首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Although cannabinoid receptor agonists have analgesic activity in chronic pain states, they produce a spectrum of central cannabinoid CB(1) receptor-mediated motor and psychotropic side-effects. The actions of endocannabinoids, such as anandamide, are terminated by uptake and subsequent intracellular enzymatic degradation. In the present study, we examined the effect of acute administration of the anandamide transport inhibitor AM404 in rat models of chronic neuropathic and inflammatory pain. 2. Systemic administration of AM404 (10 mg/kg) reduced mechanical allodynia in the partial sciatic nerve ligation (PNL) model of neuropathic pain, but not in the complete Freund's adjuvant (CFA) model of inflammatory pain. 3. The effect of AM404 in the PNL model was abolished by coapplication with the selective cannabinoid CB(1) receptor antagonist AM251 (1 mg/kg). AM404 did not produce a reduction in motor performance in either the PNL or CFA models. 4. These findings suggest that acute administration of AM404 reduces allodynia in a neuropathic pain model via cannabinoid CB(1) receptor activation, without causing the undesirable motor disruption associated with cannabinoid receptor agonists.  相似文献   

2.
Cannabinoid receptor (CB) agonists are known to attenuate allodynia in a range of pain models, but their long-term effects and their mechanisms of action are controversial. The present study compares the antiallodynic effects of long-term treatment with a mixed CB1/CB2 (WIN55,212-2) and a selective CB2 (GW405833) cannabinoid receptor agonist and correlates these effects with their influences on spinal cord (SC) glial activation. The substances were applied daily in a rat neuropathic pain model. Tactile allodynia was assessed, and the development of gliosis was illustrated with immunohistochemical methods. Both substances reduced mechanical allodynia. Their analgesic effect was accompanied by a significant reduction in reactive gliosis and cathepsins (CAT) X and S expression. A daily injection of either substance for 8 days was sufficient to induce a sustained antiallodynic effect, which persisted up to 6 days after the last injection. The re-appearance of mechanical allodynia after this period was associated with a breakout of a strong gliotic response in the lumbar SC. Our results emphasize the therapeutic efficacy of cannabinoid receptor agonists and their inhibitory effects on the formation of gliosis.  相似文献   

3.
Despite the fact that it is a frequent diabetic complication, the mechanisms underlying the manifestation of diabetic neuropathic pain remain poorly understood. In this study, we hypothesized that the depletion of peripheral macrophages with liposome-encapsulated clodronate (LEC) can prevent, at least delay, the progression of diabetes-induced neuropathic pain. Therefore, the aim of this study was to evaluate the effects of macrophage depletion on mechanical allodynia and thermal hyperalgesia in the streptozotocin (STZ)-induced rat model of diabetic neuropathy. LEC was intravenously administrated to rats three times with 5-day intervals. A single intravenous injection of STZ caused an increase in the average blood glucose levels and a decrease in body weight. Although LEC treatment did not affect the body weight gain, the blood glucose level was lower and serum insulin level higher in LEC-treated diabetic rats than in that of diabetic rats. In addition, LEC treatment alleviated the excessive damage in beta cells in diabetic rats. Diabetic animals displayed marked mechanical allodynia and thermal hyperalgesia. While the treatment of diabetic rats with LEC did not significantly change the thermal withdrawal latency, diabetes-induced decrease in mechanical paw withdrawal threshold was significantly corrected by the LEC treatment. The results of this study show that thermal hyperalgesia and mechanical allodynia induced by diabetes may be associated with alterations in blood glucose level. Depletion of macrophages with LEC in diabetic rats may reduce mechanical allodynia without affecting thermal hyperalgesia. Taken together, these results suggested that depletion of macrophages in diabetes may partially postpone the development of diabetic neuropathic pain.  相似文献   

