首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biodistribution and pharmacokinetics of bone-targeting N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-alendronate conjugates were evaluated following intravenous administration of radioiodinated conjugates to young healthy BALB/c mice. The synthesis of a polymerizable and cathepsin K cleavable alendronate derivative, N-methacryloylglycylglycylprolylnorleucylalendronate, enabled the preparation of HPMA copolymer-alendronate conjugates with varying composition. Using the RAFT (reversible addition-fragmentation chain transfer) polymerization technique, four conjugates with different molecular weight and alendronate content and two control HPMA copolymers (without alendronate) with different molecular weight were prepared. The results of biodistribution studies in mice demonstrated a strong binding capacity of alendronate-targeted HPMA copolymer conjugates to bone. Conjugates with low (1.5 mol%) alendronate content exhibited a similar bone deposition capacity as conjugates containing 8.5 mol % of alendronate. The molecular weight was an important factor in the biodistribution of the HPMA copolymer conjugates. More conjugate structures need to be evaluated, but the data suggest that medium molecular weights (50-100 kDa) might be effective drug carriers for bone delivery.  相似文献   

2.
Different anticancer drugs, farmorubicin, doxorubicin, paclitaxel and cis-platin have been conjugated through a Gly-Phe-Leu-Gly tetrapeptide side chain to a water-soluble synthetic polymeric carrier based on N-(2-hydroxypropyl)methacryalmide (HPMA) non-targeted or targeted with galactosamine and/or human IVIg and used in Phase I clinical trials. Conjugation of the drugs to the polymeric carrier that is non-toxic and non-immunogenic in man significantly decreased their non-specific organ toxicities and increased maximum tolerated dose up to 5 times. Macromolecular therapeutics based on HPMA have radically different pharmacokinetics. Drugs are not released from their polymeric carrier and remain in the peripheral blood and urine of patients mostly in their polymer-bound form. A clinical response against some refractory cancers was recorded in Phase I clinical trials. It was also demonstrated that doxorubicin-HPMA copolymer conjugates containing an immunoglobulin moiety have both cytostatic and immunomobilizing activity.  相似文献   

3.
4.
To optimize polymer design for tumor directed drug delivery, the fate and the total body distribution of soluble synthetic macromolecules, derived from copolymers of [(N-2-(hydroxypropyl)methacrylamide] (HPMA) were monitored scintigraphically after radiolabeling with 131I during a seven day time window. Equimolar concentrations of radioiodinated copolymers of HPMA with small amounts of methacryloyltyrosinamide (pHPMA) differing in molecular weight (23.4 kD, 27.3 kD, 30.5 kD, 44 kD, 58.4 kD, 60.1 kD) were injected intravenously into Copenhagen rats bearing Dunning prostate carcinomas (subline R3327-AT1). Scintigraphic data were validated by determining absolute amounts of [131I]pHPMA in both tumor tissue and normal organs after sacrificing the animals. Copolymers were cleared from blood circulation in a molecular-weight dependent manner, either via excretion or by extravasation into normal and neoplastic tissues. While distribution patterns for pHPMAs in normal organs were quite similar, absolute amounts of copolymer uptake differed. The higher the molecular weight, the more radioactivity was taken up by the organs. Highest amounts of radioactivity were seen in the lung, liver, and spleen. In solid tumors, kinetics of pHPMA accumulation was clearly dependent on molecular weight. pHPMAs below the renal threshold peaked at 24 hours p.i. and then remained constant. In contrast, copolymers above the renal clearance threshold displayed a continuous accumulation reaching a significantly higher tumor uptake, presumably due to the very small or non existent polymer release from tumor tissue. Absolute amounts of tumor uptake determined by dissection analysis were 0.5 +/- 0.1% of injected dose/g tissue for the 27.3 kD pHPMA and 1.2 +/- 0.1% for the 60.1 kD pHPMA, respectively. In conclusion, our results demonstrate the influence of the molecular weight of the synthetic polymer pHPMA on plasma circulation time, excretion and organ clearance. While pHPMAs are cleared from all normal tissues except the spleen quite effectively, these polymers accumulate in solid tumors in a size dependent manner, due to the well known "enhanced permeability and retention" (EPR) effect. These data are of fundamental interest for ongoing studies on the pharmacokinetics of synthetic polymers, especially when these molecules are conjugated with targeting moieties and therapeutic or diagnostic agents.  相似文献   

