首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunocytochemical analysis using antisera generated against the brain peptide somatostatin (SRIF) was examined in the brain of normal mice and in mice with chemical lesions of the arcuate nucleus produced neonatally by the administration of monosodium glutamate (MSG). In the normal mouse brain, SRIF immunoreactivity was seen in perikarya of the preoptic and hypothalamic periventricular nuclei. The normal distribution of SRIF fibers was apparent in several hypothalamic nuclei including the arcuate nucleus and in the internal and external zones of the median eminence. Extrahypothalamic sites of SRIF immunoreactive neurons and fibers were also observed throughout the telencephalon.At 60 days of age, certain neuroendocrine deficiencies, including growth parameters and obesity, were apparent in MSG-treated newborn mice. Analysis of SRIF projections in the brain of MSG-treated mice demonstrated a neurotoxic effect on arcuate neurons and a loss of SRIF projections to this region as well. Other components of the SRIF system in brain appeared unaffected. SRIF fibers of the arcuate region seem to originate from neuronal perikarya of the periventricular nucleus suggesting that MSG-induced endocrine deficiencies may be due to SRIF interactions at the level of the arcuate nucleus.  相似文献   

2.
The ascending projections of the mammillary region of the hypothalamus and adjacent posterolateral hypothalamus were investigated by autoradiographic and horseradish peroxidase histochemical techniques. Analysis of the anterograde data revealed that the main contingent of mammillary fibers ascends in the medial forebrain bundle (MFB) in the lateral hypothalamic area. These fibers distribute to a number of telencephalic regions via three pathways. (1) Fibers course dorsomedially into the medial and lateral parts of the septum and continue into the hippocampus with a dense terminal field in the parahippocampal area. (2) Laterally coursing fibers project to area corticoidea dorsolateralis, area temporo-parieto-occipitalis, cortex piriformis, and the posterior part of archistriatum. (3) The fibers remaining in the MFB ascend into the "ventral paleostriatum," olfactory tubercle, and into the lateral and ventral borders of the rostral portion of lobus parolfactorius (LPO). Numerous fibers leave the LPO region and course dorsally into the deep layer of the Wulst, hyperstriatum dorsale (HD). Many fibers continue dorsolaterally through the HD and enter an unnamed region of the dorsolateral telencephalon (lateral to the vallecula) at the level of the olfactory bulb. Retrograde transport experiments revealed that the perikarya of origin-of-fiber projections to the parahippocampal area and to the rostral, dorsolateral telencephalon reside not only in nucleus mammillaris lateralis but also in posterolateral hypothalamic cells rostral and dorsal to this nucleus. The projection of these hypothalamic cells to the hippocampal formation and many other telencephalic regions in birds suggests that these cells are similar to the mammalian supramammillary nucleus and posterolateral hypothalamus rather than the mammillary nuclei.  相似文献   

3.
The ascending projections of the cuneiform nucleus in the cat were traced by autoradiography in the transverse and sagittal planes following stereotaxically placed injections of (3)H-leucine. The ascending fibers are almost exclusively ipsilateral and enter the diencephalon as a wide radiation. At the mesodiencephalic junction fibers enter the nucleus of the posterior commissure and pretectal nuclei, and others cross in the posterior commissure to distribute to these structures on the contralateral side. More ventrally directed fibers distribute to the fields of Forel and then spread into the posterior hypothalamus and zona incerta. At the caudal level of the ventral thalamic group, the ascending fibers diverge and follow two separate courses. One division of fibers continues forward beneath the ventral thalamic group and distributes to the zpna incerta and dorsal hypothalamic area. It rapidly diminishes in size as it attains more rostral levels where it is found in the bed nuclei of the stria terminalis and the anterior commissure. Other fibers of this division spread laterally to innervate the ventral lateral geniculate nucleus, the lateral hypothalamus, and preoptic area, and still others follow the entire confirmation of the thalamic reticular nucleus. The second division of fiber ascends through midline and intralaminar nuclei, completely encircling the mediodorsal nucleus, which is uninnervated except for a small ventral region. The distribution of this division is heaviest to the paraventricular, parafascicular, and central dorsal nuclei. Neither division is conspicuous rostral to the anterior commissure. No projections to neostriatum or specific thalamic nuclei were evident.  相似文献   