4.
5.
BACKGROUND AND THE PURPOSE OF THE STUDY: Pentoxifylline (PTX) is a non-specific cytokite pain in several animal models and humans. However, long-term therapeutic effects of PTX on neuropathic pain in a rat model of chronic constriction injury (CCI) are not completely clear. This study was conducted to examine the effect of long-term administration of PTX on neuropathic pain in rats. METHODS : Neuropathic pain was induced by sciatic nerve ligation using of CCI model in rats. Rats were randomly assigned into sham, CCI-saline treated, and CCI-PTX treated (30 or 60 mg/kg ip) groups. PTX or saline administered at 30 min before CCI and daily for 14 days post-CCI. At the days of 3, 7, 11 and 14 following CCI, by using standard methods effects of thermal hyperalgesia, thermal and mechanical allodynia in all groups were examined using the standard methods. RESULTS : The CCI-saline treated group showed a significant increase in mechanical and thermal allodynia, and thermal hyperalgesia as compared with the sham group in the tested days. Administration of the higher dose of PTX (60 mg/kg/day), but not the lower dose (30 mg/kg/day) significantly reduced mechanical and thermal allodynia, as compared with the CCI-saline treated group on days of 3, 7, 11 and 14 (all P values<0.001). Also, both doses of PTX significantly reduced thermal hyperalgesia as compared with the CCI-saline treated group on these days (all P values<0.001). CONCLUSION : Results of this study show that chronic administration of PTX reduces the neuropathic pain in a rat model of CCI. Thus, this drug may have a therapeutic application in the treatment and management of neuropathic pain in humans.  相似文献   

6.

BACKGROUND AND PURPOSE

The fatty acid amide hydrolase inhibitor URB597 can reverse the abuse-related behavioural and neurochemical effects of nicotine in rats. Fatty acid amide hydrolase inhibitors block the degradation (and thereby magnify and prolong the actions) of the endocannabinoid anandamide (AEA), and also the non-cannabinoid fatty acid ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). OEA and PEA are endogenous ligands for peroxisome proliferator-activated receptors alpha (PPAR-α). Since recent evidence indicates that PPAR-α can modulate nicotine reward, it is unclear whether AEA plays a role in the effects of URB597 on nicotine reward.

EXPERIMENTAL APPROACH

A way to selectively increase endogenous levels of AEA without altering OEA or PEA levels is to inhibit AEA uptake into cells by administering the AEA transport inhibitor N-(4-hydroxyphenyl)-arachidonamide (AM404). To clarify AEA''s role in nicotine reward, we investigated the effect of AM404 on conditioned place preference (CPP), reinstatement of abolished CPP, locomotor suppression and anxiolysis in an open field, and dopamine elevations in the nucleus accumbens shell induced by nicotine in Sprague-Dawley rats.

KEY RESULTS

AM404 prevented the development of nicotine-induced CPP and impeded nicotine-induced reinstatement of the abolished CPP. Furthermore, AM404 reduced nicotine-induced increases in dopamine levels in the nucleus accumbens shell, the terminal area of the brain''s mesolimbic reward system. AM404 did not alter the locomotor suppressive or anxiolytic effect of nicotine.

CONCLUSIONS AND IMPLICATIONS

These findings suggest that AEA transport inhibition can counteract the addictive effects of nicotine and that AEA transport may serve as a new target for development of medications for treatment of tobacco dependence.

LINKED ARTICLES

This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

7.
An attractive alternative to the use of direct agonists at the cannabinoid receptor type 1 (CB1) in the control of neuropathic pain may be to potentiate the actions of endogenous cannabinoids. Thus, the effects of AM404, an inhibitor of anandamide uptake, were assessed in an experimental model of neuropathic pain in rats. Daily treatment with AM404 prevented, time- and dose-dependently, the development of thermal hyperalgesia and mechanical allodynia in neuropathic rats. Antagonists at cannabinoid CB1 or CB2 receptors, or at the transient receptor potential vanilloid type 1 receptor, each partially reversed effects induced by AM404. A complete reversal was obtained when the three antagonists were given together, suggesting that all three receptors are involved. AM404 treatment affected two pathways involved in the generation and maintenance of neuropathic pain, one mediated by nitric oxide (NO) and the other by cytokines. AM404 completely prevented the overproduction of NO and the overexpression of nNOS, inhibited the increase in tumour necrosis factor alpha (TNFalpha) and enhanced the production of interleukin-10. Both NO and TNFalpha are known to contribute to the apoptotic process, which plays an important role in the establishment of chronic pain states. AM404 treatment prevented the increase in the ratio between pro- and anti-apoptotic gene bax/bcl-2 expression observed in the spinal cord of neuropathic rats. Taken together, these findings suggest that inhibition of endocannabinoid uptake, by blocking the putative anandamide carrier, results in the relief of neuropathic pain and may represent a novel strategy for treating chronic pain.  相似文献   

