首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The model peptide TRH was successfully synthesized using benzotriazol-l-yl-oxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent). The coupling reactions were carried out in N,N-dimethylformamide or N-methylpyrrolidone. These solvents allowed the incorporation of the N-terminal pyroglutamic acid residue into the peptide chain, without using the derivative bearing the N-benzyloxycarbonyl group, which acts as a solubility promoter. A comparative racemization study showed that Boc-His(Tos) can be coupled by means of BOP reagent with less racemization than with DCC when the amount of diisopropylethylamine (DIEA) is kept minimal (same ratio of equivalents as for Boc-His(Tos), i.e. 3 equiv.). However, with the use of a larger amount of DIEA in the coupling mixture (9 equiv.), approximately 3% of epimer was found in the crude product. Our study showed that even under low DIEA conditions, the rate of coupling of the residues with BOP remained comparable to that observed with DCC.  相似文献   

2.
The synthesis of the mixed Thr(P), Tyr(P)-containing peptide, Ala-Thr(P)-Tyr(P)-Ser-Ala, was accomplished by “phosphite-triester” phosphorylation of the resin-bound Thr Tyr-containing peptide using di-t-butyl N,N-diethylphosphoramidite as the phosphitylation reagent. The pentapeptide-resin was assembled by Fmoc/ solid-phase peptide synthesis with the use of PyBOP® as coupling reagent and the hydroxy-amino acids incorporated as side-chain free Fmoc-Tyr-OH and Fmoc-Thr-OH. “Global” bis-phosphorylation of the peptide-resin was accomplished by treatment with di-t-butyl N,N-diethylphosphoramidite/1H-tetrazole followed by m-chloroperoxybenzoic acid oxidation of the intermediate di-t-butylphosphite triester. Simultaneous peptide-resin cleavage and peptide deprotection was effected by treatment of the peptide-resin with 5% anisole/TFA and gave the Thr(P) Tyr(P)-containing phosphopeptide in high yield and purity. In addition, the tyrosyl residue was found to be phosphitylated in preference to the threonyl residue since the phosphitylation of the pentapeptide-resin using only 1.1 equiv. of di-t-butyl N,N-diethylphosphoramidite gave Ala-Thr-Tyr(P)-Ser-Ala as the major product and both Ala-Thr(P)-Tyr(P)-Ser-Ala and Ala-Thr-Tyr-Scr-Ala as minor products.  相似文献   

3.
The BOP reagent [benzotriazol-l-yl-oxy-tris-(dimethylamino)phosphonium hexafluorophosphate] introduced by Castro et al. [Tetrahedron Lett. (1975) 14, 1219–1222] is ideally suited for solid phase peptide synthesis. The rate of coupling using BOP compared favorably to DCC and other methods of activation including the symmetrical anhydride and DCC/HOBt procedures. BOP couplings using the solid phase procedure proceeded more rapidly and to a greater degree of completion for peptide bond formations that were previously determined to be very slow using the conventional DCC method. Stepwise solid phase peptide synthesis using BOP was successfully utilized for the preparation of the (22–29) and (13–29) fragments of [Ala15]-GRF(1–29)-NH2. Single couplings with 3 equiv. BOP and Boc-amino acids and 5.3 equiv. of diisopropylethylamine in DMF were used for each cycle. The yields of the fragments were superior and the purities comparable using the BOP procedure (single couplings) to those observed using multiple couplings via the DCC coupling method. A total synthesis of [Ala15]-GRF(1–29)-NH2 was also carried out using the BOP procedure (single couplings and 3 equiv. BOP and Boc-amino acids and 5.3 equiv. diisopropylethylamine in DMF for each cycle). Multiple couplings were only required for Boc-Asn-OH due to the proposed formation of Boc-aminosuccinimide during activation. The resultant GRF(1–29) analog was comparable to a control prepared with multiple DCC couplings under optimized conditions. In a parallel study, unprotected Boc-(hydroxy)-amino acids were successfully coupled with the BOP reagent. However, the number of coupling cycles after the introduction of unprotected hydroxy-amino acid must be minimal (<10). The use of the BOP reagent with unprotected Tyr in solid phase peptide synthesis was also clearly established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号