4.
The present work studies the distribution of calcitonin gene-related peptide-immunoreactive (CGRP-li) neurons and fibers in the brain of a reptile, the lizard Podarcis hispanica. CGRP-li perikarya were not present in the telencephalon. In the thalamus, CGRP-li perikarya were restricted to the posteromedial and posterolateral nuclei. In the hypothalamus, CGRP-li cells were found mainly in the supramammillary and mammillary nuclei. In the midbrain and brainstem, CGRP-li cells appeared in the ventral tegmental area, the parabrachial nucleus, and the motor nuclei of the III-VII, IX, X, and XII cranial nerves. Motoneurons of the ventral horn of the spinal cord were also immunoreactive for CGRP. CGRP-li fibers were seen in the telencephalic hemispheres, where a dense plexus of reactive fibers appeared in the septum and in the lateral striatoamygdaloid transition area. From the latter, CGRP-li fibers entered the posterior dorsal ventricular ridge, the cell layer and deep stratum of the ventral lateral cortex, and various amygdaloid nuclei. Parts of the striatum (nucleus accumbens) and pallidum also displayed CGRP-li innervation. In the diencephalon, CGRP-li innervation was observed in parts of the dorsal thalamus and in the periventricular and medial hypothalamus. The pretectum and deep layers of the optic tectum also showed CGRP-li fibers, and numerous CGRP-li fibers were observed in the midbrain central gray, tegmentum, and pons. Some of the sensory fibers of the trigeminal, vagal, and spinal nerves were also CGRP-li. These results show that the distribution of CGRP-li structures in the reptilian brain is similar to that described for other vertebrates and suggest that the thalamotelencephalic CGRPergic projections appear to be conserved among amniote vertebrates.  相似文献   

5.
The efferent projections of the lateral hypothalamic area (LHA) at mid-tuberal levels were examined with the autoradiographic tracing method. Connections were observed to widespread regions of the brain, from the telencephalon to the medulla. Ascending fibers course through LHA and the lateral preoptic area and lie lateral to the diagonal band of Broca. Fibers sweep dorsally into the lateral septal nucleus, cingulum bundle and medial cortex. Although sparse projections are found to the ventromedial hypothalamic nucleus, a prominent pathway courses to the dorsal and medial parvocellular subnuclei of the paraventricular nucleus. Labeled fibers in the stria medullaris project to the lateral habenular nucleus. The central nucleus of the amygdala is encapsulated by fibers from the stria terminalis and the ventral amygdalofugal pathway. The substantia innominate, nucleus paraventricularis of the thalamus, and bed nucleus of the stria terminalis also receive LHA fibers. Three descending pathways course to the brainstem: (1) periventricular system, (2) central tegmental tract (CTT), and (3) medial forebrain bundle (MFB). Periventricular fibers travel to the ventral and lateral parts of the midbrain central gray, dorsal raphe nucleus, and laterodorsal tegmental nucleus of the pens. Dorsally coursing fibers of CTT enter the central tegmental field and the lateral and medial parabrachial nuclei. The intermediate and deep layers of the superior colliculus receive some fibers. Fibers from CTT leave the parabranchial region by descending in the ventrolateral pontine and medullary reticular formation; some of these fibers sweep dorsomedially into the nucleus tractus solitarius, dorsal motor nucleus of the vagus, and nucleus commissuralis. From MFB, fibers descend into the ventral tegmental area and to the border of the median raphe and raphe magnus nuclei.  相似文献   

