首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
To further define the operational boundaries on fast inhibition in neocortex, whole cell recordings were made from layer V pyramidal neurons in neocortical slices to evaluate evoked inhibitory postsynaptic currents (IPSCs) and spontaneous miniature IPSCs (mIPSCs). Stimulating electrodes were placed in layers VI and I/II to determine whether simultaneous stimulation of deep and superficial laminae could extend the magnitude of maximal IPSCs evoked by deep-layer stimulation alone. The addition of superficial-layer stimulation did not increase maximal IPSC amplitude, confirming the strict limit on fast inhibition. Spontaneous miniature IPSCs were recorded in the presence of tetrodotoxin. The frequency of spontaneous mIPSCs ranged from 10.0 to 33.1 Hz. mIPSC amplitude varied considerably, with a range of 5. 0-128.2 pA and a mean value of 20.7+/-4.1 pA (n = 12 cells). The decay phase of miniature IPSCs was best fit by a single exponential, similar to evoked IPSCs. The mean time constant of decay was 6.4+/-0.6 ms, with a range of 0.2-20.1 ms. The mean 10-90% rise time was 1.9+/-0.2 ms, ranging from 0.2 to 6.3 ms. Evaluation of mIPSC kinetics revealed no evidence of dendritic filtering. Amplitude histograms of mIPSCs exhibited skewed distributions with several discernable peaks that, when fit with Gaussian curves, appeared to be spaced equidistantly, suggesting that mIPSC amplitudes varied quantally. The mean separation of Gaussian peaks ranged from 6.1 to 7.8 pA. The quantal distributions did not appear to be artifacts of noise. Exposure to saline containing low Ca(2+) and high Mg(2+) concentrations reduced the number of histogram peaks, but did not affect the quantal size. Mean mIPSC amplitude and quantal size varied with cell holding potential in a near-linear manner. Statistical evaluation of amplitude histograms verified the multimodality of mIPSC amplitude distributions and corroborated the equidistant spacing of peaks. Comparison of mIPSC values with published data from single GABA channel recordings suggests that the mean mIPSC conductance corresponds to the activation of 10-20 GABA(A) receptor channels, and that the release of a single inhibitory quantum opens 3-6 channels. Further comparison of mIPSCs with evoked inhibitory events suggests that a single interneuron may form, on average, 4-12 functional synapses with a pyramidal cell, and that 10-12 individual interneurons are engaged during recruitment of maximal population IPSCs. This suggests that inhibitory circuits are much more restricted in both the size of the unit events and effective number of connections when compared with excitatory inputs.  相似文献   

2.
Retinal amacrine cells have abundant dendro-dendritic synapses between neighboring amacrine cells. Therefore an amacrine cell has both presynaptic and postsynaptic aspects. To understand these synaptic interactions in the amacrine cell, we recorded from amacrine cells in the goldfish retinal slice preparation with perforated- and whole cell-patch clamp techniques. As the presynaptic element, 19% of the cells recorded (15 of 78 cells) showed spontaneous tetrodotoxin (TTX)-sensitive action potentials. As the postsynaptic element, all amacrine cells (n = 9) were found to have GABA-evoked responses and, under perforated patch clamp, 50 microM GABA hyperpolarized amacrine cells by activating a Cl(-) conductance. Bicuculline-sensitive spontaneous postsynaptic currents, carried by Cl(-), were observed in 82% of the cells (64 of 78 cells). Since the source of GABA in the inner plexiform layer is amacrine cells alone, these events are likely to be inhibitory postsynaptic currents (IPSCs) caused by GABA spontaneously released from neighboring amacrine cells. IPSCs were classified into three groups. Large amplitude IPSCs were suppressed by TTX (1 microM), indicating that presynaptic action potentials triggered GABA release. Medium amplitude IPSCs were also TTX sensitive. Small amplitude IPSCs were TTX insensitive (miniature IPSCs; n = 26). All of spike-induced, medium amplitude, and miniature IPSCs were Ca(2+) dependent and blocked by Co(2+). Blocking of glutamatergic inputs by DL-2-amino-phosphonoheptanoate (AP7; 30 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 2 microM) had almost no effect on spontaneous GABA release from presynaptic amacrine cells. We suggest that these dendro-dendrotic inhibitory networks contribute to receptive field spatiotemporal properties.  相似文献   

3.