8.
Previously we demonstrated that phosphorylation of NR2B subunits of the N-methyl-d-aspartate (NMDA) glutamate receptor at Tyr1472 is increased in a neuropathic-pain model and that this phosphorylation is required for the maintenance of neuropathic pain by L5-spinal nerve transection. We obtained these results by using a selective NR2B antagonist and mice deficient in Fyn, which is an Src-family tyrosine protein kinase. However, how Tyr1472 phosphorylation of NR2B is involved in the maintenance of neuropathic pain was unclear. Here, we demonstrated that neuropathic pain was markedly attenuated in the spared nerve injury model of mice with a knock-in mutation of the Tyr1472 site to phenylalanine of NR2B (Y1472F-KI). While phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) at its Thr286 and that of the GluR1 subunit of the AMPA receptor at its Ser831 was enhanced in the spinal dorsal horn after spared nerve injury in wild-type mice, such phosphorylation was markedly impaired in Y1472F-KI mice. Inhibition of CaMKII by intrathecal injection of KN93, an inhibitor of CaMKII, reduced mechanical allodynia and phosphorylation of CaMKII at its Thr286 and that of GluR1 at its Ser831 in the spinal cord 7 days after spared nerve injury. These results demonstrate that the phosphorylation of CaMKII and GluR1 occurs downstream of the Tyr1472 phosphorylation of NR2B subunits in the spinal cord and give the first suggestion that activation of CaMKII and GluR1-AMPA receptors may be involved in mechanical allodynia caused by peripheral nerve injury.  相似文献   

9.

Background and purpose:

There is growing interest in using cannabinoid type 2 (CB2) receptor agonists for the treatment of neuropathic pain. In this report, we describe the pharmacological characteristics of MDA7 (1-[(3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl)carbonyl]piperidine), a novel CB2 receptor agonist.

Experimental approach:

We characterized the pharmacological profile of MDA7 by using radioligand-binding assays and in vitro functional assays at human cannabinoid type 1 (CB1) and CB2 receptors. In vitro functional assays were performed at rat CB1 and CB2 receptors. The effects of MDA7 in reversing neuropathic pain were assessed in spinal nerve ligation and paclitaxel-induced neuropathy models in rats.

Key results:

MDA7 exhibited selectivity and agonist affinity at human and rat CB2 receptors. MDA7 treatment attenuated tactile allodynia produced by spinal nerve ligation or by paclitaxel in a dose-related manner. These effects were selectively antagonized by a CB2 receptor antagonist but not by CB1 or opioid receptor antagonists. MDA7 did not affect rat locomotor activity.

Conclusion and implications:

MDA7, a novel selective CB2 agonist, was effective in suppressing neuropathic nociception in two rat models without affecting locomotor behaviour. These results confirm the potential for CB2 agonists in the treatment of neuropathic pain.  相似文献   

10.

Background and purpose:

Activation of cannabinoid (CB) receptors decreases nociceptive transmission in inflammatory or neuropathic pain states. However, the effects of CB receptor agonists in post-operative pain remain to be investigated. Here, we characterized the anti-allodynic effects of WIN 55,212-2 (WIN) in a rat model of post-operative pain.

Experimental approach:

WIN 55,212-2 was characterized in radioligand binding and in vitro functional assays at rat and human CB1 and CB2 receptors. Analgesic activity and site(s) of action of WIN were assessed in the skin incision-induced post-operative pain model in rats; receptor specificity was investigated using selective CB1 and CB2 receptor antagonists.

Key results:

WIN 55,212-2 exhibited non-selective affinity and agonist efficacy at human and rat CB1 versus CB2 receptors. Systemic administration of WIN decreased injury-induced mechanical allodynia and these effects were reversed by pretreatment with a CB1 receptor antagonist, but not with a CB2 receptor antagonist, given by systemic, intrathecal and supraspinal routes. In addition, peripheral administration of both CB1 and CB2 antagonists blocked systemic WIN-induced analgesic activity.