6.
The rat ovulatory cycle is dependent on the preoptic region encompassing the gonadotrophin-releasing hormone (GnRH) perikarya and the anteroventral periventricular nucleus (AVPV). Retrograde tract tracing was used to identify and compare the sources of inputs to these sites in female rats. Within the telencephalon and diencephalon, the incidence of retrograde labelling from both sites was moderate to abundant in the ventral lateral septum, posteromedial bed nucleus of the stria terminalis, amygdalohippocampal area and the periventricular, medial preoptic, anterodorsal preoptic, dorsomedial suprachiasmatic, arcuate, and posterior ventrolateral ventromedial hypothalamic nuclei. In these regions, the incidence of retrograde labelling was either greater from the AVPV than from the GnRH perikarya site or similar from both sites. In the medial amygdaloid, parastrial, striohypothalamic, and ventral premammillary nuclei, the retrograde labelling from the AVPV greatly exceeded the sparse incidence from the GnRH perikarya site. In contrast, retrograde labelling from the GnRH perikarya site predominated in the median preoptic, lateroanterior and dorsomedial hypothalamic nuclei, subparaventricular zone, and retrochiasmatic area; it was abundant in the AVPV. Caudal to the diencephalon, retrograde labelling from either site was sparse, except in the lateral parabrachial nucleus, which displayed a particularly high incidence from the GnRH perikarya site. Other mesencephalic regions labelled from either site included the periaqueductal gray and dorsal and median raphe nuclei. The most caudal labelling was found in the ventrolateral medulla and region of the solitary tract nucleus; this was almost exclusively from the GnRH perikarya site. These findings further elucidate the neuroanatomical connections underlying the control of the ovulatory cycle.  相似文献   

7.
Decussations of descending fibers of the hypothalamic paraventricular nucleus (PVN) were investigated by using Phaseolus vulgaris-leucoagglutinin (PHA-L) in intact and brainstem-operated rats. Fibers descend ipsilaterally along the brainstem and spinal cord and decussate at four levels: 1) Supramamillary decussations (SM). PVN fibers reach this area through the lateral hypothalamus and along the third ventricle in the dorsal hypothalamus. In the posterior hypothalamus some fibers crossover in the SM and terminate in the supramamillary region bilaterally. 2) Pontine tegmentum. PVN fibers run in the lateral part of the tegmentum arching to the basis of the pons. Some fibers crossover under the fourth ventricle. The locus ceruleus and the Barrington's nucleus receive bilateral innervation with ipsilateral dominance. 3) Commissural part of the nucleus of the solitary tract (NTS). The major crossover of PVN fibers is found here. The decussated fibers form a dense network here, and loop rostralward to innervate the entire NTS. A midsagittal knife-cut through the NTS eliminated paraventricular-fibers on the contralateral side. Synaptic contacts between PHA-L-labeled boutons and tyrozine hydroxilase-positive neurons were verified in the NTS. The caudal ventrolateral medulla also receives bilateral innervation. 4) Lamina X of the thoracic spinal cord. Paraventricular fibers enter the lateral funiculus ipsilaterally and innervate the intermediolateral cell column (IML). Some fibers cross the midline ventral and dorsal to the central canal running to the contralateral IML, at the level of the decussation. Our results demonstrated that paraventricular projections form a continuous descending pathway on their side of origin, and provide crossover fibers which may terminate segmentally without forming long tracts after crossover.  相似文献   