1. gamma-Aminobutyric acid (GABA) (10-500 microM) was applied to cultured chick cerebral neurons by pressure ejection, and the resulting currents (IGABA) were recorded using standard whole-cell voltage-clamp techniques. Plots of the peak IGABA as a function of membrane potential were nonlinear with an outwardly rectifying appearance. 2. IGABA decayed during a prolonged application of GABA. This decay was associated with a decline in the conductance of the cell, suggesting that the decline in IGABA was principally due to receptor desensitization. 3. After 5-7 days in culture, whole-cell recordings revealed the presence of spontaneous synaptic currents. These currents were presumed to be GABA-gated inhibitory postsynaptic currents (IPSCs) because they reversed at the Cl- equilibrium potential (ECl-), were blocked by picrotoxin (25 microM), and were prolonged by pentobarbital (50 microM). 4. Synaptic currents were analyzed by fitting exponential functions to their decay. In normal recording saline, 68% of the decays analyzed could be adequately described by a single exponential function. Two exponentials were necessary to describe the decay of the other 32%. The time constant of the decay (for those adequately fitted by a single exponential) increased with depolarization, from an average value of 15 ms at -80 mV to 60 ms at +40 mV. 5. A relationship was noted between IPSC amplitude and decay time constant; IPSCs with larger peak amplitudes had a slower decay. One possible explanation considered for this finding was that transmitter persists in the synaptic cleft and rebinds to the receptors, thus prolonging the decay of the IPSC. 6. Consistent with the above hypothesis was the observation that the decays of miniature IPCSs (examined under conditions of reduced transmitter release) were faster, showed less variability, and were all adequately described by a single exponential function. Furthermore, the decay times were independent of the membrane potential, suggesting that the kinetic parameters of the GABA channel which shape the decay of these miniature IPSCs are independent of voltage. 7. Single-channel activity underlying whole-cell GABA responses could be recorded in isolated outside-out and inside-out patches of membrane. In isotonic choline chloride, single-channel amplitudes were linearly related to voltage and reversed at -1.8 +/- 11.0 mV (n = 12). Under these conditions, the channel had a main conductance state of 20.8 +/- 3.4 pS (n = 12). Transitions were observed from this main conductance state to other conductance states, e.g., two subconductance states of 6 and 12 pS and one supraconductance state of 30 pS.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. The effect of the lectin wheat germ agglutinin (WGA), an inhibitor of ionotropic quisqualate receptor desensitization, on both evoked and spontaneous fast excitatory postsynaptic events was examined in cultured postnatal rat hippocampal neurons with the use of whole cell recordings. 2. WGA, at 580 nM, potentiated evoked fast excitatory postsynaptic currents (EPSCs) by increasing the amplitudes by 100 +/- 27% (mean +/- SE) and the time constant of decay from 5.8 +/- 0.6 to 7.9 +/- 0.5 ms. The increases in these parameters were not accompanied by changes in the current-voltage (I-V) relationship or pharmacological profile of the fast EPSCs. 3. WGA did not alter the amplitude or time course of decay of inhibitory postsynaptic currents (IPSCs), and it did not alter neuronal input resistance or action potentials. 4. WGA increased the amplitude of spontaneous fast miniature EPSCs (MEPSCs), defined as spontaneous EPSCs recorded in the presence of tetrodotoxin, by 53 +/- 11% and increased the time required to decay to 50% of the peak amplitude by 48 +/- 23%. These changes were not associated with a change in the rate of MEPSC occurrence. 5. These results suggest that WGA augments hippocampal excitatory postsynaptic events via a postsynaptic mechanism. The results further imply that ionotropic quisqualate receptor desensitization can modulate the amplitude and time course of decay of fast excitatory synaptic events. Thus desensitization may be one factor that regulates fast excitatory synaptic transmission.  相似文献   

5.