5.
6.
7.
This study describes the synthesis, characterization and in vitro evaluation of targetable N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-gadolinium (Gd) chelates for enhanced magnetic resonance imaging (MRI) of macrophages. Copolymers of HPMA, methacryloylglycylglycyl-mannosamine (MA-GG-ManN), aminopropylmethacrylamide-benzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (APMA-DOTA), and 5-(3-(methacryloylaminopropyl)thioureidyl) fluorescein (MA-AP-FITC) were synthesized and characterized. Gd was chelated to the polymeric precursors. The conjugates were characterized for gadolinium content by inductively coupled plasma optical emission spectrometry (ICP-OES) and T1 relaxivity (r1) at room temperature and 1.5 T. The effect of ManN content on mannose receptor mediated uptake of THP-1 human macrophages was evaluated as a function of time and temperature. The polymer conjugates showed relaxivities in the range of 21.8-24.9 s(-1) mM(-1) Gd. Relaxivities of the conjugates per mM Gd were up to 7 times higher than that of a commercially available MR contrast agent Gd-DOTA. Significantly (p < 0.042) higher uptake was observed for targeted conjugates compared to nontargeted conjugates. The uptake of polymeric conjugates was time and concentration dependent and appears to be mannose receptor mediated. The increased relaxivity coupled with the ability to target these carriers to cells containing ManN receptors shows promise for the application of these agents in clinical MR imaging of macrophage mediated malignancies.  相似文献   

8.
Non-small cell lung carcinoma is one of the most frequently occurred cancers with a very high rate of recurrence. Self-assembly N-(2-hydroxypropyl) methacrylamide (HPMA) micelles and cross-linked micelles were developed to improve antitumor ability of linear HPMA copolymer. The characters of HPMA micelles were investigated and compared using human non-small cell lung carcinoma 3-D culture model and nude mice xenograft model. Cross-linked micelles showed highest cytotoxicity on A549 cell monolayers after a short time treatment in vitro. Moreover, both of the two micelles exhibited better in vitro anti-tumor activity on A549 tumor spheroids than linear HPMA conjugates especially the cross-linked micelles. On BALB/c nude mice bearing A549 xenograft tumors, the cross-linked micelles exhibited the greatest tumor accumulation and the best anti-tumor activity due to the highly improved stabilities and the more pronounced enhanced permeability and retention (EPR) effect, which were followed by the non-cross-linked micelles. Meanwhile, neither the two micelles nor the linear HPMA copolymers showed significant toxicity on the main organs of mice while free doxorubicin (DOX) showed obvious cardiac toxicity. All the results suggested that micellization improved the anti-tumor activity of HPMA copolymers on A549 human non-small cell lung carcinoma, furthermore, cross-linked HPMA copolymer micelles with pH-sensitivity and biodegradability showed more excellent anti-tumor activity.  相似文献   