8.
9.
Galanin is a brain-gut peptide present in the central nervous system of fish, amphibians, birds, and mammals. For comparative studies among vertebrates, the distribution of galanin in the brain of reptiles has been investigated. We studied the localization of galanin-like-immunoreactive perikarya and nerve fibers in the brain of the turtle Mauremys caspica by using an antiserum against porcine galanin. In the telencephalon, few immunoreactive perikarya were seen in the amygdaloid complex. The diencephalon contained the majority of the immunoreactive perikarya present in the lamina terminalis, nucleus periventricularis anterior, lateral preoptic area, nuclei hypothalamicus ventromedialis and posterior, nucleus basalis of the anterior commissure, and nucleus ventralis tuberis. Many immunoreactive cells, especially in the infundibulum, contacted the cerebrospinal fluid by an apical process. In the rhomben-cephalon, immunopositive perikarya were restricted to a few cells in the nucleus tractus solitari. In the mesencephalon, they were absent. Immunoreactive nerve fibers were present in all regions containing labeled perikarya and in (1) telencephalon: septum, nucleus fasciculi diagonalis Brocae; (2) diencephalon: nucleus paraventricularis, nucleus supraopticus, nucleus suprachiasmaticus, subventricular grey, nucleus of the paraventricular organ, nucleus mamillaris, infundibular decussation, outer layer of the median eminence, posterior commissure and subcommissural organ region, habenula, nuclei dorsomedialis anterior, and dorsolateralis anterior of the thalamus; and (3) mesencephalon and rhombencephalon: stratum griseum periventriculare, stratum fibrosum periventriculare, laminar nucleus of the torus semicircularis, periventricular grey, nucleus interpeduncularis, nucleus ruber, substantia nigra, locus coeruleus, raphe nuclei, nuclei of the reticular formation, nucleus motorius nervi trigemini, cochlear and vestibular area, and nucleus spinalis nerve trigemini. Our results suggest that galanin may have hypophysiotropic and central roles in the turtle Mauremys caspica. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The immunocytochemical distribution of beta-endorphin and other proopiomelanocortin (POMC) peptides in the central nervous system of the lizard Anolis carolinensis was determined. Colchicine pretreatment was used to enhance perikaryal immunoreactivity. A major finding of this study is the localization of a previously undetected mesencephalic cell group which exhibits immunoreactivity to beta-endorphin, ACTH, and alpha-MSH. The perikarya of these neurons are large, bipolar, and situated in the mesencephalic tegmental area. They appear to project to the mesencephalic central gray and other brainstem structures. In contrast, the immunoreactive parvicellular perikarya of the medial-basal hypothalamus, corresponding to the POMC perikarya of the rodent arcuate nucleus, exhibit major rostral projections to various telencephalic and diencephalic structures. The exact extent of fiber projections and innervation patterns arising from either of these two groups is not clear at this time and will require further analyses. Scattered fiber immunoreactivity was also seen in the medial cerebral cortex and the striatal complex, regions which apparently are not innervated by beta-endorphin fibers in the rodent brain. Also, no immunoreactivity was seen to an antiserum to the 16K peptide of POMC. Other similarities and differences in the brain distribution of POMC in reptiles and mammals are discussed.  相似文献   

11.
The peptidergic melanin-concentrating hormone (MCH) system was investigated by immunocytochemistry in several birds. MCH perikarya were found in the periventricular hypothalamic nucleus near the paraventricular organ and in the lateral hypothalamic areas. Immunoreactive fibers were very abundant in the ventral pallidum, in the nucleus of the stria terminalis, and in the septum/diagonal band complex, where immunoreactive pericellular nets were prominent. Many fibers innervated the whole preoptic area, the lateral hypothalamic area, and the infundibular region. Some fibers also reached the dorsal thalamus and the epithalamus. The median eminence contained only sparse projections, and the posterior pituitary was not labeled. Thus, in birds, a neurohormonal role for MCH is not likely. Immunoreactive fibers were observed in other regions, such as the intercollicular nucleus, stratum griseum periventriculare (mesencephalic tectum), central gray, nigral complex (especially the ventral tegmental area), reticular areas, and raphe nuclei. Although no physiological investigation concerning the role of MCH has been performed in birds, the distribution patterns of the immunoreactive perikarya and fibers observed suggest that MCH may be involved in functions similar to those described in rats. In particular, the projections to parts of the limbic system (ventropallidal ganglia, septal complex, hypothalamus, dorsal thalamus, and epithalamus) and to structures concerned with visceral and other sensory information integration suggest that MCH acts as a neuromodulator involved in a wide variety of physiological and behavioral adaptations (arousal) with regard to feeding, drinking, and reproduction.  相似文献   