The aim of this study was to identify the conductance change induced by one quantum of gamma-aminobutyric acid from axonal release sites on cultured superior colliculus neurons. Unitary (single cell-activated) inhibitory postsynaptic currents and spontaneous synaptic activity were recorded with patch clamp techniques in the whole cell configuration while superfusing the entire neuron with normal saline. Miniature inhibitory postsynaptic currents were recorded in the presence of tetrodotoxin and in reduced [Ca2+]o/[Mg2+]o. In addition, the membrane area contributing to synaptic activity was limited to a narrow window of 50 microns. Smaller neurons were chosen for recording to render a standard deviation of the "instrumental" noise of less than 1.5 pA at a holding voltage of -80 mV. After two weeks in vitro, the percentage of synaptically connected tectal neurons exceeded 50%. At holding voltages of -80 mV (Cl- equilibrium potential -12 mV) minimal amplitudes of unitary inhibitory postsynaptic currents were as low as 7-10 pA, while maximal amplitudes exceeded 500 pA. The mean time to peak and time constant of decay were 3.0 and 34.4 ms, respectively (n = 31). Fluctuating unitary inhibitory postsynaptic currents were deemed to be compound postsynaptic responses. Multiple Gaussian equations could be fitted to the amplitude histograms of unitary postsynaptic currents. This procedure rendered a quantal size between 5.0 and 10.9 pA (mean 7.1 pA; S.D. 1.78 pA) in five neurons from mature cultures. The amplitudes of statistically determined quantal inhibitory postsynaptic currents were slightly smaller than the independent estimate from somatic miniature inhibitory postsynaptic currents. The latter had a mean amplitude of 9.1 pA (S.D. 3.3 pA, n = 23), a mean time to peak of 1.65 ms (n = 9), and a mean time constant of decay of 16.2 ms (n = 9). Single channel recording from outside-out patches showed three to four main conductance states ranging from 9 to 22 pS. Single channel closures at the 21-24 pS level were occasionally observed during relaxation of miniature currents. The small size of whole cell quantal inhibitory postsynaptic currents and somatic miniature currents indicates that one GABA quantum opened only 5-15 single Cl- channels.  相似文献   

6.
GABA(A) receptor-mediated Cl(-) currents were evoked by rapid and short (0.75-1.5 ms), focal iontophoretic applications of GABA to proximal dendrites of cultured striatal neurones. The mean amplitude (232 +/- 21.0 pA) was in the range of large miniature inhibitory postsynaptic currents (mIPSCs), while the 10-90% rise times (3.4 +/- 0.20 ms) and the time constants of decay (60.0 +/- 8.4 ms) were three times slower. Responses to paired-pulse application of GABA at inter-pulse intervals (IPIs) of 30, 100 and 300 ms showed no depression of the second response (R2) relative to the first (R1). At short IPIs, at which R1 and R2 showed temporal summation, the net amplitude of R2 (R2(net)) was partially occluded. Lowering the iontophoretic intensity during paired-pulse application at an IPI of 30 ms reduced R1 by 69.5 +/- 3.3%, while occlusion of R2(net) decreased significantly, indicating that the receptor occupancy had been lowered. During the course of ten pulses of GABA at 10 Hz, responses declined by 8.7 +/- 3.9%, which probably reflects slow cumulative desensitization. In conclusion, rapid focal iontophoresis of exogenous GABA onto GABA(A) receptors does not result in activity-dependent depression of the postsynaptic response. This result suggests that fast desensitization is unlikely to occur during repetitive GABA(A) receptor-mediated synaptic transmission in striatal neurones.  相似文献   

7.
Robust GABA-mediated inhibitory postsynaptic currents (IPSCs) in neurons of the thalamic relay (TC) nuclei are important in sustaining oscillatory activity within thalamic and thalamocortical circuits. The biophysical properties and pharmacological sensitivities of these IPSCs both depend on the subunit combination of postsynaptic gamma-aminobutyric acid-A (GABA(A)) receptors. Recombinant GABA(A) receptors containing the delta subunit (heavily expressed in TC nuclei) have been shown to exhibit slowed desensitization rates and high affinity for GABA in heterologous expression systems. We tested whether the GABA(A)-mediated synaptic inhibition in TC neurons would be affected by loss of the delta subunit. Spontaneous and evoked IPSCs were recorded from neurons in the ventral basal complex (VB) of the thalamus from brain slices of wild-type (delta(+/+)) and homozygous delta subunit deficient mice (delta(-/-)). Spontaneous IPSCs (sIPSCs) from delta(-/-) mice had no significant differences in amplitude, duration, or frequency compared with their delta(+/+) counterparts. However, baseline noise (63% of control) and the relative contribution of the slow component to overall decay (79% of control) were significantly lower in delta(-/-) VB recordings. Evoked IPSCs (eIPSCs) in delta(-/-) neurons showed no difference in peak amplitude, but had an accelerated slow decay component (40- vs. 55-ms time constant). We further tested whether neurosteroid modulation of GABA(A) receptors was dependent on the presence of the delta subunit, as previously reported in recombinant systems. Pregnenolone sulfate (PS) significantly reduced eIPSC peak amplitude (-30%) and increased duration in delta(-/-), but not in delta(+/+) mice. sIPSCs were not affected in any neurons, delta(-/-) or delta(+/+). In contrast, 3-alpha,5-alpha-tetrahydrodeoxycorticosterone (THDOC) increased the durations of eIPSCs and sIPSCs in both delta(-/-) and delta(+/+) VB neurons. Our findings show that although the delta subunit confers a striking PS insensitivity to eIPSCs in VB neurons, it plays only a minor role in the synaptic inhibition of VB neurons. This suggests delta subunit containing GABA(A) receptors may be functionally limited to an extrasynaptic locus in VB neurons.  相似文献   

8.
