首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of polymer-supported benzylamides substituted with one to three alkoxy groups in the ring positions were prepared and shown to give carboxamides upon treatment with acid. Based on the initial screening, the bis(o-methoxy)-p-alkoxybenzylamide anchoring linkage was selected for a detailed evaluation of its suitability for solid-phase synthesis of C-terminal peptide amides. The handle derivative 5-[(2′ or 4′)-Fmoc-aminomethyl-3′,5′-dimethoxyphenoxy]valeric acid ( 1 ) was prepared in seven facile steps [purification of intermediates unnecessary; overall yield 15% for crystalline product, which is a mixture of positional isomers], and was quantitatively coupled onto amino group-containing supports by use of N,N'-dicyclohexylcarbodiimide plus 1-hydroxybenzotriazole in N,N-dimethylformamide. Stepwise elaboration of peptide chains proceeded smoothly with both Nα-9-fluorenyl-methyloxycarbonyl (Fmoc) and Nα-dithiasuccinoyl (Dts) amino acids, and final cleavage of tert.-butyl side-chain protecting groups and of the anchoring linkage occurred readily in trifluoroacetic acid–dichloromethane (7:3) at 25°. The methodology was demonstrated by the syntheses of H-Trp-Asp-Met-Phe-NH2 (tetragastrin) and H-Tyr-Gly-Gly-Phe-Met-NH2 (methionine-enkephalinamide), both with high yields and purities.  相似文献   

2.
The preparation and use of new anchor groups for the synthesis of peptide amides by solid-phase peptide synthesis employing the Fmoc-method is described. Based on the structure of the 4,4′-dimethoxybenzhydryl group (Mbh) handles were developed, which could be cleaved by mild acid treatment to give carboxamides. The syntheses and application of Fmoc-amino-acid-(4-carboxylatomethyloxyphenyl-4′-methoxyphenyl) methyl amide and Fmoc-(4-carboxylatopropyloxyphenyl-4′-methoxyphenyl) methyl amide are described in detail. These handles were coupled to resins and a stepwise elongation of peptide chains proceeded smoothly with Nx-9-fluorenylmethoxycarbonyl (Fmoc) amino acid derivatives using a carbodiimide/HOBt mediated reaction. The final cleavage of side-chain protecting groups and the release of the C-terminal amide moiety was achieved by the treatment with trifluoroacetic acid, dichloromethane in the presence of scavengers. Various peptides, such as the Leu-enkephalin amide and Leu-Gly-Gly-Gly-Gln-Gly-Lys-Val-Leu-Gly-NH2, which is a good substrate for F XIII, were prepared in high yields and purities.  相似文献   

3.
Two acid-labile substituted benzylamine type anchoring linkages, 4-benzoxy-2,6-dimethoxybenzylamine and 2-benzoxy-4,6-dimethoxybenzylamine, for solid phase synthesis of peptide amides were prepared. The Na-9-fluorenylmethyloxycarbonyl (Fmoc) amino acids could be easily attached to the resins with DCC/HOBt (loading 0.5–0.6 mmol/g resin). After final removal of the Na-protecting groups, treatment with TFA (50–95%) yielded amino acid and peptide amides in high purity. As we could show for the synthesis of thymulin (FTS, pGlu-Ala-Lys-Ser-Gln-Gly-Gly-Ser-Asn), these two resins with anchoring linkages are well suited for the synthesis of C-terminal Asn peptides using protected aspartic acid derivative as starting material.  相似文献   

4.
Abstract: Hofmann rearrangement of Nα‐Boc‐l ‐Gln‐OH mediated by a polymer‐supported hypervalent iodine reagent poly[(4‐diacetoxyiodo)styrene] (PSDIB) in water afforded Nα‐Boc‐l ‐α,γ‐diaminobutyric acid (Boc‐Dab‐OH, 1 ) in 87% yield. Nα‐Z‐derivative (Z‐Dab‐OH, 2 ) was prepared with PSDIB in 83% yield. Since the reaction of Nα‐Fmoc‐Gln‐OH by this procedure did not proceed because of the insolubility of Fmoc‐Gln‐OH in aqueous media, we synthesized Fmoc‐Dab(Boc)‐OH ( 5 ) from 2 in 54% yield. Polymyxin B heptapeptide (PMBH) which contains four Dab residues was successfully synthesized in a solution‐phase synthesis.  相似文献   

