首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformational properties of the configurational isomers of tuftsin, a linear tetrapeptide with the sequence Thr-Lys-Pro-Arg, were investigated with six 1 ns molecular dynamics simulations in explicit water and in a 1.0 M NaCl solution. The average conformation of the cis isomer is a type VI β-turn. Our results indicate that water-peptide hydrogen bonding, in addition to intramolecular hydrogen bonds, stabilizes the cis conformer. The trans isomer is neither a β- nor a γ-turn. Results are compared with parallel studies on a cyclic analog of tuftsin, cyclo(Thr-Lys-Pro-Arg-Gly). The addition of salt does not influence the backbone conformation of the peptide. Differences between the structures are confined to the side-chain orientations of the Lys and Arg residues. © Munksgaard 1995.  相似文献   

2.
A useful set of empirical rules is put forward to predict the conformations of cyclic tetrapeptides and cyclic tetradepsipeptides on the basis of primary structure, briefly presented as follows: 1. A conformation allowing an intramolecular hydrogen bond (IMHB) of γ-turn is preferred, and an ester bond always adopts a trans form. 2. On a right-handed peptide ring, the carbonyl group acylating a D residue is oriented to the upper side of the main ring. 3. The carbonyl group acylating a d proline or an N-methyl-d -amino acid residue is oriented to the lower side of the ring, forming a cis bond. 4. The lddl configurational sequence adopts a cis-trans-cis-trans backbone with Ci symmetry. 5. A glycine residue behaves as a d residue in an l -peptide. Conformations of cyclotetrapeptides containing two glycine residues at diametric positions or containing an N-methyl-dehydroamino acid residue are predicted by use of appendices of rule 5. Almost all conformations of cyclic tetrapeptides are predicted by these rules. Energetical rationalization of the rules and prediction of possible new conformations are described. Conformations of cyclo (-l -Pro-l -Leu-d -Tyr(Me)-l -Ile-)(1) and cyclo (-l -Pro-d -Leu-d -Tyr(Me)-l -Ile)(2) are compared. Results of n.m.r. experiments showed that compound 1 adopts a unique cis-trans-trans-trans backbone with a γ-turn IMHB, and 2 has a cis-trans-cis-trans backbone with Ci symmetry. These observations confirmed the rules described above. Peptides 1 and 2 are the first diastereomeric peptides with trans (ld ) and cis (dd ) secondary amide bonds.  相似文献   

3.
One carbonyl oxygen of the cyclic hexapeptide cycle(-Gly1-Pro2-Phe3-Val4-Phe5-Phe6-) (A) can be selectively exchanged with sulphur using Yokoyama's reagent. Surprisingly it was not the C=O of Gly1 but that of Phe5 which was substituted and cyclo(-Gly1-Pro62-Phe3-Va14-Phe5ψ[CS-NH]Phe6-) (B)was obtained. Thionation results in a conformational change of the peptide backbone although the C=O of Phe5 and the corresponding C=S are not involved in internal hydrogen bonds. Two isomers in slow exchange, containing a CIS Gly1-Pro2 bond in a βVIa-turn (minor) and a trans Gly-Pro bond in a βII′-turn (major), were analyzed by restrained molecular dynamics in vacuo and in DMSO as well as using time dependent distance constraints. It is impossible to fit all experimental data to a static structure of each isomer. Interpreting the conflicting NOES, local segment flexibility is found. MD simulations lead to a dynamic model for each structure with evidence of an equilibrium between a βI- and βII-turn about the Val4-Phe5 amide bond in both the cis and trans isomers. Additionally proton relaxation rates in the rotating frame (R1p) were measured to verify the assumption of this fast βI/βII equilibrium within each isomer. Significant contributions to R1p-rates from intramolecular motions were found for both isomers. Therefore it is possible to distinguish between at least four conformers interconverting on different time scales based on NMR data and MD refinement. This work shows that thionation is a useful modification of peptides for conformation-activity investigations.  相似文献   