1. The magnitude and kinetics of inhibitory postsynaptic currents (IPSCs) evoked in the goldfish Mauthner (M-) cell by intracellular stimulation of identified presynaptic interneurons (unitary responses) and by activation of the recurrent collateral network were determined with single-and double electrode voltage-clamp techniques. 2. The peak magnitude of the inhibitory conductance changes were 5610 +/- 4800 nS (mean +/- SD; n = 13) for the collateral response, and 144 +/- 44 nS (n = 7) for the unitary IPSCs. These synaptic conductances, which are due to the opening of Cl- channels, were independent of the degree of Cl- -loading of the M-cell. 3. The peak amplitude of the collateral inhibitory postsynaptic potential (IPSP) was a constant fraction (0.52 +/- 0.06) of the driving force, which was determined from current-voltage plots for both types of IPSCs and ranged from 10 to 37 mV. These findings confirm indirect measurements from previous current-clamp studies and validate the normalization procedure used to previously calculate synaptic conductances from IPSP amplitudes, a method that therefore may be applicable to other central neurons. 4. At the resting membrane potential, the rise time of the unitary IPSCs was 0.34 +/- 0.07 ms (n = 18), whereas their decay was exponential, with a time constant of 5.7 +/- 1.1 ms (n = 16). 5. Iontophoretic and intramuscular applications of the glycine antagonist strychnine reduced or blocked M-cell inhibitory responses, without altering the excitability of the presynaptic neurons, or the driving force. 6. Amplitude fluctuations of unitary IPSPs recorded during partial blockade by strychnine were analyzed according to a binomial model of quantal transmitter release. In one experimental series, comparison of the binomial parameters before and after applying the antagonist indicated that only quantal size, q, was reduced, whereas n, the number of available release units, and p, the probability of release, were unaffected by strychnine. In a second series, the individual presynaptic cells were injected with horseradish peroxidase (HRP), and it was found that the correlation between n and the number of stained presynaptic boutons and, therefore, of active zones, was maintained in the presence of the drug. No evidence was found for silent synapses in these conditions. 7. The quantal conductance, gq, was estimated from the binomially derived quantal size, in millivolts, and the voltage-clamp measurements of the IPSP driving force and M-cell input conductance. gq averaged 21.5 nS in control conditions and 12.3 nS in the presence of strychnine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
After its release from interneurons in the CNS, the major inhibitory neurotransmitter GABA is taken up by GABA transporters (GATs). The predominant neuronal GABA transporter GAT1 is localized in GABAergic axons and nerve terminals, where it is thought to influence GABAergic synaptic transmission, but the details of this regulation are unclear. To address this issue, we have generated a strain of GAT1-deficient mice. We observed a large increase in a tonic postsynaptic hippocampal GABAA receptor-mediated conductance. There was little or no change in the waveform or amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) or miniature IPSCs. In contrast, the frequency of quantal GABA release was one-third of wild type (WT), although the densities of GABAA receptors, GABAB receptors, glutamic acid decarboxylase 65 kDa, and vesicular GAT were unaltered. The GAT1-deficient mice lacked a presynaptic GABAB receptor tone, present in WT mice, which reduces the frequency of spontaneous IPSCs. We conclude that GAT1 deficiency leads to enhanced extracellular GABA levels resulting in an overactivation of GABAA receptors responsible for a postsynaptic tonic conductance. Chronically elevated GABA levels also downregulate phasic GABA release and reduce presynaptic signaling via GABAB receptors thus causing an enhanced tonic and a diminished phasic inhibition.  相似文献   

10.