9.
Recently hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) was used for BS-RNase modification to prevent its degradation in bloodstream or fast elimination. Polymer-conjugated BS-RNase preparations proved to be cytotoxic after intravenous or intraperitoneal application, whereas native BS-RNase was ineffective. Here RNase A unimer was conjugated with two HPMA polymers (classic and star) and their antitumor effects both in vitro and in vivo were compared with those of BS-RNase polymers. Surprisingly, the antitumor effect of RNase A conjugates was also pronounced. The RNase A conjugates (classic and star) injected intravenously to mice bearing melanoma tumor caused a significant reduction in tumor volume following ten doses of 5 and 1 mg/kg, respectively. Despite the antitumor activity observed in vivo, the in vitro tested cytotoxic activity of RNase A did not differ from that caused by native RNase A while native BS-RNase (50 microg/ml) totally inhibited DNA synthesis in treated cells. The experiments with 125I-labeled preparations demonstrated concentration-dependent internalization of native BS-RNase by tumor cells within an hour, whereas the polymer conjugate (S-BS) was not internalized. On the contrary, the in vivo experiments showed that whereas 40% of S-BS conjugate persisted in bloodstream for 24h after administration, 98% of the native BS-RNase was already eliminated. Improved antitumor activities of PHPMA-modified RNases in vivo might be ascribed to their prolonged retention in bloodstream, better proteolytic stability and resistance to the action of the ribonuclease inhibitor.  相似文献   

10.
The pharmacokinetics of Amphotericin B (AmB) from polyethylene glycol 2000 (PEG 2000) entrapped cross-linked bovine serum albumin (BSA) microsphere formulations were investigated and compared with solution formulation. The microsphere preparations were characterized for particle size using electron microscopy, zeta potential and encapsulation efficiency. The microsphere formulations demonstrated a sustained release of AmB for a longer period of time, with no rise in plasma creatinine and potassium levels. The enhanced AmB accumulation in lungs was observed which could be of importance since lungs are the primary target in most fungal infections. The stealth property of submicron cross-linked BSA microspheres in formulations containing PEG 2000 (formulation F-2N) and without PEG 2000 (formulation F-1N) was also evaluated. There was no evidence that microspheres embedded with PEG remained longer in circulation; however, it was noticed that the internalization of formulation F-2N microspheres was delayed when compared with microspheres from formulation F-1N.  相似文献   

11.
To assess the prolongation of epidural bupivacaine by hyaluronic acid viscous formulations we designed a cross-over study in rabbits. Different doses of bupivacaine (3 or 6 mg) either as a solution (bupivacaine hydrochloride), or as viscous formulations with hyaluronic acid (bupivacaine base and bupivacaine hydrochloride) were administered in a rabbit model of epidural anesthesia. In the first part of the study, in vitro release characteristics were determined. Then pharmacodynamic effects and pharmacokinetic profiles of each bupivacaine formulation were studied. The rank order release rate of bupivacaine in vitro was always hydrochloride solution > viscous physical mixture of bupivacaine with hyaluronic acid > viscous ionic complex of bupivacaine base with hyaluronic acid. Onset time of epidural anesthesia was similar whatever the formulation of bupivacaine used. We did not find any blockade prolongation when 3mg bupivacaine was administered, but significant blockade prolongations were observed with viscous formulations incorporating 6 mg bupivacaine. The observed reduction in the absorption rate of bupivacaine into the systemic circulation for both viscous hyaluronic formulations after 6 mg of bupivacaine may explain the prolongation of spinal effects. Drug release and duration of action were found to be viscosity controlled as linear relationships were found between pharmacodynamic effects and viscosity. Our results were in accordance with those reported with bupivacaine-cyclodextrin complex, another formulation with a molecular dispersion of the drug, resulting in a moderate prolongation of action.  相似文献   

12.
13.
智能药物传输系统是指系统自身具有传感、处理及响应释药、停止释药的"自动"药物传输体系。各种智能药物传输系统实现了药物的定点、定时及定量释放。简要介绍了智能药物传输系统的发展近况,并从pH值敏感型、温度敏感型、葡萄糖敏感型以及其他敏感型给药系统角度阐述了智能药物传输系统的研究现状及未来展望。  相似文献   

