首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations of the epidermal growth factor receptor (EGFR) gene are common in some forms of cancer and the most frequent is a deletion of exons 2-7. We have previously shown that this mutant receptor, called DeltaEGFR, confers enhanced tumorigenicity to glioblastoma cells through elevated proliferation and reduced apoptotic rates of the tumor cells in vivo. To understand the molecular mechanisms that underlie DeltaEGFR-enhanced proliferation, we examined the gene products that control cell cycle progression. We found that levels of the cyclin-dependent kinase (CDK) inhibitor, p27, were lower in U87MG.DeltaEGFR tumors than in parental U87MG or control U87MG.DK tumors. Consequently, CDK2-cyclin A activity was also elevated, concomitant with the RB protein hyperphosphorylation. In addition, activated phosphatidylinositol 3-kinase (PI3-K) and phosphorylated Akt levels were also elevated in the U87MG.DeltaEGFR tumors. U87MG.DeltaEGFR cells failed to arrest in G(1) in response to serum starvation in vitro and while maintaining high levels of PI3-K activity and hyperphosphorylated RB. Treatment of U87MG.DeltaEGFR cells with LY294002, a PI3-K inhibitor, caused reduced levels of phosphorylated Akt and concomitantly up-regulated levels of p27. Expression of a kinase dead dominant-negative Akt mutant in the U87MG.DeltaEGFR cells similarly resulted in up-regulation of p27 and down-regulation of tumorigenicity in vivo. These results suggest that the constitutively active DeltaEGFR can enhance cell proliferation in part by down-regulation of p27 through activation of the PI3-K/Akt pathway. This pathway may represent another therapeutic target for treatment of those aggressive glioblastomas expressing DeltaEGFR.  相似文献   

2.
3.
4.
Survivin, a member of the inhibitor of apoptosis protein family, is widely expressed in a variety of human cancer tissues. Survivin inhibits activation of caspases, and its overexpression can lead to resistance to apoptotic stimuli. In this study, survivin protein expression was assessed by immunohistochemical staining of 195 invasive breast cancer specimens. Overall, 79.5% of the tumors were positive for survivin. The expression of epidermal growth factor receptor (EGFR) family, human epidermal growth factor receptor 2 (HER2) and EGFR, was also examined in 53 cases, and consequently, it was indicated that survivin positivity might be correlated with the coexpression of HER2 and EGFR. To clarify the regulatory mechanism of survivin expression in breast cancer cells, the effect of HER2 and/or EGFR expression on the survivin levels was examined. It was revealed that the survivin protein level was up-regulated by the coexpression of HER2 and EGFR, leading to the increased resistance against etoposide-induced apoptosis in breast cancer cells. Conversely, survivin levels and apoptosis resistance were decreased when cells were treated with HER2-specific inhibitor, Herceptin. Although Herceptin could down-regulate both phosphatidylinositol 3-kinase (PI3K)/AKT signal and mitogen-activated protein/extracellular signal-related kinase (ERK) kinase 1 (MEK1)/ERK signal in HER2-positive breast cancer cells, PI3K-specific inhibitor but not MEK1-specific inhibitor could decrease the survivin levels. The present study clarified the regulatory mechanism of HER2 in the expression of survivin protein in breast cancer cells.  相似文献   

5.
In de novo glioblastoma multiforme, loss of the tumour suppressor protein PTEN can coincide with the expression of a naturally occurring mutant epidermal growth factor receptor known as deltaEGFR. DeltaEGFR signals constitutively via the phosphatidylinositol 3-kinase (PI3K)/protein kinase Akt and mitogen-activated protein kinase pathways. In human U87MG glioblastoma cells that lack PTEN, deltaEGFR expression enhances tumourigenicity by increasing cellular proliferation. Inhibition of PI3K signaling with the pharmacologic inhibitor wortmannin, or by the reconstitution of physiological levels of PTEN to dephosphorylate the lipid products of PI3K, negated the growth advantage imparted by deltaEGFR on U87MG cells. PTEN reconstitution suppressed the elevated PI3K signaling, without affecting mitogen-activated protein kinase signaling and caused a delay in G1 cell cycle progression that was concomitant with increased cyclin-dependent protein kinase inhibitor p21CIP1/WAF1 protein levels. Our study provides insight into the mechanism by which deltaEGFR may contribute to glioblastoma development.  相似文献   