1. Continuous segments of synaptic noise were recorded, in 12 experiments, from the voltage-clamped goldfish Mauthner (M-)-cell soma during depolarizations beyond the Cl- equilibrium potential so that spontaneous inhibitory postsynaptic currents (IPSCs) were outward going, i.e., opposite in polarity to excitatory transients. Inhibitory components constituting the noise were detected with a program based on their expected waveforms, and their amplitude distributions were analyzed according to a quantal model to determine whether these responses, presumably because of asynchronous impulses in a population of presynaptic cells, were integral multiples of the same minimal unit. 2. Synaptic noise in the M-cell is predominantly inhibitory, as it is abolished by the glycine antagonist strychnine. IPSC amplitudes varied by 20-fold or more and about one-third were grouped in bursts, with one or several components often occurring during the falling phase of a preceding one. To measure individual amplitudes, a base-line correction procedure was designed to extrapolate the decay of the leading IPSC, on the assumption that it was exponential with a time constant, tau, equal to that obtained by fitting averaged waveforms of distinct IPSCs recorded in quiet periods. Currents were expressed in nanoamperes and, for comparison between experiments, as percentages of the full-sized IPSC evoked by activation of the collateral network. 3. The probability distribution functions (PDFs) of inhibitory events generated with such an analysis had from 5 to 12 clear and equally spaced peaks, larger transients not being included because of their sparsity. These PDFs were fit with a sum of Gaussians, on the assumption that all peaks were integral multiples of the smallest unit and had the same standard deviation, sigma. The fits were statistically satisfactory, according to a chi 2 test, and mean quantal size was 0.63 +/- 0.17% (SD; range, 0.42-1.0%) of the collateral IPSC. 4. In eight experiments, tetrodotoxin (TTX) was subsequently applied topically to block presynaptic impulses and isolate "miniature" responses because of single exocytotic events. It had no apparent nonspecific effects, as indicated by the constancy of M-cell input conductance (8.01 +/- 3.11 microS vs. 7.90 +/- 2.89 microS). Amplitude distributions of residual IPSCs were unimodal and Gaussian, with their mean size (0.60 +/- 0.19%) and average rise time (0.548 +/- 0.128 ms) the same as those of the first peaks of control histograms. The latter parameter was also comparable with that of unitary IPSCs studied previously. These results thus confirmed that spontaneous and evoked events are due to transmitter release from the same afferent population.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
To explore the parameters that define the characteristics of either inhibitory postsynaptic potentials (IPSP) or currents (IPSC) in the gustatory nucleus of the solitary tract (rNST), whole cell patch-clamp recordings were made in horizontal brain stem slices of newborn rats. Neurons were labeled with biocytin to confirm both their location and morphology. IPSPs or IPSCs were evoked by delivering either single, paired-pulse, or tetanic stimulus shocks (0.1-ms duration) via a bipolar stimulating electrode placed on the rNST. Pure IPSP/IPSCs were isolated by the use of glutamate receptor antagonists. For 83% of the single-stimulus-evoked IPSCs, the decay time course was fitted with two exponentials having average time constants of 38 and 181 ms, respectively, while the remainder could be fitted with one exponential of 59 ms. Paired-pulse stimulation resulted in summation of the amplitude of the conditioning and test-stimulus-evoked IPSCs. The decay time course of the test-stimulus-evoked IPSC was slower when compared to the decay time of the conditioning stimulus IPSC. Repeated stimulation resulted in an increase in the decay time of the IPSP/Cs where each consecutive stimulus contributed to prolongation of the decay time constant. Most of the IPSP/Cs resulting from a 1-s >/= 30-Hz tetanic stimulus exhibited an S-shaped decay time course where the amplitude of the IPSP/Cs after termination of the stimulus was initially sustained before starting to decay back to the resting membrane potential. Elevation of extracellular Ca(2+) concentration 10 mM resulted in an increase in the amplitude and decay time of single-stimulus shock-evoked IPSP/Cs. The benzodiazepine GABA(A) receptor modulator diazepam increased the decay time of single-stimulus shock-evoked IPSCs. However, application of diazepam did not affect the decay time of tetanic-stimulation-evoked IPSP/Cs. These results suggest that the decay time of single-stimulus-evoked IPSCs is defined either by receptor kinetics or neurotransmitter clearance from the synaptic cleft or both, while the decay time course of the tetanic stimulus evoked IPSP/Cs is defined by neurotransmitter diffusion from the synaptic cleft. During repetitive stimulation, neurotransmitter accumulates in the synaptic cleft prolonging the decay time constant of the IPSCs. High-frequency stimulation elevates the GABA concentration in the synaptic cleft, which then oversaturates the postsynaptic receptors, and, as a consequence, after termination of the tetanic stimulus, the amplitude of IPSP/Cs is sustained resulting in an S shaped decay time course. This activity-dependent plasticity at GABAergic synapses in the rNST is potentially important in the encoding of taste responses because the dynamic range of stimulus frequencies that result in synaptic plasticity (0-70 Hz) corresponds to the breadth of frequencies that travels via afferent gustatory nerve fibers in response to taste stimuli.  相似文献   

12.