Conclusions and implications:

Both CB1 and CB2 receptors were involved in the peripheral anti-allodynic effect of systemic WIN in a pre-clinical model of post-operative pain. In contrast, the centrally mediated anti-allodynic activity of systemic WIN is mostly due to the activation of CB1 but not CB2 receptors at both the spinal cord and brain levels. However, the increased potency of WIN following i.c.v. administration suggests that its main site of action is at CB1 receptors in the brain.British Journal of Pharmacology (2009) 157, 645–655; doi:10.1111/j.1476-5381.2009.00184.x; published online 3 April 2009  相似文献   

11.
We examined open-field effects in rats of the cannabinoid 1 receptor (CB1R) agonist WIN55,212-2 (WIN; 3 mg/kg) and its interaction with the CB1R putative neutral antagonist AM4113 (0.3 to 3 mg/kg). Separate studies examined AM4113 alone (0.3 to 5.6 mg/kg). Unlike the CB1R antagonist rimonabant, in vitro (e.g., [Sink K.S., McLaughlin P.J., Wood J.A., Brown C., Fan P., Vemuri V.K., Pang Y., Olzewska T., Thakur G.A., Makriyannis A., Parker L.A., Salamone J.D. The novel cannabinoid CB(1) receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 2008a; 33: 946-955.; Sink K.S., Vemuri V.K., Olszewska T., Makriyannis A., Salamone J.D. Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology (Berl) 2008b; 196: 565-574.]) AM4113 produced no change in cAMP accumulation (neutral antagonism vis-a-vis inverse agonism). Recorded behaviors were: ambulation, rearing, circling, latency, scratching, grooming, defecation, urination and vocalization/squeaking. WIN reduced ambulation and rearing; AM4113 completely (ambulation) or partially (rearing) antagonized these behaviors. WIN alone resulted in circling and an increased latency to leave the start area; effects blocked by AM4113. AM4113 increased scratching and grooming, effects attenuated but not abolished by WIN. AM4113 alone tended to reduce ambulation and rearing and had no effect on latency or circling. AM4113 alone increased scratching and grooming. Effects on defecation, urination and vocalization were non-significant. The open-field effects of AM4113 are similar to those reported for rimonabant in rats. Yet, unlike the inverse agonists rimonabant and AM251, the putative neutral CB1R antagonist AM4113 did not produce signs of nausea in ferrets and rats ([Chambers A.P., Vemuri V.K., Peng Y., Wood J.T., Olszewska T., Pittman Q.J., Makriyannis A., Sharkey K.A. A neutral CB1 receptor antagonist reduces weight gain in rat. Am J Physiol Regul Integr Comp Physiol 2007; 293: R2185-2193.; Sink K.S., McLaughlin P.J., Wood J.A., Brown C., Fan P., Vemuri V.K., Pang Y., Olzewska T., Thakur G.A., Makriyannis A., Parker L.A., Salamone J.D. The novel cannabinoid CB(1) receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 2008a; 33: 946-955.; Sink K.S., Vemuri V.K., Olszewska T., Makriyannis A., Salamone J.D. Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology (Berl) 2008b; 196: 565-574.]).  相似文献   

12.
Rationale Classical pain tests performed in animals routinely measure evoked nociceptive behaviours. These almost exclusively reflect sensory processing of nociceptive transmission, although a recently described place escape/avoidance paradigm may be used to selectively assess affective pain processing. Objective To establish if drugs with proven analgesic efficacy selectively attenuate sensory-discriminative or affective-motivational aspects of nociceptive processing. Methods The μ-opioid receptor agonist morphine, the anti-epileptic gabapentin, the anti-depressant duloxetine, the 5HT1A receptor agonist 8-OH-DPAT, the GABAA receptor agonist gaboxadol and the mixed cannabinoid receptor agonist WIN55,212-2 were tested after systemic administration in the chronic constriction injury (CCI) model of neuropathic pain. For the place escape/avoidance paradigm, CCI rats had free access between the ‘non-aversive’ dark and ‘aversive’ light side of an enclosed chamber. Either the injured or non-injured hindpaw was routinely stimulated if the rat was in the dark or light area, respectively. Escape/avoidance behaviour was defined as a shift from the dark to the light area. Mechanical allodynia and hyperalgesia were determined prior to and following escape/avoidance testing. Results Morphine (3 and 6 mg/kg), gabapentin (50 and 100 mg/kg), duloxetine (10 and 30 mg/kg) and 8-OH-DPAT (0.1 and 0.5 mg/kg) attenuated the time spent by CCI rats in the light area; gaboxadol (1 and 3 mg/kg) and WIN55,212-2 (0.3 and 1 mg/kg) were ineffective. Only gabapentin and 8-OH-DPAT attenuated mechanical nociceptive behaviours at non-sedative doses. Conclusions The place escape/avoidance paradigm may enable discrimination between selected drug classes on distinct components of sensory and affective pain processing in rats with neuropathic pain.  相似文献   

