons of the dorsal nucleus of the lateral geniculate body. The neurons of the superficial superior colliculus and of the visual cortex implicated in visual sensori-motor integrations are produced last.Abbreviations A aqueduct - ap stratum album profundum (layer VII) - bi brachium of the inferior colliculus - c caudal - CGd central gray, pars dorsalis - CGl central gray, pars lateralis - CGv central gray, pars ventralis - dm deep magnocellular zone - EW Edinger-Westphal nucleus - gi stratum griseum intermediale (layer IV) - gp stratum griseum profundum (layer VI) - gs stratum griseum superficiale (layer II) - IC inferior colliculus - im intermediate magnocellular zone - LGd lateral geniculate nucleus, pars dorsalis - ll lateral lemniscus - lm stratum lemnisci (layer V) - MG medial geniculate nucleus - ND nucleus of Darkschewitsch - NO nucleus of the optic tract - op stratum opticum (layer III) - ot optic tract - r rostral - SC superior colliculus - vIII third ventricle - ZO stratum zonale (layer I) - III oculomotor nucleus - IV trochlear nucleus - Vm mesencephalic nucleus of the trigeminal - VI abducens nucleus  相似文献   

14.
1. The spatiotemporal pattern of visual inputs to the stratum griseum superficiale (SGS) and stratum opticum (SO) of the cat superior colliculus (SC) has been determined by an analysis of the current sinks occurring during postsynaptic activity following stimulation of each optic nerve (ON) and the optic chiasm (OX). Electrolytic lesions were used to determine the locations of the five major current sinks. 2. Direct SC afferents from the contralateral ON induced three current sinks whose maxima were located a) in the upper part of the SGS, b) in the middle part of the SGS, and c) in the lower part of the SGS and upper part of the SO. These three sinks were generated by three afferent fiber groups conducting in the optic nerve with modal and maximum velocities, respectively, of a) 4 and 5 m/s (slow W-group), b) 7 and 10 m/s (fast W-group), and c) 32 and 43 m/s (Y-group). 3. Indirect SC inputs from the contralateral ON via the ipsilateral visual cortex were identified by comparing the pattern of current sinks generated by OX stimulation before and after cortical ablation. The most prominent and fastest indirect sink (Y-group) was found in ;the lower half of the SGS and uppermost part of the SO. Low-amplitude, long-latency indirect current sinks were also found in the upper and lower thirds of the SGS. 4. The principal conclusions of this report are first, that the SGS is divisible into three physiologic regions according to the spatiotemporal pattern of excitatory synaptic activity generated by the afferent inputs and second, that there is a spatiotemporal matching of the direct collicular afferents from the contralateral retina and the indirect retinal afferents relaying through the ipsilateral visual cortex.  相似文献   

15.
Projections from the superior colliculus (SC) to the ventral lateral geniculate nucleus (LGNv) were studied in hereditarily microphthalmic and normal rats by means of wheatgerm agglutinin conjugated with horseradish peroxidase (WGA-HRP). Unilateral injection of a tracer into the LGNv in normal rats revealed WGA-HRP positive neurons on both sides of the SC. In the ipsilateral SC, most of the labeled neurons were distributed in the upper part of the stratum opticum (SO) and the lower part of the stratum griseum superficiale (SGS). A few labeled neurons were also found in the same layers of the contralateral SC. After unilateral injections of the tracer into the LGNv of microphthalmic rats, labeled neurons appeared in similar layers of the SC on both sides. However, the number of labeled neurons in the ipsilateral SC decreased to 30% of normal, whereas on the contralateral side these neurons were apparently more numerous than those in normal rats. The soma size of the labeled SC neurons in microphthalmia was not significantly different from normal. These results indicate fundamentally that tecto-LGNv projecting neurons exist in microphthalmic rats despite the fact that they lack optic nerve afferents. Furthermore, the present results, taken together with our previous results, indicate that the diminution in the number of tecto-LGNd neurons was severest (3%), the tecto-LGNv neurons less severe (30%) and the tecto-LP neurons least severe (50% of that of normal).  相似文献   

16.
Summary Anterograde and retrograde labelling with the carbocyanine dye, Di-I, was used to assess the development of the visual cortical projection to the superior colliculus (SC) in pre- and postnatal hamsters. Posterior cortical axons arrive in the SC on postnatal (P-) day one (the first 24 hours after birth = P-0) and begin to arborize in the superficial laminae (the stratum griseum superficiale [SGS] and stratum opticum [SO]) within one day after they enter the tectum. Over succeeding days, the density of the projection increases and numerous labelled fibers are visible throughout the depth of the SGS and SO. Beginning on P-6, there is a decrease in the density of labelled fibers in the upper SGS and by P-10, the laminal distribution of the occipital corticotectal pathway appears adult-like. Anterograde tracing with Di-I also revealed the presence of a few corticotectal fibers that crossed the midline in both the SC and posterior commissures to terminate mainly in the superficial tectal laminae contralateral to the injection site. Crossed corticotectal fibers were visible in hamsters aged between P-3 and P-12. Retrograde tracing with Di-I in hamsters killed between P-3 and P-12 demonstrated that both the ipsilateral and crossed corticotectal projections arose exclusively from pyramidal cells in developing lamina V.  相似文献   