Miniature, spontaneous and evoked inhibitory postsynaptic currents were studied using the whole-cell patch-clamp technique on synaptically connected cultured hippocampal neurons, at a holding potential of -75 mV. All experiments were done in tetrodotoxin-containing solution to exclude an action potential generation. Spontaneous miniature inhibitory postsynaptic currents were observed in Ca2+-free solution. The distribution of miniature inhibitory postsynaptic currents was skewed to larger current amplitudes and could be fitted reliably by one Gaussian with the mean at 10.0 +/- 1.2 pA (n = 7). Spontaneously occurring whole-cell spontaneous inhibitory postsynaptic currents were recorded in physiological solution (Ca2+ 2 mM). The average amplitude of spontaneously occurring currents depended on membrane potential and reversed at -18 +/- 5 mV (n = 5). The amplitude distribution of spontaneous inhibitory postsynaptic currents had one peak clearly detectable with the mean of 20.0 +/- 2.0 pA (n = 6) or 10.0 +/- 2.0 pA (n = 2). Inhibitory postsynaptic stimulus-evoked currents arose in responses to gradual activation of neurotransmitter release by direct extracellular electrical stimulation of a single presynaptic bouton by short depolarizing pulses. The current-voltage relation of the averaged amplitudes of evoked inhibitory postsynaptic currents was linear and reversed at potential predicted by the Nernst equation for corresponding intra- and extracellular Cl- concentrations. The time-course of decay of miniature, spontaneous and evoked inhibitory postsynaptic currents was fitted by a sum of two exponents and their time-constants were the same in the range of standard deviation. The stimulus-evoked inhibitory postsynaptic currents fluctuated with regard to the discrete aliquot values of their peak amplitudes in all the investigated synapses from a measurable minimum of about 8 pA to 200 pA. The evoked inhibitory postsynaptic currents were assumed as superimposition of statistically independent quantal events. Fitting amplitude histograms of evoked inhibitory postsynaptic currents with several Gaussian curves resulted in peaks that were equidistant with the mean space of 20 +/- 3 pA (n = 10), which was assumed as one quantum (quantum size) to construct the Poisson's distribution. A possibility of simultaneous multiquantal release at single inhibitory synapses of rat hippocampal neurons was discussed.  相似文献   

13.
Octanol-induced changes in the kinetics of glycinergic inhibitory postsynaptic currents (IPSCs) were investigated by whole-cell recording from hypoglossal motoneurons in mouse brainstem slices. Octanol (1 mM) prolonged the decay time constants (tau(decay)) of stimulus-evoked IPSCs (e-IPSCs) by 202+/-67% (SE). The depression of e-IPSC amplitudes was dose-dependent with an EC50 of 475 microM. Octanol also reduced the amplitude and prolonged the decay time constant of glycinergic currents evoked by local pressure ejection of glycine (I(gly)). Replacement of extracellular Na+ by choline and application of the specific glycine transporter GLYT1 inhibitor, sarcosine, lengthened tau(decay) of I(gly), but did not change the decay time constants of e-IPSCs. Intracellular acidification by the weak organic acid salt sodium propionate (30 mM) reduced the e-IPSC amplitude by 22+/-9% and prolonged tau by 18+/-6%. Sodium propionate also prolonged the decay time constants of I(gly) by 28+/-11%. The observed effects on decay kinetics were much smaller than those caused by octanol. The data show that octanol prolongs the decay time course of glycinergic synaptic currents by mechanisms independent of glycine uptake or intracellular acidification. We conclude that the effects were most probably due to direct action on postsynaptic glycine receptors.  相似文献   

14.
Recently we have shown that acute ethanol (EtOH) exposure suppresses dorsal root-evoked synaptic potentials in spinal motoneurons. To examine the synaptic mechanisms underlying the reduced excitatory activity, EtOH actions on properties of action potential-independent miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were studied in spinal motoneurons of newborn rats. Properties of mEPSCs generated by activation of N-methyl-D-aspartate receptors (NMDARs) and non-NMDA receptors and of mIPSCs mediated by glycine and gamma-aminobutyric acid-A receptors (GlyR and GABA(A)R) were examined during acute exposure to 70 and 200 mM EtOH. In the presence of 70 mM EtOH, the frequency of NMDAR- and non-NMDAR-mediated mEPSCs decreased to 53 +/- 5 and 45 +/- 7% (means +/- SE) of control values, respectively. In contrast, the frequency of GlyR- and GABA(A)R-mediated mIPSCs increased to 138 +/- 15 and 167 +/- 23% of control, respectively. Based on the quantal theory of transmitter release, changes in the frequency of miniature currents are correlated with changes in transmitter release, suggesting that EtOH decreased presynaptic glutamate release and increased the release of both glycine and GABA. EtOH did not change the amplitude or rise and decay times of either mEPSCs or mIPSCs, indicating that the presynaptic changes were not associated with changes in the properties of postsynaptic receptors/channels. Acute exposure to 200 mM EtOH increased mIPSC frequency two- to threefold, significantly higher than the increase induced by 70 mM EtOH. However, the decrease in mEPSC frequency was similar to that observed in 70 mM EtOH. Those findings implied that the regulatory effect of EtOH on glycine and GABA release was dose-dependent. Exposure to the higher EtOH concentration had opposite actions on mEPSC and mIPSC amplitudes: it attenuated the amplitude of NMDAR- and non-NMDAR-mediated mEPSCs to ~80% of control and increased GlyR- and GABA(A)R-mediated mIPSC amplitude by ~20%. EtOH-induced changes in the amplitude of postsynaptic currents were not associated with changes in their basic kinetic properties. Our data suggested that in spinal networks of newborn rats, EtOH was more effective in modulating the release of excitatory and inhibitory neurotransmitters than changing the properties of their receptors/channels.  相似文献   

15.