13.
Cannabinoid receptor agonists are moderately effective at reducing neuropathic pain but are limited by psychoactivity. We developed a styrene maleic acid (SMA) based on the cannabinoid WIN 55,212-2 (WIN) and tested in a rat model of neuropathic pain and in the rotarod test. We hypothesized that miceller preparation can ensure prolonged plasma half-life being above the renal threshold of excretion. Furthermore, SMA-WIN could potentially reduce the central nervous system effects of encapsulated WIN by limiting its transport across the blood–brain barrier. Using the chronic constriction injury model of sciatic neuropathy, the SMA-WIN micelles were efficacious in the treatment of neuropathic pain for a prolonged period compared to control (base WIN). Attenuation of chronic constriction injury-induced mechanical allodynia occurred for up to 8?h at a dose of 11.5?mg/kg of SMA-WIN micelles. To evaluate central effects on motor function, the rotarod assessment was utilized. Results showed initial impairment caused by SMA-WIN micelles to be identical to WIN control for up to 1.5?h. Despite this, the SMA-WIN micelle formulation was able to produce prolonged analgesia over a time when there was decreased impairment in the rotarod test compared with base WIN.  相似文献   

14.
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit fatty acid amidohydrolase (FAAH), the enzyme responsible for the metabolism of anandamide, an endocannabinoid. The analgesic interactions between anandamide (0.01 microg), ibuprofen (0.1 microg) and rofecoxib (0.1 microg) or their combinations administered locally in the hind paw of neuropathic rats were investigated together with the effects of specific antagonists for the cannabinoid CB(1) (AM251; 80 microg) and CB(2) (AM630; 25 microg) receptors. Mechanical allodynia and thermal hyperalgesia were evaluated in 108 Wistar rats allocated to: (1-4) NaCl 0.9%; anandamide; ibuprofen; rofecoxib; (5-6) anandamide+ibuprofen or rofecoxib; (7-8) AM251 or AM630; (9-10) anandamide+AM251 or AM630; (11-12) ibuprofen+AM251 or AM630; (13-14) rofecoxib+AM251 or AM630; (15-16) anandamide+ibuprofen+AM251 or AM630; (17-18) anandamide+rofecoxib+AM251 or AM630. Drugs were given subcutaneously in the hind paw 15min before pain tests. Anandamide, ibuprofen, rofecoxib and their combinations significantly decreased mechanical allodynia and thermal hyperalgesia with an ED(50) of 1.6+/-0.68ng and 1.1+/-1.09 ng for anandamide, respectively. The effects of NSAIDs were not antagonized by AM251 or AM630 but those of anandamide were inhibited by AM251 but not by AM630. In conclusion, locally injected anandamide, ibuprofen, rofecoxib and their combinations decreased pain behavior in neuropathic animals. Local use of endocannabinoids to treat neuropathic pain may be an interesting way to treat this condition without having the deleterious central effects of systemic cannabinoids.  相似文献   

15.

Background and purpose:

The activation of CB2 receptors induces analgesia in experimental models of chronic pain. The present experiments were designed to study whether the activation of peripheral or spinal CB2 receptors relieves thermal hyperalgesia and mechanical allodynia in two models of bone cancer pain.