4.
A solid-state and solution conformation analyses of the cyclopentapeptide cyclo(Phe-Phe-Aib-Leu-Pro) has been carried out by X-ray diffraction and nuclear magnetic resonance techniques. The structure of the hexagonal crystals, grown from a methanol solution [a=b= 16.530(4) Å, c= 21.356(9) Å, space group P65, Z = 6], shows the presence of one intramolecular N-H?O=C hydrogen bond with the formation of a γ-turn (C7). The Aib3 residue, at the center of the γ-turn, presents unexpected values of the torsion angles [φ= 70.5° and ψ= -73.8°], which have been observed only once before for this helicogenic residue. A cis peptide bond occurs between Leu4 and Pro5; all other peptide bonds are trans. The overall conformation for the cyclopentapeptide with one cis-peptide bond on one side and an intramolecular γ-turn on the opposite side results in an equatorial topology of the side-chains of the Phe1, Phe2 and Leu4 residues. Indeed, the Cα-Cβand Cβ-Cγ bonds of these residues lie approximately in the mean plane of the cyclic ring system. The structure is compared with data in the literature on cyclic pentapeptides. In addition the Pro-Phe-Phe moiety shows a conformation similar to that observed in other larger cyclic bioactive peptides, which indicates a reduced number of conformations for this sequence. The solution study was carried out in three different solvent systems: chloroform, acetonitrile and methanol in the temperature interval 220–300 K. In all three solvents the room temperature spectra show that the peptide is conformationally nonhomogeneous. In acetonitrile at low temperatures it is possible to reduce the conformational equilibrium to two predominant conformers which differ for the cis-trans isomerism of the Leu4-Pro5 peptide bond.  相似文献   

5.
The conformations of the dipeptide t-Boc-Pro-d Ala-OH and the tripeptide tBoc-Pro-d Ala-Ala-OH have been determined in the crystalline state by X-ray diffraction and in solution by CD, n.m.r. and i.r. techniques. The unit cell of the dipeptide crystal contains two independent molecules connected by intermolecular hydrogen bonds. The urethane-proline peptide bond is in the cis orientation in both the molecular forms while the peptide bond between Pro and d Ala is in the trans orientation. The single dipeptide molecule exhibits a “bent” structure which approximates to a partial β-turn. The tripeptide adopts the 4 → 1 hydrogen-bonded type II β-turn with all trans peptide bonds. In solution, the CD and i.r. data on the dipeptide indicate an ordered conformation with an intramolecular hydrogen bond. N.m.r. data indicate a significant proportion of the conformer with a trans orientation at the urethane-proline peptide bond. The temperature coefficient of the amide proton of this conformer in DMSO-d6 points to a 3 → 1 intramolecular hydrogen bond. Taken together, the data on the dipeptide in solution indicate the presence (in addition to the cis conformer) of a C7 conformation which is absent in the crystalline state. The spectral data on the tripeptide indicate the presence of the type II β-turn in solution in addition to the nonhydrogen-bonded conformer with the cis peptide bond between the urethane and proline residues. The relevance of these data to studies on the substrate specificity of collagen prolylhydroxylase is pointed out.  相似文献   

6.
Solution conformation of cyclo(Gly1-His2-Phe3-Arg4-Trp5-Gly6) and its d -Phe analog corresponding to the message sequence [Gly-α-MSH5-10] of α-MSH has been studied by 1D and 2D proton magnetic resonance spectroscopy in dimethyl sulfoxide (DMSO)-d6 solution and in a DMSO-d6/H2O cryoprotective mixture. The NMR data for both the analogs in solution at 300 K cannot be interpreted based on a single ordered conformation, as evidenced by the broadening of only -NH resonances as well as the temperature coefficients of the amide protons. An analysis of the nuclear Overhauser effect (NOE) cross-peaks in conjunction with temperature coefficient data indicates an equilibrium of multiple conformers with a substantial population of particular conformational states at least in the d -analog. The molecular dynamics simulations without and with NOE constraints also reveal numerous low-energy conformers with two γ-turns, a γ-turn and a β-turn, two β-turns, etc. for both the analogs. The observed NMR spectra can be rationalized by a dynamic equilibrium of conformers characterized by a γ-bend at Gly6, two γ-bends at Phe3 and Gly6 and a conformer with a single β-turn and a γ-bend for the l -Phe analog. On the other hand, a conformation with two fused β-turns around the two tetrads His2-d -Phe3-Arg4-Trp5 and Trp5-Gly6-Gly1-His2 dominates the equilibrium mixture for the d -Phe analog. For the d -Phe analog, the experimentally observed average conformation is corroborated by molecular dynamics simulations as well as by studies in cryoprotective solvent.  相似文献   