In the CNS, inhibitory synaptic function undergoes profound transformation during early postnatal development. This is due to variations in the subunit composition of subsynaptic GABA(A) receptors (GABA(A)Rs) at differing developmental stages as well as other factors. These include changes in the driving force for chloride-mediated conductances as well as the quantity and/or cleft lifetime of released neurotransmitter. The present study was undertaken to investigate the nature and time course of developmental maturation of GABAergic synaptic function in hippocampal CA1 pyramidal neurons. In neonatal [postnatal day (P) 1-7] and immature (P8-14) CA1 neurons, miniature inhibitory postsynaptic currents (mIPSCs) were significantly larger, were less frequent, and had slower kinetics compared with mIPSCs recorded in more mature neurons. Adult mIPSC kinetics were achieved by the third postnatal week in CA1 neurons. However, despite this apparent maturation of mIPSC kinetics, significant differences in modulation of mIPSCs by allosteric agonists in adolescent (P15-21) neurons were still evident. Diazepam (1-300 nM) and zolpidem (200 nM) increased the amplitude of mIPSCs in adolescent but not adult neurons. Both drugs increased mIPSC decay times equally at both ages. These differential agonist effects on mIPSC amplitude suggest that in adolescent CA1 neurons, inhibitory synapses operate differently than adult synapses and function as if subsynaptic receptors are not fully occupied by quantal release of GABA. Rapid agonist application experiments on perisomatic patches pulled from adolescent neurons provided additional support for this hypothesis. In GABA(A)R currents recorded in these patches, benzodiazepine amplitude augmentation effects were evident only when nonsaturating GABA concentrations were applied. Furthermore nonstationary noise analysis of mIPSCs in P15-21 neurons revealed that zolpidem-induced mIPSC augmentation was not due to an increase in single-channel conductance of subsynaptic GABA(A)Rs but rather to an increase in the number of open channels responding to a single GABA quantum, further supporting the hypothesis that synaptic receptors may not be saturated during synaptic function in adolescent neurons. These data demonstrate that inhibitory synaptic transmission undergoes a markedly protracted postnatal maturation in rat CA1 pyramidal neurons. In the first two postnatal weeks, mIPSCs are large in amplitude, are slow, and occur infrequently. By the third postnatal week, mIPSCs have matured kinetically but retain distinct responses to modulatory drugs, possibly reflecting continued immaturity in synaptic structure and function persisting through adolescence.  相似文献   

16.
The globus pallidus (GP) contains abundant GABAergic synapses and GABA(B) receptors. To investigate whether synaptically released GABA can activate pre- and postsynaptic GABA(B) receptors in the GP, physiological recordings were performed using rat brain slice preparations. Cell-attached recordings from GABA(A) antagonist-treated preparations revealed that repetitive local stimulation induced a GABA(B) antagonist-sensitive pause in spontaneous firings of GP neurons. Whole cell recordings revealed that the repetitive stimulation evoked fast excitatory postsynaptic potentials followed by a slow inhibitory postsynaptic potential (IPSP) in GP neurons. The slow IPSP was insensitive to a GABA(A) receptor antagonist, increased in amplitude with the application of ionotropic glutamate receptor antagonists, and was suppressed by the GABA(B) antagonist CGP55845. The reversal potential of the slow IPSP was close to the potassium equilibrium potential. These results suggest that synaptically released GABA activated postsynaptic GABA(B) receptors and induced the pause and the slow IPSP. On the other hand, in the neurons that were treated to block postsynaptic GABA(B) responses, CGP55845 increased the amplitudes of repetitive local stimulation-induced GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) but not the ionotropic glutamate-mediated excitatory postsynaptic currents. Moreover, the GABA(B) receptor specific agonist baclofen reduced the frequency of miniature IPSCs without altering their amplitude distributions. These results suggest that synaptically released GABA also activated presynaptic GABA(B) autoreceptors, resulting in decreased GABA release in the GP. Together, we infer that both pre- and postsynaptic GABA(B) receptors may play crucial roles in the control of GP neuronal activity.  相似文献   

17.