14.
Abstract

Epirubicin (EPI) is a broad spectrum antineoplastic drug, commonly used as a chemotherapy method to treat osteosarcoma. However, its application has been limited by many side-effects. Therefore, targeted drug delivery to bone has been the aim of current anti-bone-tumor drug studies. Due to the exceptional affinity of Bisphosphonates (BP) to bone, 1-amino-ethylene-1, 1-dephosphate acid (AEDP) was chosen as the bone targeting moiety for water-soluble macromolecular drug delivery systems of oxidized-dextran (OXD) to transport EPI to bone in this article. The bone targeting drug of AEDP–OXD–EPI was designed for the treatment of malignant bone tumors. The successful conjugation of AEDP–OXD–EPI was confirmed by analysis of FTIR and 1H-NMR spectra. To study the bone-seeking potential of AEDP–OXD–EPI, an in vitro hydroxyapatite (HAp) binding assay and an in vivo experiment of bone-targeting capacity were established. The effectiveness of AEDP–OXD–EPI was demonstrated by inducing apoptosis and necrosis of MG-63 tumor cell line. The obtained experimental data indicated that AEDP–OXD–EPI is an ideal bone-targeting anti-tumor drug.  相似文献   

15.
Peptide and protein PEGylation is usually undertaken to improve the biopharmaceutical properties of these drugs and, to date, several examples of conjugates with long permanence in the body as well as with localization ability in disease sites have been reported. Although a number of studies on the in vivo behavior and fate of conjugates have been performed, forecasting their pharmacokinetics is a difficult task since the pharmacokinetic profile is determined by a number of parameters which include physiological and anatomical aspects of the recipient and physico-chemical properties of the derivative. The most relevant perturbations of the protein molecule following PEG conjugation are: size enlargement, protein surface and glycosylation function masking, charge modification, and epitope shielding. In particular, size enlargement slows down kidney ultrafiltration and promotes the accumulation into permeable tissues by the passive enhanced permeation and retention mechanism. Charge and glycosylation function masking is revealed predominantly in reduced phagocytosis by the RES and liver cells. Protein shielding reduces proteolysis and immune system recognition, which are important routes of elimination. The specific effect of PEGylation on protein physico-chemical and biological properties is strictly determined by protein and polymer properties as well as by the adopted PEGylation strategy. Relevant parameters to be considered in protein-polymer conjugates are: protein structure, molecular weight and composition, polymer molecular weight and shape, number of linked polymer chains and conjugation chemistry. The examples reported in this review show that general considerations could be useful in developing a target product, although significant deviations from the expected results can not be excluded.  相似文献   

16.
The aim of the present study was to develop a self-nanoemulsifying drug delivery system (SNEDDS) for the oral delivery of Zedoary turmeric oil (ZTO), an essential oil extracted from the dry rhizome of Curcuma zedoaria. Pseudo-ternary phase diagrams were constructed to identify the efficient self-emulsification regions. ZTO could serve as a partial oil phase with the aid of the second oil phase to enhance drug loading. Increasing the surfactant concentration reduced the droplet size but increased the emulsification time, while the reverse effect was observed by increasing the co-surfactant concentration. Based on the emulsification time, droplet size and zeta potential after dispersion into aqueous phase, an optimized formulation consisting of ZTO, ethyl oleate, Tween 80, transcutol P (30.8:7.7:40.5:21, w/w) and loaded with 30% drug was prepared. Upon mixing with water, the formulation was rapidly dispersed into fine droplets with a mean size of 68.3 ± 1.6 nm and ξ-potential of ?41.2 ± 1.3 mV. The active components remained stable in the optimized SNEDDS stored at 25 °C for at least 12 months. Following oral administration of ZTO-SNEDDS in rats, both AUC and Cmax of germacrone (GM), a representative bioactive marker of ZTO, increased by 1.7-fold and 2.5-fold respectively compared with the unformulated ZTO.  相似文献   