6.
Zhang D  Brodt P 《Oncogene》2003,22(7):974-982
The membrane type 1 matrix metalloproteinase (MT1-MMP) has been identified as a major activator of MMP-2 - a process involving the formation of a trimolecular complex with TIMP-2. We previously identified the IGF-I receptor as a positive regulator of MMP-2 synthesis. Here, we investigated the role of IGF-IR in the regulation of MT1-MMP. Highly invasive Lewis lung carcinoma subline H-59 cells express MT1-MMP and utilize it to activate their major extracellular matrix degrading proteinase-MMP-2. These cells were transiently transfected with a plasmid vector expressing a luciferase reporter gene downstream of the mouse MT1-MMP promoter. IGF-I treatment increased luciferase activity in the transfected cells by up to 10-fold and augmented endogenous MT1-MMP mRNA and protein synthesis by up to 2-3-fold, relative to controls. MT1-MMP induction and invasion were blocked by the PI 3-kinase inhibitors LY294002 and wortmannin and by rapamycin, but not by the MEK inhibitor PD98059. Overexpression of a dominant negative Akt mutant or of the tumor suppressor phosphatase and tensin homologue, PTEN, in these cells also caused a significant reduction in MT1-MMP expression and invasion. The results demonstrate that IGF-IR controls tumor cell invasion by coordinately regulating MMP-2 expression and its MT1-MMP-mediated activation and identify PI 3-kinase/Akt/mTOR signaling as critical to this regulation.  相似文献   

7.
Mutational activation of the K-Ras oncogene is well established as a key genetic step in the development and growth of pancreatic adenocarcinomas. However, the mechanism by which aberrant Ras signaling promotes uncontrolled pancreatic tumor cell growth remains to be fully elucidated. The recent use of primary human cells to study Ras-mediated oncogenesis provides important model cell systems to dissect this mechanism. We have used a model of telomerase-immortalized human pancreatic duct-derived cells (E6/E7/st) to study mechanisms of Ras growth transformation. First, we found that human papillomavirus E6 and E7 oncogenes, which block the function of the p53 and Rb tumor suppressors, respectively, and SV40 small t antigen were required to allow mutant K-Ras(12D) growth transformation. Second, K-Ras(12D) caused growth transformation in vitro, including enhanced growth rate and loss of density dependency for growth, anchorage independence, and invasion through reconstituted basement membrane proteins, and tumorigenic transformation in vivo. Third, we determined that the Raf, phosphatidylinositol 3-kinase (PI3K), and Ral guanine nucleotide exchange factor effector pathways were activated, although extracellular signal-regulated kinase (ERK) activity was not up-regulated persistently. Finally, pharmacologic inhibition of Raf/mitogen-activated protein kinase/ERK and PI3K signaling impaired K-Ras-induced anchorage-independent growth and invasion. In summary, our studies established, characterized, and validated E6/E7/st cells for the study of Ras-induced oncogenesis.  相似文献   

8.
目的:探究PTPRJ基因表达对前列腺癌DU145细胞黏附、迁移和侵袭的影响以及可能的调控机制。方法:实时荧光定量PCR、Western blot检测PTPRJ在前列腺肿瘤组织和细胞系中的表达;用携带PTPRJ特异shRNA的重组慢病毒(LV-shPTPRJ)感染沉默PTPRJ表达;MTT检测细胞黏附力,Transwell检测细胞迁移和侵袭;实时荧光定量PCR、Western blot检测信号通路分子mRNA和蛋白表达。结果:与正常前列腺组织和细胞相比,PTPRJ在前列腺肿瘤组织和PC-3、DU145细胞系中表达升高(P<0.05);与对照组相比,沉默PTPRJ后前列腺癌DU145细胞黏附、迁移和侵袭能力显著下降(P<0.01)、信号通路蛋白pY418Src、p-PI3K和p-Akt表达水平均显著降低(P<0.05);SC79激活PI3K/Akt可逆转PTPRJ下调对DU145细胞黏附和侵袭的影响;沉默PTPRJ下调裸鼠瘤体组织中pY418Src、p-PI3K和p-Akt表达(P<0.05)。结论:PTPRJ可能通过激活Src/PI3K/Akt信号通路来促进DU145细胞的黏附、迁移和侵袭,预示PTPRJ可能成为前列腺癌治疗的潜在靶点。  相似文献   

9.
10.
Glypican-3 (GPC3) is a proteoglycan involved in proliferation and cell survival. Several reports demonstrated that GPC3 is downregulated in some tumors, such as breast cancer. Previously, we determined that GPC3 reexpression in the murine mammary adenocarcinoma LM3 cells induced an impairment of their invasive and metastatic capacities, associated with a decrease of their motility and an increase of their cell death. We demonstrated that GPC3 inhibits canonical Wnt signaling, as well as it activates non canonical pathway. Now, we identified signaling pathways responsible for the pro-apoptotic role of GPC3 in LM3 cells. We found for the first time that GPC3 inhibits the PI3K/Akt anti-apoptotic pathway while it stimulates the p38MAPK stress-activated one. We report a concomitant modulation of CDK inhibitors as well as of pro- and anti-apoptotic molecules. Our results provide new clues regarding the mechanism involved in the modulation induced by GPC3 of mammary tumor cell growth and survival.  相似文献   