5.
Abstract: The 2‐(4‐nitrophenylsulfonyl)ethoxycarbonyl (Nsc) group is a new base‐labile protecting group for solid‐phase peptide synthesis, completely interchangeable with the fluorenylmethoxycarbonyl (Fmoc) protecting group, but with certain advantages. In this paper, we report a methodology with NαNsc‐protected amino acids for the synthesis of some melanotropins important to our research, namely, γmelanocyte‐stimulating hormone (γMSH), its [Nle3]‐analogue, and a cyclic αMSH/βMSH hybrid. We developed an efficient protocol for the synthesis of the cyclic MSH analogue that yielded this peptide in > 98% purity. The γ‐MSH synthesis, which gave problems with both the Boc and Fmoc strategies, yielded the desired peptide by Nsc‐chemistry but was accompanied by side products. Finally, the Nle3‐γ‐MSH analogue was synthesized more efficiently using the Fmoc strategy, suggesting that Nsc‐chemistry might not be the best methodology for certain sequences.  相似文献   

6.
Abstract: The synthesis of 5‐hydroxylysine (Hyl) derivatives for incorporation by solid‐phase methodologies presents numerous challenges. Hyl readily undergoes intramolecular lactone formation, and protected intermediates often have poor solubilities. The goals of this work were twofold: first, develop a convenient method for the synthesis of O‐protected Fmoc‐Hyl; secondly, evaluate the efficiency of methods for the synthesis of O‐glycosylated Fmoc‐Hyl. The 5‐Otert‐butyldimethylsilyl (TBDMS) fluoren‐9‐ylmethoxycarbonyl‐Hyl (Fmoc‐Hyl) derivative was conveniently prepared by the addition of tert‐butyldimethylsilyl trifluoromethanesulfonate to copper‐complexed Hyl[?tert‐butyloxycarbonyl (Boc)]. The complex was decomposed with Na+ Chelex resin and the Fmoc group added to the α‐amino group. Fmoc‐Hyl(?‐Boc, O‐TBDMS) was obtained in 67% overall yield and successfully used for the solid‐phase syntheses of 3 Hyl‐containing peptides. The preparation of Fmoc‐Hyl[?‐Boc, O‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐galactopyranosyl)] was compared for the thioglycoside, trichloroacetimidate and Koenigs–Knorr methods. The most efficient approach was found to be Koenigs–Knorr under inverse conditions, where Fmoc‐Hyl(?‐Boc)‐OBzl and peracetylated galactosyl bromide were added to silver trifluoromethanesulfonate in 1,2‐dichloroethane, resulting in a 45% isolated yield. Side‐reactions that occurred during previously described preparations of glycosylated Hyl derivatives, such as lactone formation, loss of side‐chain protecting groups, orthoester formation, or production of anomeric mixtures, were avoided here. Research on the enzymology of Lys hydroxylation and subsequent glycosylation, as well as the role of glycosylated Hyl in receptor recognition, will be greatly aided by the convenient and efficient synthetic methods developed here.  相似文献   