17.
固脂纳米粒(SLN)药物释放系统的研究进展   总被引:5,自引:2,他引:3  
目的综述固脂纳米粒作为药物释放系统的最新研究进展。方法依据近年来国内外文献资料 ,将固脂纳米粒的制备方法、药物载入、药物释放、特性分析及其在药学领域的应用情况进行了概括。结果固脂纳米粒的主要制备方法为乳化法和微乳法 ;通过调整制备工艺参数可调整药物的包封率和释药曲线 ;固脂纳米粒可供多途径给药。结论固脂纳米粒在药学领域有广阔的发展前景  相似文献   

18.
The synthesis, characterization, and in vitro evaluation of a combination delivery of multiblock poly(N-2-hydroxypropyl)methacrylamide (HPMA), gemcitabine (GEM) and paclitaxel (PTX) conjugates is described in this study. Multiblock copolymer conjugates of a large molecular weight (Mw > 200 kDa) were studied and compared to traditional, small molecular weight (Mw < 45 kDa) conjugates. Stability of the conjugates in different pH was assessed, and their cytotoxicity in combination toward A2780 human ovarian cancer cells was evaluated by combination index analysis. Treatment duration (4 and 72 h) and sequence of addition were explored. In addition, an HPMA copolymer conjugate with both GEM and PTX in the side chains was evaluated in a similar manner and compared to a physical mixture of individual conjugates. Conjugates with narrow molecular weight distribution (Mw/Mn < 1.1) were obtained via RAFT polymerization, and drug loadings of between 5.5 and 9.2 wt% were achieved. Conjugates demonstrated moderate stability with less than 65% release over 24 h at pH 7.4, and near complete drug release in the presence of the lysosomal enzyme cathepsin B in 3 h. In combination, the cytotoxic effects of a mixture of the conjugates were primarily additive. Synergistic effects were observed when A2780 human ovarian cancer cells were treated simultaneously for 4 h with multiblock conjugates (CI < 0.7). When both GEM and PTX were conjugated to the same copolymer backbone, moderate antagonism (CI 1.3–1.6) was observed. These results demonstrate that multiblock HPMA copolymer–GEM and –PTX conjugates, when delivered as a mixture of individual agents, are promising for the treatment of ovarian cancer.  相似文献   

19.
Applications of microemulsion based drug delivery system   总被引:1,自引:0,他引:1  
The use of microemulsions as drug delivery vehicle has been an exciting and attractive area of research because of its many potential and extraordinary benefits. Microemulsions offer an interesting and potentially quite powerful alternative carrier system for drug delivery because of their high solubilization capacity, transparency, thermodynamic stability, ease of preparation, and high diffusion and absorption rates when compared to solvent without the surfactant system. The oral efficacy of microemulsion has already been proved by cyclosporine formulation (Neoral), but apart from oral route, microemulsions for other routes like dermal, transdermal, ocular, vaginal, rectal, buccal, periodontal, parenteral, and nasal delivery routes have also been developed. The present review focuses on various applications of microemulsions through different above mentioned routes and also gives idea about new application of micro emulsion as oral solid dosage form, as microreactors and as blood substitute.  相似文献   

20.
Poly(methacrylic acid)-b-poly(ethylene oxide) are double hydrophilic block copolymers, which are able to form micelles by complexation with a counter-polycation, such as poly-l-lysine. A study was carried out on the ability of the copolymers to interact with model membranes as a function of their molecular weights and as a function of pH. Different behaviors were observed: high molecular weight copolymers respect the membrane integrity, whereas low molecular weight copolymers with a well-chosen asymmetry degree can induce a membrane alteration. Hence by choosing the appropriate molecular weight, micelles with distinct membrane interaction behaviors can be obtained leading to different intracellular traffics with or without endosomal escape, making them interesting tools for cell engineering. Especially micelles constituted of low molecular weight copolymers could exhibit the endosomal escape property, which opens vast therapeutic applications. Moreover micelles possess a homogeneous nanometric size and show variable properties of disassembly at acidic pH, of stability in physiological conditions, and finally of cyto-tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号