7.
Two endothelin antagonists cyclo(d -Leu-d -Val-Pro-d -Asp-Trp) (IPI-147), and cyclo(d -Trp-d -Asp-Ac3c-d -Val-Leu) (IPI-725) have been synthesized. Their solution conformations have been studied in aqueous solution by NMR spectroscopy and dynamics simulation. Activity studies show that IPI-725 is a strong ETA antagonist, while IPI-147 is a weak ETA antagonist. Comparison of the solution conformations of these two ETA antagonists suggests that the difference in their activities results from their structural differences. IPI-147 contains a type II β-turn with a hydrogen bond between NH of d -Val and the C = O of d -Asp. IPI-725, on the other hand, contains two turns, a type II β-turn with a hydrogen bond between NH of d -Asp and C=O of d -Val, as well as a γ-turn with a hydrogen bond formed between d -Val NH and d -Asp carbonyl group. Therefore IPI-147 appears to be more flexible than IPI-725. Although both γ-turns contain the same residues, their orders in the turn are reversed. The β-turn in IPI-725 is formed with d -Val:Leu:d -Trp:d -Asp, while in IPI-147, the β-turn is formed with d -Asp:Trp:d -Leu:d -val. The activities and solution conformations of IPI-147 and IPI-725 were also compared with BQ-123 [Cyclo(d -Trp-d -Asp-Pro-d -Val-Leu)], a well characterized, highly potent endothelin antagonist. © Munksgaard 1996.  相似文献   

8.
Cyclic tetrapeptides exclusively composed of L- and D-Pro have been studied by theoretical means (conformational searches and molecular mechanics calculations using the CHARMM program) supported by 1H-NMR spectroscopy, X-ray analysis and chiroptical measurements. We explored the entire conformational space of the diastereomers cyclo(LLLL-Pro4) (I), cyc1O(LDLD-Pro4) (II) and CYClo(LLDD-Pro4) (III) including the low-energy conformations and the related interconversion paths. The conformational interconversions were found to be restricted to cis/trans isomerisations of the amide bonds. Owing to the polycyclic nature of cyclo(Pro4) most of the cis/trans transitions are hindered by energy barriers higher than 30 kcal/mol (up to 150–200 kcal/mol). A few transitions are characterized by computed energy barriers comparable to those found in linear -Xxx-Pro- sequences (~ 18 kcal/mol), and are therefore experimentally significant. Experimental evidence has been obtained in the case Of CyClo(LDLD-Pro4), where two enantiomers are interconverted by a series of 4 cis/trans isomerisations ctctcttttttttctttctc. The Eyring activation parameters of this reaction were determined in H2O and in DMF by chiroptical measurements (ΔH#= 44 and 28 kcal/mol; ΔS#=59 and 22 cal K ?1 mol?1, respectively), and correlated with the calculated barriers. In I and III comparable series of four cis/trans isomerisations relate two main conformations with the peptide bond sequences ctct and tctc. In compound I pseudorotational images are interconverted via ctctccctccttcctctctc. The pathway ctctccctccttcctctctc. that relates diastereomeric main conformations of III involves exclusively low-energy intermediates; however, the transitions leading to the all-cis conformation are energetically unfavourable, and the conformational space is divided in three insulated domains.  相似文献   

9.
Molecular mechanics calculations of the cyclic tetrapeptide ring system for the cis, trans, cis, trans amide bond sequences for cyclo tetraglycine and cyclo tetraalanine have been carried out. A systematic search of conformational space was carried out by using Still's RINGMAKER in an attempt to find the global minimum for each amide bond sequence. Ring system structures were optimized by using the BAKMOD program. A comparison of 11 experimentally determined cyclic tetrapeptide conformations with the lowest energy calculated conformations showed that only 4 of 11 known cyclic tetrapeptides adopted the lowest energy conformation. However, when the destabilization energy between cyclo tetraalanine and cyclo tetraglycine was calculated, 10 of the 11 experimentally determined conformations for cyclic tetrapeptides with alternating cis, trans, cis, trans amide bond sequences adopted the conformations with the least de-stabilization energy. The relationship between the molecular mechanics calculations and empirical rules for predicting cyclic tetrapeptide conformations is discussed.  相似文献   