7.
A major side reaction which can occur during the synthesis of Trp-containing peptides is modification of the Trp indole by reactive carbonium ion species released during acidolytic cleavage. [Asn2,Trp4]Dynorphin A-(1–13), a sequence which is very susceptible to Trp modification, was chosen as a model peptide to compare the effectiveness of various methods proposed to minimize Trp modification during Fmoc solid-phase synthesis. The peptide was synthesized with the side chain of Trp unprotected and cleaved by Reagent K [82.5% trifluoroacetic acid (TFA)/5% phenol/5% water/5% thioanisole/2.5 % ethanedithiol (EDT)] [King, D.S. et al. (1990) Int. J. Peptide Protein Res. 36 , 255–2661, Reagent R [90% TFA/5 % thioanisole/3% EDT/2% anisole] [Albericio, F. et al. (1990) J. Org. Chem. 55 , 3730–3743], TFA containing 20% EDT and 4% water [Riniker, B. & Hartmann, A. (1990) in Peptides: Chemistry, Structure, and Biology (Rivier, J.E. & Marshall, G.R., eds.), pp. 950–952, Escom, Leiden], and TFA containing trialkylsilane, MeOH, and ethylmethyl sulfide [Chan, W.C. & Bycroft, B.W. (1992) in Peptides: Chemistry, Structure, and Biology, Op. cit., pp. 613–614]. Cleavage with Reagent K, Reagent R and TFA containing 20% EDT and 4% water yielded similar results; in addition to the desired peptide, the crude product contained 22–30% of a side product which appeared to result from Trp modification by a Pmc group. Cleavage with the triakylsilane-containing mixture gave the lowest recovery of the desired peptide and the highest levels of Pmc-containing peptides. In contrast, synthesis of the peptide by Fmoc solid-phase synthesis utilizing Fmoc-Trp(Boc) and subsequent cleavage with TFA containing 20% EDT and 5% water yielded the desired peptide in essentially pure form with < 5% of the Pmc-containing side product. Thus, in the Fmoc solid-phase synthesis of [Asn2,Trp4]dynorphin A-(1–13) protection of the indole nitrogen by Boc was the most effective method for suppressing the modification of Trp by Pmc. This demonstrates the potential for improving the yield and purity of peptides containing both Trp and Arg by utilizing Fmoc-Trp(Boc) during the Fmoc solid-phase synthesis of these peptides.  相似文献   

8.
Abstract: The glycopeptide hormone catfish somatostatin (somatostatin‐22) has the amino acid sequence H‐Asp‐Asn‐Thr‐Val‐Thr‐Ser‐Lys‐Pro‐Leu‐Asn‐Cys‐Met‐Asn‐Tyr‐Phe‐Trp‐Lys‐Ser‐Arg‐Thr‐Ala‐Cys‐OH; it includes a cyclic disulfide connecting the two Cys residues, and the major naturally occurring glycoform contains d ‐GalNAc and d ‐Gal O‐glycosidically linked to Thr5. The linear sequence was assembled smoothly starting with an Fmoc‐Cys(Trt)‐PAC‐PEG‐PS support, using stepwise Fmoc solid‐phase chemistry. In addition to the nonglycosylated peptide, two glycosylated forms of somatostatin‐22 were accessed by incorporating as building blocks, respectively, NαFmoc‐Thr(Ac3‐α‐D‐GalNAc)‐OH and Nα‐Fmoc‐Thr(Ac4‐β‐D‐Gal‐(1→3)‐Ac2‐α‐D‐GalNAc)‐OH. Acidolytic deprotection/cleavage of these peptidyl‐resins with trifluoroacetic acid/scavenger cocktails gave the corresponding acetyl‐protected glycopeptides with free sulfhydryl functions. Deacetylation, by methanolysis in the presence of catalytic sodium methoxide, was followed by mild oxidation at pH 7, mediated by Nαdithiasuccinoyl (Dts)‐glycine, to provide the desired monomeric cyclic disulfides. The purified peptides were tested for binding affinities to a panel of cloned human somatostatin receptor subtypes; in several cases, presence of the disaccharide moiety resulted in 2‐fold tighter binding.  相似文献   

9.
N α-Dithiasuccinoyl (Dts) amino acids ( 1 ) needed for solid-phase peptide synthesis have been prepared in good yields and excellent purities by a new method that exploits the solubility properties of polyethylene glycol (PEG; bifunctional with average molecular weight 2000 was found to be optimal). Suitably side-chain protected amino acid derivatives are first reacted with a polymeric xanthate ( 11 ), following which the free α-carboxyl is blocked by silylation and the Dts heterocycle is elaborated in the same pot by reaction with chlorocarbonylsulfenyl chloride ( 4 ). Upon aqueous workup, the polymeric carrier removes any urethane blocked amino acids which arise during the process. Exaggerated conditions were explored to prove the power of this functional purification approach, and mechanisms of formation of polymer-bound urethanes are proposed and supported by solution model studies. The preparation and characterization of the companion N-(iso-propyldithio)carbonyl derivative of proline is also presented.  相似文献   