12.
Immunohistochemical single- and double-labeling studies were performed on the hypothalami of postmortem human brains to elucidate the distribution of corticotropin-releasing hormone (CRH)-immunoreactive (IR) neuronal elements and their interaction with the neuropeptide Y (NPY)-ergic neuronal system. The great majority of CRH-IR perikarya were found in the paraventricular nucleus (PVN), whereas a considerable number of CRH-IR neurons were also observed in the periventricular and infundibular nuclei. The dorsomedial nucleus and the perifornical region contained only scattered CRH-IR neurons. Dense CRH-IR fiber networks were found throughout the hypothalamus. However, the medial preoptic, the dorsolateral part of the supraoptic, the suprachiasmatic, the ventromedial, and the different mammillary nuclei showed a relative paucity of fibers. The terminal fields of NPY-IR axons overlapped the distribution of CRH-IR neurons in the hypothalamus. NPY-IR axon varicosities were juxtaposed to both dendrites and perikarya of the majority of CRH-IR neurons residing in the paraventricular, periventricular, and infundibular nuclei. These neurons were frequently contacted by multiple NPY axons that either formed baskets around their perikarya or completely ensheathed the emanating CRH dendrites. Because NPY and agouti-related protein (AGRP) are co-contained in neurons of the human infundibular nucleus, we used AGRP as a marker of NPY fibers originating exclusively from the infundibular nucleus. Only a small proportion of CRH neurons in the PVN was contacted by AGRP-IR axon varicosities, suggesting that NPY-IR innervation of CRH neurons in the PVN derive mainly from regions outside the infundibular nucleus. The present morphological findings support the view that NPY regulates the CRH system of the human hypothalamus and therefore at least some of the effects of NPY on metabolic, autonomic, and endocrine functions may be mediated through CRH.  相似文献   

13.
Medial anterior hypothalamic connections were studied with H3-proline and autoradiography. Most of the axons projected to other hypothalamic nuclei. The major pathways were found ventral medial to the fornix and in the periventricular tract. Substantial projections were apparent in the ventromedial and dorsomedial nuclei with less label in the arcuate nucleus. The dorsal premammillary nuclei were labeled bilaterally, particularly with more caudal injections of anterior hypothalamus. Efferents were evident in the posterior hypothalamus and continued into the central gray of the midbrain. Labeled fibers reached the ventral tegmental area and in the reticular formation were traced only through pons. Rostral projections were to the medial and lateral preoptic areas and ventral lateral septum. The bed nucleus of stria terminalis was labeled and a very few fibers reached the medial amygdaloid nucleus. The periventricular nucleus of thalamus was labeled.  相似文献   

14.
Rink E  Wullimann MF 《Brain research》2004,1011(2):206-220
Connections of the medial precommissural subpallial ventral telencephalon, i.e., dorsal (Vd, interpreted as part of striatum) and ventral (Vv, interpreted as part of septum) nuclei of area ventralis telencephali, were studied in the zebrafish (Danio rerio) using two tracer substances (DiI or biocytin). The following major afferent nuclei to Vd/Vv were identified: medial and posterior pallial zones of dorsal telencephalic area, and the subpallial supracommissural and postcommissural nuclei of the ventral telencephalic area, the olfactory bulb, dorsal entopeduncular, anterior and posterior parvocellular preoptic and suprachiasmatic nuclei, anterior, dorsal and central posterior dorsal thalamic, as well as rostrolateral nuclei, periventricular nucleus of the posterior tuberculum, posterior tuberal nucleus, various tuberal hypothalamic nuclei, dorsal tegmental nucleus, superior reticular nucleus, locus coeruleus, and superior raphe nucleus. Efferent projections of the ventral telencephalon terminate in the supracommissural nucleus of area ventralis telencephali, the posterior zone of area dorsalis telencephali, habenula, periventricular pretectum, paracommissural nucleus, posterior dorsal thalamus, preoptic region, midline posterior tuberculum (especially the area dorsal to the posterior tuberal nucleus), tuberal (midline) hypothalamus and interpeduncular nucleus. Strong reciprocal interconnections likely exist between septum and preoptic region/midline hypothalamus and between striatum and dorsal thalamus (dopaminergic) posterior tuberculum. Regarding ascending activating/modulatory systems, the pallium shares with the subpallium inputs from the (noradrenergic) locus coeruleus, and the (serotoninergic) superior raphe, while the subpallium additionally receives such inputs from the (dopaminergic) posterior tuberculum, the (putative cholinergic) superior reticular nucleus, and the (putative histaminergic) caudal hypothamalic zone.  相似文献   