11.
Li M  Ng SS  Wang J  Lai L  Leung SY  Franco M  Peng Y  He ML  Kung HF  Lin MC 《Cancer research》2006,66(3):1583-1590
EFA6A, or Pleckstrin and Sec7 domain protein, is a member of guanine nucleotide exchange factors for ADP ribosylation factor 6 (ARF6). Whereas EFA6A is specifically expressed in the brain, little is known about its function in glial cells or glioma. Here we show that elevated EFA6A expression is detectable in both low-grade and high-grade human glioma tissues samples. To investigate the role of EFA6A in glioma carcinogenesis, we generated a human glioblastoma cell line which conditionally overexpresses EFA6A (U373-EFA6A). We showed that overexpression of EFA6A had no effect on cell proliferation, apoptosis, or cell cycle control. However, as shown by wound healing and in vitro cell invasion assays, it significantly enhanced the cell motility and invasiveness whereas silencing EFA6A by its dominant negative mutant EFA6A(E242K) produced opposite effects. We further showed that ARF6/extracellular signal-regulated kinase (ERK) signaling is required for the EFA6A-mediated cell invasion because both EFA6A(E242K) and ARF6 dominant negative mutant ARF6(T27N) markedly reduced the phosphorylated ERK level and EFA6A-mediated invasive capacity. Consistently, mitogen-activated protein kinase/ERK kinase inhibitor U0126 could abolish the EFA6A-induced cell invasion. These results suggest for the first time a potential role of EFA6A/ARF6/ERK signal cascade in glioma cell migration and invasion.  相似文献   

12.
13.
目的:探讨连接蛋白43(connexin 43,Cx43)对膀胱癌细胞侵袭能力的影响及其可能的作用机制。方法: 选取2014年6月至2015年9月间承德医学院附属医院泌尿外科52例膀胱癌手术组织标本及32例癌旁组织,以及人膀胱癌细胞株5637。用免疫组化方法检测膀胱癌组织中Cx43蛋白表达。将Cx43脂质体、空白脂质体、siRNA及siRNA对照质粒转染5637细胞,Western blotting验证过Cx43表达和干扰效果;用Transwell侵袭实验检测5637细胞侵袭能力的变化,用Western blotting检测5637细胞MMP-2、MMP-9和P-P38蛋白表达水平的变化。结果: 膀胱癌组织中Cx43蛋白的表达水平明显高于癌旁组织\[(5.21±0.33) vs(2.84±0.19),P<0.01\]。转染Cx43脂质体和siRNA成功上调/下调5637细胞中Cx43的表达。Cx43过表达组5637细胞的侵袭能力高于对照组\[穿膜细胞数:(1.36±0.04) vs (0.70±0.15)个,P<0.01\], siRNA干扰组细胞的侵袭能力低于对照组\[穿膜细胞数:(0.20±0.08) vs (0.59±0.13)个,P<0.05)。Cx43过表达组细胞MMP-2、MMP-9、P-P38/P38蛋白水平均高于对照组(P<0.01或P<0.05),siRNA干扰组均低于对照组低(均P<0.01)。结论: Cx43增强膀胱癌5637细胞的侵袭能力,其机制可能是通过激活P38/MAPK信号途径实现的。  相似文献   

14.
Activation of the epidermal growth factor (EGF) receptor regulates many processes associated with metastasis, including modulation of cell:cell and cell:substrate interactions, production of matrix-degrading proteinases, and cellular migration. We have demonstrated previously that EGF stimulates migration and matrix metalloproteinase (MMP)-9-dependent invasion of ovarian cancer cells. In this study, we compare the roles of EGF-induced phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) activities in regulation of cellular responses associated with ovarian tumor cell metastasis. Inhibition of PI3K and MAPK activity impairs EGF-stimulated cell migration, in vitro invasion, and MMP-9 production. PI3K activity is not required for growth factor disruption of cell:cell junctions, whereas inhibitors of extracellular signal-regulated kinase (ERK)1/ERK2 activation and p38 MAPK activity block EGF-dependent junction dissolution. EGF promotes pro-MMP-9 binding to the cell surface through a mechanism that is independent of extracellular enzyme concentration. Interestingly, inhibition of PI3K activity abolishes EGF-induced cell surface association of pro-MMP-9, whereas inhibitors of MAPKs only partially block the response. These data suggest that EGF receptor activation promotes a PI3K-dependent induction of a cell surface pro-MMP-9 binding component that may facilitate gelatinase-mediated cellular invasion and supports an expanded role for elevated PI3K activity in cellular responses associated with ovarian tumor metastasis. In addition, our findings support the hypothesis that divergent kinase activities regulate distinct cellular events associated with growth factor-induced invasion of ovarian cancer cells.  相似文献   