10.
Six cyclic retro-analogues of the peptide hormone somatostatin have been synthesized using the solid phase technique. The peptides cyclo(-Xaa1-Phe2-Thr3-Lys4-Ybb5-Phe6-) and cyclo(-Phe1-Xaa2-Thr3-Lys4-Ybb5-Phe6-) with Xaa =d - or l -Pro and Ybb =d - or l -Trp were cyclized via the azide method. The conformations of the cyclic hexapeptides in DMSO-d6 solution were determined by a number of homo- and heteronuclear two-dimensional n.m.r.-techniques including 2D rotating frame NOE-spectroscopy. Two-step coherence transfers, ROE and chemical exchange, are observed for the first time in ROESY spectra. The backbone conformation of the all-trans cyclopeptides consists of a β-turn containing the Pro residue in the position i + 1. These retro-analogues of somatostatin exhibit a high activity in the inhibition of cholate and phalloidin uptake by liver cells (cytoprotective effect); however, the hormonal activities of the natural hormone are completely suppressed. The constitutional and conformational requirements for the cytoprotective activity are discussed.  相似文献   

11.
Abstract: The objective of this study was to explain the increased propensity for the conversion of cyclo-(1,7)-Gly-Arg-Gly-Asp-Ser-Pro-Asp-Gly-OH ( 1 ), a vitronectin-selective inhibitor, to its cyclic imide counterpart cyclo-(1,7)-Gly-Arg-Gly-Asu-Ser-Pro-Asp-Gly-OH ( 2 ). Therefore, we present the conformational analysis of peptides 1 and 2 by NMR and molecular dynamic simulations (MD). Several different NMR experiments, including COSY, COSY-Relay, HOHAHA, NOESY, ROESY, DQF-COSY and HMQC, were used to: (a) identify each proton in the peptides; (b) determine the sequential assignments; (c) determine the cis–trans isomerization of X–Pro peptide bond; and (d) measure the NH–HCα coupling constants. NOE- or ROE-constraints were used in the MD simulations and energy minimizations to determine the preferred conformations of cyclic peptides 1 and 2 . Both cyclic peptides 1 and 2 have a stable solution conformation; MD simulations suggest that cyclic peptide 1 has a distorted type I β-turn at Arg2-Gly3-Asp4-Ser5 and cyclic peptide 2 has a pseudo-type I β?turn at Ser5-Pro6-Asp7-Gly1. A shift in position of the type I β-turn at Arg2-Gly3-Asp4-Ser5 in peptide 1 to Ser5-Pro6-Asp7-Gly1 in peptide 2 occurs upon formation of the cyclic imide at the Asp4 residue. Although the secondary structure of cyclic peptide 1 is not conducive to succinimide formation, the reaction proceeds via neighbouring group catalysis by the Ser5 side chain. This mechanism is also supported by the intramolecular hydrogen bond network between the hydroxyl side chain and the backbone nitrogen of Ser5. Based on these results, the stability of Asp-containing peptides cannot be predicted by conformational analysis alone; the influence of anchimeric assistance by surrounding residues must also be considered.  相似文献   

12.
Abstract: The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-Val9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide ( 1 ), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide–receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1–Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible β-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first β-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second β-turn. Furthermore, the presence of a β-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH–NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I β-turn structure is also supported by CD spectral analysis. The cIBR peptide ( 1 ) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   

13.
The endothelin family of polypeptides are known to exert potent physiological effects which include cardiovascular regulation. The solution conformation and dynamics of c(D-Trp-D-Cys(SO3-Na+)-Pro-D-Val-Leu), a potent endothelin-A receptor-selective antagonist, were characterized in aqueous solution by NMR spectroscopy and molecular modeling. NMR-derived conformational constraints were combined with computer-assisted molecular modeling using distance geometry calculations and energy minimization. The pentapeptide backbone is shown to adopt a single conformation in solution comprising a type II β-turn and an inverse γ-turn, with each residue in the trans conformation. Molecular dynamics were explored using relaxation measurements and low-temperature studies, and indicate that the peptide backbone is highly constrained with little conformational mobility present.  相似文献   