15.
Somatostatin (SS)-containing neurons were mapped in the normal infant hypothalamus with immunohistochemistry, using the peroxidase anti-peroxidase technique. Neurons displaying SS immunoreactivity show a widespread distribution throughout the hypothalamic region. Principal SS-immunoreactive like (SS-IL) perikarya are located in the paraventricular, infundibular and posterior nuclei and in the preoptic region. High SS innervation is also found in the ventromedial and in the lateral mammillary nuclei, and in the median eminence. In general this distribution of SS-IL agrees well with that reported for rat. Compared to the immunohistochemical distribution of SS in human adult hypothalamus, this mapping in the infant hypothalamus is grossly similar. However some differences may be underlined: the presence of a moderately dense group of SS-IL perikarya in the tuberal and posterior nuclei, and a dense innervation of the ventromedial nucleus and in the median eminence. This first detailed distribution of SS immunoreactivity in infant hypothalamus can provide basic knowledge for further studies of infant neuropathology.  相似文献   

16.
Fibers projecting from several levels of the spinal cord to the diencephalon and telencephalon were labeled anterogradely with Phaseolus vulgaris leucoagglutinin injected iontophoretically. Labeled fibers in the thalamus confirmed projections previously observed. In addition, many labeled fibers were seen in the hypothalamus and in telencephalic areas not generally recognized previously as receiving such projections. In the hypothalamus, these areas included the lateral hypothalamus (including the medial forebrain bundle), the posterior hypothalamic area, the dorsal hypothalamic area, the dorsomedial nucleus, the paraventricular nucleus, the periventricular area, the suprachiasmatic nucleus, and the lateral and medial preoptic areas. In the telencephalon, areas with labeled fibers included the ventral pallidum, the globus pallidus, the substantia innominata, the basal nucleus of Meynert, the amygdala (central nucleus), the horizontal and vertical limbs of the diagonal band of Broca, the medial and lateral septal nuclei, the bed nucleus of the stria terminalis, the nucleus accumbens, infralimbic cortex, and medial orbital cortex. These results suggest that somatosensory, possibly including visceral sensory, information is carried directly from the spinal cord to areas in the brain involved in autonomic regulation, motivation, emotion, attention, arousal, learning, memory, and sensory-motor integration. Many of these areas are associated with the limbic system.  相似文献   

17.
The development of galanin-like immunoreactive (GAL-ir) cells and fibers was investigated in the brain of brown trout embryos, alevins, juveniles, and adults (some spontaneously releasing their gametes). The earliest GAL-ir neurons appeared in the preoptic region and the primordial hypothalamic lobe of 12-mm embryos. After hatching, new GAL-ir neurons appeared in the lateral, anterior, and posterior tuberal nuclei, and in late alevins, GAL-ir neurons appeared in the area postrema. In juveniles, further GAL-ir populations appeared in the nucleus subglomerulosus and magnocellular preoptic nucleus. The GAL-ir neuronal groups present in juveniles were also observed in sexually mature adults, although the area postrema of males lacked immunoreactive neurons. Moreover, spawning males exhibited GAL-ir somata in the olfactory bulb and habenula, which were never observed in adult females or in developing stages. In adults, numerous GAL-ir fibers were observed in the ventral telencephalon, preoptic area, hypothalamus, neurohypophysis, mesencephalic tegmentum, ventral rhombencephalon, and area postrema. Moderate to low GAL-ir innervation was seen in the olfactory bulbs, dorsomedial telencephalon, epithalamus, medial thalamus, optic tectum, cerebellum, and rhombencephalic alar plate. There were large differences among regions in the GAL-ir innervation establishment time. In embryos, GAL-ir fibers appeared in the preoptic area and hypothalamus, indicating early expression of galanin in hypophysiotrophic centers. The presence of galanin immunoreactivity in the olfactory, reproductive, visual, and sensory-motor centers of the brain suggest that galanin is involved in many other brain functions. Furthermore, the distribution of GAL-ir elements observed throughout trout development indicates that galaninergic system maturation continues until sexual maturity.  相似文献   