10.
Abstract: Native chemical ligation has proven to be a powerful method for the synthesis of small proteins and the semisynthesis of larger ones. The essential synthetic intermediates, which are C‐terminal peptide thioesters, cannot survive the repetitive piperidine deprotection steps of Nα‐9‐fluorenylmethoxycarbonyl (Fmoc) chemistry. Therefore, peptide scientists who prefer to not use Nαt‐butyloxycarbonyl (Boc) chemistry need to adopt more esoteric strategies and tactics in order to integrate ligation approaches with Fmoc chemistry. In the present work, side‐chain and backbone anchoring strategies have been used to prepare the required suitably (partially) protected and/or activated peptide intermediates spanning the length of bovine pancreatic trypsin inhibitor (BPTI). Three separate strategies for managing the critical N‐terminal cysteine residue have been developed: (i) incorporation of Nα‐9‐fluorenylmethoxycarbonyl‐S‐(N‐methyl‐N‐phenylcarbamoyl)sulfenylcysteine [Fmoc‐Cys(Snm)‐OH], allowing creation of an otherwise fully protected resin‐bound intermediate with N‐terminal free Cys; (ii) incorporation of Nα‐9‐fluorenylmethoxycarbonyl‐S‐triphenylmethylcysteine [Fmoc‐Cys(Trt)‐OH], generating a stable Fmoc‐Cys(H)‐peptide upon acidolytic cleavage; and (iii) incorporation of Nαt‐butyloxycarbonyl‐S‐fluorenylmethylcysteine [Boc‐Cys(Fm)‐OH], generating a stable H‐Cys(Fm)‐peptide upon cleavage. In separate stages of these strategies, thioesters are established at the C‐termini by selective deprotection and coupling steps carried out while peptides remain bound to the supports. Pilot native chemical ligations were pursued directly on‐resin, as well as in solution after cleavage/purification.  相似文献   

11.
New Nx-Fmoc/But protected amino acids bearing half-EDTA side chains (CH2)nN(Ada-O-Bu1)2n= 1 (5), n= 2 ( 24 ), n= 3 ( 10 ), n= 4 ( 15 ) were prepared in satisfactory yields. These derivatives can be conveniently used in a solid-phase peptide synthesis as they are devoid of serious shortcomings of Boc/Bzl based syntheses of metallopeptides, such as preliminary peptide capping as well as undesired lactamization of 5 during the peptide synthesis.  相似文献   

12.
Cobalt(III) ammine complexes of the type cis-[CoL4(4-AMB)O-AA-Boc](CF3SO3)2, where L4= bisethylenediamine (en)2 or tetraammine (NH3)4, and 4-AMB = 4-(aminomethyl)benzoic acid, have been synthesized and used as linkers to polystyrene resins for solid-phase synthesis of protected peptides. Boc/t-Bu-protected [Leu5]enkephalin was assembled on the two different Co(III) resins, and then cleaved from the resins by reduction of the Co(III) center in 93–96%; yield. HPLC-purified protected [Leu5]enkephalin was obtained in 67–69% overall yield and characterized by amino acid analysis and 1H NMR. Stepwise synthesis on the Co(en)2-resin was also used in the assembly of Boc-Asp(OcHex)-Arg(Mts)-Gly-Asp(OcHex)-Ala-Pro-Lys(2Cl-Z)-Gly-OH, a sequence from collagen α1 Type 1. The protected peptide was cleaved from the Co(III) resin in 74% yield, and the HPLC-purified nonapeptide was characterized by amino acid analysis, 1H NMR and liquid secondary-ion mass spectrometry (LSIMS). New routes are described for the synthesis of isomerically pure Co(III) anchor complexes. The Co(III) resins were found to be compatible with both the tert-butyloxycarbonyl (Boc) and the 9-fluorenylmethoxycarbonyl (Fmoc) Nα-protecting group strategies used in solid-phase peptide synthesis.  相似文献   