17.
GABAC receptors are enriched in the upper grey layers of the mammalian superior colliculus and contribute to synaptic processing. Electrophysiological data suggested that the GABAC receptor ρ subunits are expressed by GABAergic interneurons which represent about half of the neurons in the stratum griseum superficiale (SGS). Combining in situ hybridization for ρ2 receptor mRNA and the glutamic acid decarboxylase GAD-65 mRNA confirmed this assumption. A majority of ρ-labeled neurons in SGS and pretectum are GABAergic. Combining in situ hybridization with immunohistochemistry for the two projection neuron markers calbindin and parvalbumin revealed that a few ρ2 mRNA expressing cells coexpressed calbindin, but not parvalbumin. In visual cortex, ρ2 mRNA was present in pyramidal neurons and parvalbumin-containing interneurons. The results show that in the SGS primarily GABAergic neurons express GABAC receptors whereas the majority of tectothalamic calbindin neurons and intrinsically projecting parvalbumin neurons do not.  相似文献   

18.
The origins of the projections of the superior colliculus to the dorsal lateral geniculate nucleus and to the pulvinar in Dutch-belted rabbits were investigated using horseradish peroxidase (HRP) methods. Following injections of HRP in the dorsal lateral geniculate nucleus, retrogradely labeled neurons were found in the upper two-thirds of the stratum griseum superficiale of the ipsilateral superior colliculus. Most of the labeled somata were spindle-shaped, and their major axes tended to be perpendicular to the surface of the superior colliculus. In contrast, following injections of the pulvinar, labeled neurons were found in the lower third of the ipsilateral stratum griseum superficiale. In these cases, the labeled somata were larger than those labeled following dorsal lateral geniculate injections and were multipolar in shape.  相似文献   

19.
We have recorded from single neurons in the retinorecipient layers of the superior colliculus of the cat. We distinguished several functionally distinct groups of collicular neurons on the basis of their velocity response profiles to photic stimuli. The first group was constituted by cells responding only to photic stimuli moving at slow-to-moderate velocities across their receptive fields (presumably receiving strong excitatory W-type input but not, or only subthreshold, Y-type input). These cells were recorded throughout the stratum griseum superficiale and stratum opticum and constituted 50% of our sample. The second group of cells exhibited excitatory responses only at moderate and fast velocities (presumably receiving excitatory Y-type but not W-type input). These cells constituted only about 7% of the sample and were located principally in the lower stratum griseum superficiale. The third group of cells was constituted by cells excited over the entire range of velocities tested (1-2000 /s) and presumably received substantial excitatory input from both W- and Y-channels. These cells constituted almost 26% of our sample and were located in the lower stratum griseum superficiale, stratum opticum and the upper part of the stratum griseum intermediale. Overall, cells receiving excitatory Y-type input, i.e. the sum of group two and group three cells, constituted about a third of the sample and their excitatory discharge fields were significantly larger than those of cells receiving only W-type input. A fourth distinct group of collicular neurons was also constituted by cells responding over a wide range of stimulus velocities. These cells were excited by slowly moving stimuli, while fast-moving photic stimuli evoked purely suppressive responses. The excitatory discharge fields of these cells (presumably, indicating the spatial extent of the W-input) were located within much larger inhibitory fields, the extent of which presumably indicates the spatial extent of the Y-input. These low-velocity-excitatory/high-velocity-suppressive cells were recorded from the stratum griseum superficiale, stratum opticum and stratum griseum intermediale and constituted about 17% of the sample. The existence of low-velocity-excitatory/high-velocity-suppressive cells in the mammalian colliculus has not been previously reported. Low-velocity-excitatory/high-velocity-suppressive cells might play an important role in activating "fixation/orientation" and "saccade" premotor neurons recorded by others in the intermediate and deep collicular layers. Overall, in the majority (57%) of collicular neurons in our sample there was no indication of a convergence of W- and Y-information channels. However, in a substantial minority of collicular cells (about 43% of the sample) there was clear evidence of such convergence and about 40% of these (low-velocity-excitatory/high-velocity-suppressive cells) appear to receive excitatory input from the W-channel and inhibitory input from the Y-channel.  相似文献   

20.
The pretectal and tectal projections to the thalamic intralaminar nuclei in the cat were studied following horseradish peroxidase injections centered in the central lateral nucleus. Retrogradely labeled neurons were found in both the pretectum and the superior colliculus, ipsilateral and, to a lesser extent, controlateral to the injection site. Labeled pretectal neurons were found throughout all pretectal nuclei; the densest concentrations were in the medial pretectal nucleus, the anterior pretectal nucleus and the nucleus of the posterior commissure. The major source of tectal projections were the small neurons in the stratum griseum intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号