Experimental approach:

NCTC 2472 osteosarcoma or B16-F10 melanoma cells were intratibially inoculated to C3H/He and C57BL/6 mice. Thermal hyperalgesia was assessed by the unilateral hot plate test and mechanical allodynia by the von Frey test. AM1241 (CB2 receptor agonist), AM251 (CB1 receptor antagonist), SR144528 (CB2 receptor antagonist) and naloxone were used. CB2 receptor expression was measured by Western blot.

Key results:

AM1241 (0.3–10 mg·kg−1) abolished thermal hyperalgesia and mechanical allodynia in both tumour models. The antihyperalgesic effect was antagonized by subcutaneous, intrathecal or peri-tumour administration of SR144528. In contrast, the antiallodynic effect was inhibited by systemic or intrathecal, but not peri-tumour, injection of SR144528. The effects of AM1241 were unchanged by AM251 but were prevented by naloxone. No change in CB2 receptor expression was found in spinal cord or dorsal root ganglia.

Conclusions and implications:

Spinal CB2 receptors are involved in the antiallodynic effect induced by AM1241 in two neoplastic models while peripheral and spinal receptors participate in the antihyperalgesic effects. Both effects were mediated by endogenous opiates. The use of drugs that activate CB2 receptors could be a useful strategy to counteract bone cancer-induced pain symptoms.  相似文献   

16.
Lithium is a major drug for bipolar disorder and mania. Recently, many studies have shown the neuroprotective effect of lithium in different models of neurodegenerative diseases. The present study was carried out to examine the effect of lithium in a rat model of neuropathic pain induced by partial sciatic nerve ligation and the possible role of opioid system in this effect. To do so, animals received acute injection of saline, lithium (5, 10 and 15 mg/kg,) and naloxone (1 mg/kg) or the combination of naloxone (1 mg/kg) with lithium (10 mg/kg) intraperitoneally on the testing days. Thermal hyperalgesia, mechanical and cold allodynia were measured on the days 3, 5, 7, 10 and 14 after surgery. Lithium decreased thermal hyperalgesia scores with dose of 5, 10 and 15 mg/kg and cold and mechanical allodynia scores with dose of 10 and 15 mg/kg, significantly. The opioid antagonist naloxone prevented the effect of lithium on thermal hyperalgesia and mechanical allodynia while it did not show any effect on the acetone-induced cold allodynia. Our results suggest that lithium can be considered as a therapeutic potential for the treatment of some aspects of neuropathic pain and that the opioid system may be involved in the lithium-induced attenuation of thermal hyperalgesia and mechanical allodynia.  相似文献   

17.
Dong ZQ  Wang YQ  Ma F  Xie H  Wu GC 《Neuropharmacology》2006,50(4):393-403
Glial cell line-derived neurotrophic factor (GDNF) has been hypothesized to play an important role in the modulation of nociceptive signals especially during neuropathic pain. The present study examined the expression of GDNF and GFRalpha-1 (the high-affinity receptor of GDNF) in dorsal root ganglions (DRG) in a rat model of neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve. In order to address the role of GDNF and GFRalpha-1 in neuropathic pain, antisense oligodeoxynucleotide (ODN) specifically against GFRalpha-1 was intrathecally administered to result in down-regulation of GFRalpha-1 expression. The results showed that both the protein and mRNA levels of GDNF and GFRalpha-1 were significantly increased after CCI, while the thermal hyperalgesia of neuropathic pain rats could be significantly aggravated by antisense ODN treatment, but not by normal saline (NS) or mismatch ODN treatment. The present study demonstrated that endogenous GDNF and GFRalpha-1 might play an anti-hyperalgesic role in neuropathic pain of rats. In addition, we found a down-regulation of somatostatin (SOM) in DRG and spinal dorsal horn after expression of GFRalpha-1 was knocked down, which suggested the possible relationship between the anti-hyperalgesic effect of GDNF and GFRalpha-1 on neuropathic pain and endogenous SOM.  相似文献   