13.
The flexible C-terminal region of the anaphylatoxic peptide C3a was reported to contain the receptor binding site. To elucidate the receptor binding conformation of the C-terminus, as well as to examine a synthetic approach to potential C3a-antagonists, 26 cyclic disulfide bridged C3a analogues were synthesized. Solid phase peptide synthesis was performed on different polymeric supports by individual peptide synthesis, with Fmoc strategy, and simultaneous multiple peptide synthesis, using Boc and Fmoc strategies. Both strategies gave open-chain peptides in comparable yields. Syntheses using the Boc strategy employed the HF-labile 4(methoxy)benzyl group (Mob) for β-thiol protection of cysteine; in contrast, the TFA-stable protecting groups, acetamidomethyl (Acm) and trityl (Trt), were chosen for syntheses employing Fmoc strategy. Ring closure reactions by iodine oxidation were carried out starting from protected (Acm/Acm, Trt/Acm) or unprotected dithiols. The resulting cyclic C3a analogues were characterized by HPLC, amino acid analysis, and FAB-MS. Conformational investigations using CD spectroscopy and theoretical structural investigations by means of molecular dynamics calculations revealed that slight variations in sequence result in pronounced conformational consequences. The potential of cyclic C3a analogues to activate or to desensitize guinea pig platelets, a standard test system for biological activities of anaphylatoxic peptides like C3a, revealed relatively low activities for cyclic peptides (<0.1% C3a activity). N-terminal acylation with cationic, arginine-rich sequences like YRRGR- led to amplified biological effects. Three of the synthesized peptides, namely CAALCLAR (P1), YRRGR°CGGLCLAR (P5) and YRRGRAhx°CGGLCLAR (P8), point in the direction of C3a antagonists.  相似文献   

14.
During the preparation of the NK-2 selective tachykinin antagonist MEN 10208 (Thr-Asp-Tyr-D-Trp-Val-D-Trp-D-Trp-Arg-NH2) and its analogs by the solid-phase method employing the Boc strategy routinely used in our laboratory, we encountered difficulties in the coupling of hydrophobic amino acids D-Trp and Val. To study the coupling problems several syntheses of MEN 10208 and analogs were carried out with different activation strategies. These syntheses yielded considerable amounts of deletion sequences even though a negative Kaiser test was obtained after each coupling. Inaccessibility of the free amino group of the growing peptide due to steric hindrance of the hydrophobic residues during coupling, and for the ninhydrin complex during the Kaiser test, may account, at least in part, for the unsatisfactory synthetics results and for the false-negative ninhydrin tests. Repetition of each synthesis with the Fmoc strategy on a newly developed DOD resin for peptide amides using the DCC/HOBt chemistry gave superior results in terms of the yield and purity of the crude peptides. Therefore, the Fmoc strategy appears to offer advantages over the Boc method for the preparation of these peptides containing hydrophobic amino acids.  相似文献   

15.
Under the normal conditions of acidolytic cleavage/deprotection of tris(a1koxy)benzylamide (PAL) anchoring linkages in Fmoc solid-phase peptide synthesis (SPPS), product release occurs by a straightforward single-step pathway. A recently reported cleavage of the NH-VH bond of an amino acyl residue adjacent to PAL [see Int. J. Peptide Protein Res. 38 , 146–153 (1991)] could not be confirmed in novel experiments incorporating a double “internal reference” amino acid (IRAA) design. The results of the present work revalidate the widely accepted application of IRAAs to monitor yields in SPPS, and confirm the reliability of PAL methodology for the preparation of C-terminal peptide amides.  相似文献   