15.
Chen Y  Li X  Eswarakumar VP  Seger R  Lonai P 《Oncogene》2000,19(33):3750-3756
The role of FGF signaling in early epithelial differentiation was investigated in ES (embryonic stem) cell derived embryoid bodies. A dominant negative fibroblast growth factor receptor (FGFR) mutation was created by stably introducing into ES cells an Fgfr2 cDNA, truncated in its enzymatic domains. These cells failed to differentiate into cystic embryoid bodies. No epithelial differentiation and cavitation morphogenesis could be observed, in the mutant, although its rate of cell proliferation remained unchanged. This phenotype was associated with a significant decrease in the activation of Akt/PKB and PLCgamma-1, as compared to the wild type, while the activation of MAPK/Erk was less affected. Requirement for PI 3-kinase signaling in embryoid body differentiation was demonstrated by specific inhibitors. Akt/PKB activation was abrogated by wortmannin in short-term experiments. In long-term cultures Ly294002 inhibited the differentiation of ES cells into embryoid bodies. Our data demonstrate that for early epithelial differentiation FGF signaling is required through the PI 3-kinase-Akt/ PKB pathway.  相似文献   

16.
17.
In this study we have investigated the effects of low dose ionizing radiation (2 Gy) on p70 S6 kinase and Akt signaling with respect to Erb-B receptors in both the A431 squamous and the MDA-MB-231 mammary carcinoma cell lines. Ionizing radiation caused a 2-3-fold increase in p70 S6 kinase activity that was blocked pharmacologically using an EGFR inhibitor (AG1478) alone, or in combination with an Erb-B2 inhibitor (AG825). These results suggested that both EGFR and Erb-B2 receptors could initiate radiation-induced activation of p70 S6K. EGFR dependent Erb-B3 signaling also contributed to p70 S6 kinase activity through recruitment and activation of PI3K, which has been shown to regulate p70 S6 kinase activity. Furthermore, inhibition of the EGFR blocked IR stimulated increases in protein translation, a biologic consequence of p70 S6 kinase activation. We also report that ionizing radiation stimulated Akt activity that was partially independent of PI3K activity, but dependent on Erb-B2 function. Erb-B2 inhibition also correlated with enhanced apoptosis following IR exposure, suggesting an important role for Erb-B2 in cell survival. Together this work demonstrates that the Erb-B receptor tyrosine kinase network stimulates cytoprotective p70 S6 kinase and Akt activity in response to clinically relevant doses of ionizing radiation.  相似文献   

18.
Semaphorin 3B (SEMA3B), located at 3p21.3, is a secreted member of the semaphorin family important in axonal guidance. SEMA3B undergoes allele and expression loss in lung and breast cancer and can function as a tumor suppressor. Previously, we found that SEMA3B induces apoptosis in tumor cells either by reexpression or when applied as a soluble ligand. SEMA3B-induced apoptosis was mediated, in part, by blocking vascular endothelial growth factor autocrine activity in tumor cells. In the current study, treatment of lung and breast cancer cells with picomolar concentrations of soluble SEMA3B inhibited their growth; induced apoptosis; and was associated with decreased Akt phosphorylation, increase in cytochrome c release and caspase-3 cleavage, as well as increased phosphorylation of several proapoptotic proteins, including glycogen synthase kinase-3beta, FKHR, and MDM-2. Lung and breast cancer lines resistant to SEMA3B did not show these signaling changes and a tumor-derived missense SEMA3B mutant was inactive in this regard, providing specificity. SEMA3B-mediated inhibition of proliferation and induction of apoptosis in cancer cells were blocked by expressing a constitutively active Akt mutant and are linked to tumor cell expression of neuropilin-1 (Np-1). SEMA3B-insensitive Np-1-negative tumor cells acquired sensitivity to SEMA3B after forced expression of Np-1, whereas SEMA3B-sensitive Np-1-positive tumor cells lost sensitivity to SEMA3B after knockdown of Np-1 by small interfering RNA. We conclude that SEMA3B is a potential tumor suppressor that induces apoptosis in SEMA3B-inactivated tumor cells through the Np-1 receptor by inactivating the Akt signaling pathway. CA118384  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号