18.
This study was designed to determine (1) whether chronic amitriptyline administration was effective in alleviating symptoms of neuropathic pain in a rat model of spinal nerve injury, and (2) whether the effect of amitriptyline involved manipulation of endogenous adenosine, by determining the effect of caffeine, a non-selective adenosine A1 and A2 receptor antagonist, on its actions. Nerve injury was produced by unilateral spinal nerve ligation of the fifth and sixth lumbar nerves distal to the dorsal root ganglion, and this resulted in stimulus-evoked thermal hyperalgesia and static tactile mechanical allodynia. Animals received pre- and post-surgical intraperitoneal doses of amitriptyline (10 mg/kg) and caffeine (7.5 mg/kg), alone or in combination, and following surgery, were administered amitriptyline (15–18 mg/kg/day) and caffeine (6–8 mg/kg/day), alone or in combination, in the drinking water. Rats were tested for thermal reaction latencies and static tactile thresholds at 7, 14 and 21 days following surgery. In the paw ipsilateral to the nerve ligation, chronic amitriptyline administration consistently decreased the thermal hyperalgesia produced by spinal nerve ligation over a 3-week period, and this effect was blocked by concomitant caffeine administration at all time intervals. In the contralateral paw, thermal withdrawal latencies were more variable, with the most reproducible finding being a reduction in thermal thresholds in the amitriptyline–caffeine combination group. There was no effect by either drug or the drug combination on the static tactile allodynia produced by spinal nerve ligation in the ipsilateral paw. However, chronic amitriptyline administration induced a tactile hyperaesthesia in the contralateral paw at all time intervals, and this effect was exacerbated by concomitant chronic caffeine administration. The results of this study indicate that chronic administration of amitriptyline is effective in alleviating thermal hyperalgesia, but not static tactile allodynia, in the hindpaw ipsilateral to nerve injury, and the block of this effect by caffeine suggests that this effect is partially achieved through manipulation of endogenous adenosine systems. Additionally, chronic amitriptyline administration induces contralateral hyperaesthetic responses that are augmented by caffeine. Both the symptom-specific effect, and adenosine involvement in amitriptyline action may be important considerations governing its use in neuropathic pain.  相似文献   

19.
We sought to examine the involvement of central cannabinoid CB2 receptor activation in modulating mechanical allodynia in a mouse model of neuropathic pain. JWH133 was demonstrated to be a selective cannabinoid CB2 receptor agonist in mice, reducing forskolin-stimulated cAMP production in CHO cells expressing mouse cannabinoid CB2 and cannabinoid CB1 receptors with EC50 values of 63 nM and 2500 nM, respectively. Intrathecal administration of JWH133 (50 and 100 nmol/mouse) significantly reversed partial sciatic nerve ligation-induced mechanical allodynia in mice at 0.5 h after administration. In contrast, systemic (intraperitoneal) or local (injected to the dorsal surface of the hindpaw) administration of JWH133 (100 nmol/mouse) was ineffective. Furthermore, the analgesic effects of intrathecal JWH133 (100 nmol/mouse) were absent in cannabinoid CB2 receptor knockout mice. These results suggest that the activation of central, but not peripheral, cannabinoid CB2 receptors play an important role in reducing mechanical allodynia in a mouse model of neuropathic pain.  相似文献   

20.
It has been reported previously that 9-tetrahydrocannabinol and the synthetic cannabinoid agonist HU-210 [(–)-11-OH-8-dimethylheptyl tetrahydrocannabinol] prevent long-term potentiation (LTP) induction in rat hippocampal slices. In this study we confirm that both WIN55212-2 {R-(+)-(2,3-dihydro-5-methyl-3-[{4-morpholinyl} methyl] pyrol [1,2,3-de]-1,4-benzoxazin-6-yl) (1-naphtalenyl) methanone monomethanesulphonate} (3 and 10 M), another synthetic cannabinoid agonist, and anandamide (10 M), considered to be the endogenous ligand of cannabinoid receptors, inhibit LTP formation in the Schaffer collateral-CA1 field complex. In addition, we show that SRt417l6A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-lH-pyrazole-3-carboxamide hydrochloride] at 0.1–10 M, a potent and selective antagonist of CB1 cannabinoid receptors, concentration-dependently reversed the inhibition of LTP induced by both WIN55212-2 and anandamide. These data indicate that cannabinoid receptor agonists inhibit hippocampal LTP formation through CB1 receptor activation and that anandamide could be a candidate for an endogenous neuromessenger involved in memory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号