18.
The efferent connections of the ventral medulla oblongata have been analyzed in the rat using the anterograde autoradiographic method and the HRP technique. Fibers originating from the nucleus interfascicularis hypoglossi (B1 serotonergic cell group) and nucleus reticularis gigantocellularis, pars a (B3 serotonergic cell group) innervate the intermediolateral cell column, ventral horn and intermediate gray matter of the spinal cord. Some fibers innervate the hypoglossal, dorsal motor vagal, and medial solitary nuclei. Ascending fibers project through the medullary and pontine reticular formation, providing inputs to the Kölliker-Fuse, lateral parabrachial, laterodorsal tegmental, subcoeruleus and locus coeruleus nuclei. In the midbrain, the fibers ascend in the central tegmental field and then divide into several fiber bundles. Some course medially to innervate the central gray matter. Others diverge laterally to innervate the external nucleus of the inferior colliculus and cuneiform nucleus as well as the deep layers of the contralateral superior colliculus. Still others course dorsally through the ventral pretectal region to reach the thalamus (laterodorsal, paraventri-cular, paracentral, and centrolateral thalamic nuclei). The remaining fibers innervate the hypothalamus (dorsal hypothalamic area, paraventricular nucleus, perifornical area, supraoptic nucleus, retrochiasmatic area, and median eminence). Some of these continue through the lateral preoptic region, shift medially as they course through the area of the nucleus of the diagonal band, septofimbrial nucleus, and medial septum, and arch around the genu of the corpus callosum to innervate the hippocampal formation.  相似文献   

19.
The axonal projections of the dorsomedial nucleus of the hypothalamus were investigated by using Phaseolous vulgaris-leucoagglutinin. The main conclusion of this work is that these projections are largely intrahypothalamic, with smaller components directed toward the brainstem and telencephalon. Although the intrahypothalamic pathways are very complex and intermix at various levels, we conclude that dorsomedial nucleus outputs follow three distinct ascending pathways: periventricular, coursing through the hypothalamic periventricular zone; ventral, traveling beneath the medial zone; and lateral, ascending in medial parts of the lateral hypothalamic area. Within the hypothalamus, the most densely innervated areas are the paraventricular nucleus, other dorsal regions of the periventricular zone, the preoptic suprachiasmatic nucleus, and the parastrial nucleus. Other significant terminal fields include the median preoptic, anteroventral periventricular, lateral part of the medial preoptic, and anteroventral preoptic nuclei; and the retrochiasmatic (including perisuprachiasmatic) area. Descending projections follow two pathways that also converge at various levels: a dorsal pathway in the midbrain periventricular system travels through, and primarily innervates, the periaqueductal and pontine gray, and a ventral pathway extends through ventromedial regions of the brainstem. Although sparse, fibers in the later pathway can be traced as far caudally as the nucleus of the solitary tract. The results are discussed relative to the pathways and properties of nearby hypothalamic medial zone nuclei. Dorsomedial nucleus projections are similar to certain other nuclei (e.g., anteroventral periventricular and parastrial) with predominantly intrahypothalamic projections, and different from those arising in the medial zone nuclei (medial preoptic, anterior hypothalamic, ventromedial, and mammillary). © 1996 Wiley-Liss, Inc.  相似文献   

20.
Envisaged as a limbic-motor interface, the mammalian nucleus accumbens (Ac) is responsible for motivation, emotionality, and reward mechanisms. As in mammals, Ac of the domestic chick has three subdivisions: the rostral pole (AcR) lying in the rostral part of basal telencephalon, the core (AcC), corresponding to the ventromedial medial striatum, and the shell (AcS), lying ventrally and ventrolaterally to the AcC. Less well known is the connectivity of subdivisions. Here we report on the efferents of Ac subregions, using biotinylated dextran amine as anterograde tracer, deposited into the AcR, AcS, and AcC. The projections of the accumbens subregions mainly overlap in the telencephalon and the diencephalon but differ in the brainstem. In the telencephalon, the main projection sites are the ventral pallidum, the basal nucleus (Meynert), and the nucleus of the diagonal band. The lateral hypothalamus and lateral preoptic area receive strong projections from the AcR and AcS, and weaker projections from the AcC. The AcR and AcC massively innervate the subthalamic nucleus. In the brainstem the bulk of accumbens fibers were found in the compact part of the substantia nigra. All subregions project to the parabrachial region, reticular formation, periaqueductal gray, and the raphe nuclei, with some differences in the weights and subregional distributions. AcR and AcS project extensively to the ventral tegmental area, while AcC sends massive innervation to the solitary and vagal motor nuclei. Overall, the results seem to support the previously suggested distribution of Ac subregions, emphasizing similarities and differences with mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号