16.
Abstract: In an attempt to identify potential peptide‐based affinity labels for opioid receptors, endomorphin‐2 (Tyr‐Pro‐Phe‐PheNH2), a potent and selective endogenous ligand for µ‐opioid receptors, was chosen as the parent peptide for modification. The tetrapeptide analogs were prepared using standard Fmoc‐solid phase peptide synthesis in conjunction with incorporation of Fmoc‐Phe(p‐NHAlloc) and modification of the p‐amino group. The electrophilic groups isothiocyanate and bromoacetamide were introduced into the para position on either Phe3 or Phe4; the corresponding free amine‐containing peptides were also prepared for comparison. The peptides bearing an affinity label group and their free amine analogs were evaluated in a radioligand‐binding assay using Chinese hamster ovary (CHO) cells expressing µ‐ and δ‐opioid receptors. Modification on Phe4 was better tolerated than on Phe3 for µ‐receptor binding. Among the analogs tested, [Phe(p‐NH2)4]endomorphin‐2 showed the highest affinity (IC50 = 37 nm ) for µ‐receptors. The Phe(p‐NHCOCH2Br)4 analog displayed the highest µ‐receptor affinity (IC50 = 158 nm ) among the peptides containing an affinity label group. Most of the compounds exhibited negligible binding affinity for δ‐receptors, similar to the parent peptide.  相似文献   

17.
Abstract: Protected Nα‐(aminoallyloxycarbonyl) and Nα‐(carboxyallyl) derivatives of all natural amino acids (except proline), and their chiral inverters, were synthesized using facile and efficient methods and were then used in the synthesis of Nα‐backbone cyclic peptides. Synthetic pathways for the preparation of the amino acid building units included alkylation, reductive amination and Michael addition using alkylhalides, aldehydes and α,β‐unsaturated carbonyl compounds, and the corresponding amino acids. The resulting amino acid prounits were then subjected to Fmoc protection affording optically pure amino acid building units. The appropriate synthetic pathway for each amino acid was chosen according to the nature of the side‐chain, resulting in fully orthogonal trifunctional building units for the solid‐phase peptide synthesis of small cyclic analogs of peptide loops (SCAPLs?). Nα‐amino groups of building units were protected by Fmoc, functional side‐chains were protected by t‐Bu/Boc/Trt and N‐alkylamino or N‐alkylcarboxyl were protected by Alloc or Allyl, respectively. This facile method allows easy production of a large variety of amino acid building units in a short time, and is successfully employed in combinatorial chemistry as well as in large‐scale solid‐phase peptide synthesis. These building units have significant advantage in the synthesis of peptido‐related drugs.  相似文献   

18.
Abstract: A simple, efficient and stereospecific approach for the homologation of urethane‐protected α‐amino acids to β‐amino acids by the Arndt–Eistert method employing Fmoc‐/Boc‐α‐amino acid and 2‐(1H‐benzotriazole‐1‐yl)‐1,1,3,3‐tetramethyl‐uronium hexafluorophosphate mixture for the acylation of diazomethane synthesizing the key intermediates Fmoc‐/Boc‐α‐aminodiazomethanes as crystalline solids is described.  相似文献   

19.
The synthesis and isolation of symmetrical anhydrides of Nα-9-fluorenylmethyloxycarbonyl (Fmoc) amino acids using water soluble carbodiimide is described. These compounds were used in a solid phase peptide synthesis of methionine-enkephalin on a p-benzyloxybenzyl ester polystyrene 1% divinylbenzene resin support. Homogeneous free pentapeptide was obtained in 42% overall yield. The Fmoc amino acid symmetrical anhydrides were stable during prolonged storage (2 years at 0°) and offer advantages over present “Fmoc solid phase” methods which use anhydrides formed in situ.  相似文献   

20.
Iie3-amaninamide (3-R) and its diastereomeric sulfoxide (3-S) are obtained by oxidation of the bicyclic thioether peptide 2 by hydrogen peroxide in acetic acid. 2 was prepared by an intramolecular Savige-Fontana reaction of the linear octapeptide tert.-butylester 4 whose N-terminal Boc-Hpi residue on treatment with TFA loses the Boc group and reacts under thioether formation with the released cysteine-SH. The concomitantly deprotected carboxyl terminus is coupled intramolecularly with the free amino group of the secocompound 5 using the MA or DCCI method, thus forming the homodetic peptide ring. Compounds 3-R and 3-S agree very well with analog samples in chiroptical behavior. Thioether 2 and sulfoxide 3-R exert 50% inhibition of RNA polymerase II (or B) from Drosophila melanogaster in 10–6 M solution whereas Ki of 3-S is about five times higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号