14.
The normal modes have been calculated for three kinds of low energy γ-turn structures resulting from recent conformational energy calculations by Némethy. Frequencies have been computed for a γ-turn, a mirror-related γ-turn, and an inverse γ-turn of CH3-CO-(L-Ala)n-NH-CH3, with n = 3 and n = 5, and for certain 14C and 15N derivatives of the n = 3 molecule. Correlations are evident between amide frequencies and γ-turn structures, and it is found that only amide I modes of peptide groups in the turn are relatively insensitive to the lengths of attached chains.  相似文献   

15.
Seven dermorphin hepta- and tetrapeptide analogues containing [3,4] amide bond replacement by a carbon-carbon double and single bond were prepared. 1H NMR studies of the pseudoheptapeptide in DMSO indicate the presence of extended conformations with stacking of the side chains in the N-terminal part and an inverse γ-turn around Ser7 in the conformational equilibrium. The binding data show that the affinity of the analogues for the μ-receptor is only slightly diminished in the d -Ala2 series and is more affected in the d -Arg2 series. Since the Gly4NH is not present in these compounds we conclude that this NH is not required to stabilize the bioactive conformation nor is it directly involved in binding to the receptor.  相似文献   

16.
The conformational properties of the “reduced” dipeptides tBuCO-Pro-GlyΨ[CH2-NH]NRR′(R = H, R = Et; R = R′= Me) greatly depend upon the neutral or protonated state of the “reduced” amide bond. Due to protonation, the quite flexible neutral molecule turns into a very stable conformation resembling a β-turn in both the solid and solute states. The existence of a strong N +—H…O=C interaction closing a 10-membered cycle illustrates the possible specific properties induced by a chemical modification in pseudopeptide analogs.  相似文献   

17.
The conformational analysis of three cyclic hexapeptides is presented. Cyclo-(-Gln6-Trp7-Phe8-Gly9-Leu10-d -Met11-) (1) and cyclo-(-Gln6-Trp7-Phe8-Gly9-Leu10-Met11-) (2) are NK-2 antagonists in the hamster trachea assay, whereas cyclo-(-Gln6-Trp7-Phe8-(R)-Gly9-[ANC-2]Leu10-Met11-) (3), where Gly9[ANC-2]Leu10 represents (2S)-2-((3R)-3-amino-2-oxo-1-pyrrolidinyl)-4-methylpentanoyl, is inactive as agonist and antagonist in this assay. In DMSO, the NMR results cannot be interpreted as being consistent with a single conformation. However, the combined interpretation of results from NMR spectroscopy, restrained molecular dynamics simulations with application of proton–proton distance information from ROESY spectra, and pharmacological results leads to a reduced number of conformational domains for each peptide, which can be compared with each other and may be classified as responsible for their biological activity. Trying to match the conformational domains approximately with regular β- and γ-turns, we find a γn-turn at the position of the methionine occuring in all peptides. For the active peptides 1 and 2 we arrive at an inverse γi-turn at Phe8, and βI′- or βII-turns with Gly9 and Leu10 at the corner positions, these β-turns having a similar topology with respect to the linking peptide unit. Other conformational domains common to only 1 and 2 support their classification as responsible for the biological activity.  相似文献   

18.
Abstract: In an earlier study using Caco-2 cells, an in vitro cell culture model of the intestinal mucosa, we have shown that the acyloxyalkoxy-based cyclic prodrugs 3 and 4 of the opioid peptides [Leu5]-enkephalin( 1 , H-Tyr-GLY-Gly-Phe-Leu-OH) and DADLE( 2 , H-Tyr-d -Ala-Gly-Phe-d -Leu-OH), respectively, were substrates for apically polarized efflux systems and therefore less able to permeate the cell monolayers than were the opioid peptides themselves. In an attempt to explain how structure may influence the recognition of these cyclic prodrugs as substrates by the apically polarized efflux systems, we have determined the possible solution conformations of 3 and 4 using spectroscopic techniques (2D-NMR, CD) and molecular dynamics simulations. Spectroscopic as well as computational studies indicate that cyclic prodrug 4 exhibits a major and a minor conformer in a ratio of 3 : 2 where both conformers exhibit γ and β-turn structures. Spectroscopic, as well as molecular dynamics, studies indicate that the difference between the two conformers involves a cis/trans inversion occurring at the amide bond between the promoiety and Tyr1. The major conformer has a trans amide bond between the promoiety and Tyr1, whereas the minor conformer has a cis amide bond. The spectroscopic data indicate that cyclic prodrug 3 has a structure similar to that of the major conformer in cyclic prodrug 4 . It has recently been reported that a particular arrangement of polar groups and spatial separation distances is required for substrate recognition by P-glycoprotein. When the conformation of the acyloxyalkoxy linker was investigated in the major and minor conformers of cyclic prodrug 4 , with respect to distances between the polar functional groups, this ideal fixed spatial orientation was observed. Interestingly this same spatial orientation of polar functional groups was not observed for other cyclic prodrugs prepared by our laboratory using different chemical linkers (coumarinic acid and phenylpropionic acid) but the same opioid peptides that had previously been shown not to be substrates for the apically polarized efflux systems. Therefore, we hypothesize that the structure and/or the flexibility of the acyloxyalkoxy linker itself allows cyclic prodrugs 3 and 4 to adopt conformations that permit ideal arrangement of polar groups in the linker and their fixed spatial orientation. This possibly induces the substrate activity of cyclic prodrugs 3 and 4 for the apically polarized efflux systems.  相似文献   

19.
A conformational study of the cyclic β-casomorphin-5 analogues H-Tyr-cyclo[-D-Orn-2-Nal-Pro-Gly-] ( 1 ) (μ-selective agonist; 2-Nal = 2-naphthylalanine), H-Tyr-cyclo[-D-Orn-2-Nal-D-Pro-Gly-] ( 2 ) (mixed μ agonist/δ antagonist) and H-Tyr-cyclo[-D-Orn-Phe-D-Pro-Gly-] ( 3 ) (highly potent μ and δ agonist) has been carried out using 1H NMR spectroscopy. A complete assignment of the proton resonances of the three pentapeptides has been achieved. Compound 1 was shown to exist in two conformations, a major one (90%) characterized by a cis amide bond between 2-Nal3 and Pro4, and a minor one (10%) showing cis amide bonds both between D-Orn2 and 2-Nal3 and between 2-Nal3 and Pro4. Peptides 2 and 3 each showed only one conformer with all-trans peptide bonds in both cases. Temperature dependence studies of the amide proton chemical shifts indicated the existence of several intramolecular hydrogen bonds in the case of compounds 2 and 3 but not in the case of peptide 1. The backbone conformations of 2 and 3 were found to be similar, both being characterized by two consecutive γ turns around the D-Pro4 and D-Orn2 residues, respectively, and by a D-Orn2-CO←HNδ-D-Orn2 hydrogen bond. Altogether, the overall backbone conformation and the preferred side chain conformation were found to be roughly similar for the three title peptides. For all three compounds a close proximity between the aromatic moiety of the 3-position residue (2-Nal or Phe) and the D(or L)-Pro4 residue was established on the basis of ROESY experiments. The examination of low energy conformations obtained in molecular modelling studies by taking into account the various experimentally found NMR parameters (NOEs, vicinal H,H coupling constants, torsion angles, H-bonds) led to proposals of the solution conformation for each peptide. These conformations are in close agreement with a pharmacophore model for μ opioid receptor binding compounds.  相似文献   

20.
The conformation of the synthetic cyclic tetrapeptide cyclo (D-Phe-Pro-Sar-Gly) has been determined in solution using the nuclear magnetic resonance technique and in the crystal state by X-ray crystallography. Results showed that the peptide exhibited two different conformations in solution, conformer 1 having cis-trans-cis-trans peptide bonds and conformer 2 having trans-cis-trans-cis peptide bonds. No intramolecular hydrogen bonds were observed in the structures. The X-ray diffraction studies showed the crystals to be orthorhombic with space group P212121 with unit-cell dimensions, a = 5.790, b= 10.344, c = 31.446 Å, Z=4, R= 0.104 for 2301 observed reflections. The crystal structure showed only one type of conformer having cis-trans-cis-trans peptide bonds similar to the conformer 1 in solution. © Munksgaard 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号