1. The quantal nature of excitatory synaptic transmission was studied in respiratory interneurons and phrenic motoneurons of intact neonatal rat brain stem-spinal cord preparations in vitro. Synaptic currents were recorded with whole-cell patch-clamp recording techniques. 2. Because the most important factor for quantal detection is the ratio of quantal size to quantal standard deviation, factors that influence this ratio were evaluated so that experimental techniques that enhance this ratio could be defined. 3. Under favorable conditions, we directly observed quantal amplitude fluctuations in spontaneous excitatory postsynaptic currents (EPSCs) in spinal cord respiratory neurons. The quantal conductance size was 55-100 pS. With fast decay of these EPSCs, the charge reaching the soma for a single quantum is only approximately 15 fC (Vh = -80 mV). 4. We also studied miniature EPSC amplitude distributions. These were skewed, as previously reported; however, distinct quantal intervals were observed. Furthermore, in three cells tested, the quantal size in the miniature EPSC amplitude distribution was similar to the quantal size in the spontaneous EPSC amplitude distribution. 5. We conclude that excitatory synaptic transmission in the mammalian spinal cord is quantal and that the apparent skewness of miniature EPSC distributions results from summation of events with multiple quantal peak amplitudes.  相似文献   

18.
1. Single-electrode voltage-clamp recordings were made from CA3 pyramidal cells in organotypic hippocampal slice cultures for measurement of membrane currents underlying both the gamma-aminobutyric acid (GABA)-mediated, Cl- -dependent inhibitory postsynaptic potential (IPSC), evoked in response to stimulation of the mossy fiber pathway, and responses to iontophoretically applied GABA. Pre- and postsynaptic mechanisms mediating activity-dependent reductions in the conductance underlying the IPSC (gIPSC) were investigated. 2. During 99-s applications of GABA, the mean evoked conductance (gGABA) decreased 43% with an initial time constant of 51 s. Desensitization was never complete. 3. Ca2+-influx, activated with depolarizing voltage commands of 100-ms to 15-s duration in the presence of intracellular Cs+, had no effect on GABA responses. 4. Iontophoretic application of the GABAA-receptor agonist muscimol caused a rapid decrease of 80-100% in the amplitude of IPSCs evoked at depolarized membrane potentials (Vm). Recovery was 80% complete in 30 s. The second of two paired applications of muscimol, delivered at the same iontophoretic intensity, was reduced in amplitude 35%. This was shown to result from a decrease in driving force rather than from desensitization. We conclude that muscimol decreases IPSCs by causing an increase in the intracellular Cl- concentration. 5. Iontophoretic application of the GABAB-receptor agonist (+/-)-baclofen caused a decrease of only 30% in the amplitude of IPSCs evoked at depolarized Vms. This effect outlasted the post-synaptic effects of baclofen; recovery was 80% complete between 60 and 90 s. 6. Bath application of (-)-baclofen was found to decrease gIPSC without affecting the IPSC reversal potential. This effect was rapid in onset, could be observed at concentrations as low as 1 X 10(-7) M, and recovered quickly. The EC50 was roughly 5 X 10(-7) M and appeared similar to that for the baclofen-activated increase in postsynaptic conductance. No effect on responses to iontophoretically applied GABA was observed, demonstrating that baclofen decreases gIPSC by reducing presynaptic release via GABAB receptors. 7. Iontophoretic application of GABA reduced IPSCs in a dose-dependent manner. At low iontophoretic intensities, IPSCs were reduced only 30% and recovered slowly, as with baclofen iontophoresis. At higher iontophoretic intensities, IPSCs were more completely blocked. Recovery was initially fast, but took 60-90 s to be complete.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Inhibitory postsynaptic currents (IPSCs) mediated by GABA(A) receptors are much slower in neurons of the thalamic reticular nucleus (RTN) versus those in the ventrobasal complex (VB) of young rats. Here we confirm and extend those findings regarding GABA(A) response heterogeneity especially in relation to development. Whole cell patch-clamp recordings were used to investigate GABA(A) spontaneous and electrically evoked IPSCs (sIPSCs/eIPSCs) in RTN and VB cells of different aged rats. Consistent with earlier findings, sIPSC duration at P8-12 was considerably longer in RTN (weighted decay time constant: tau(D,W) = 56.2 +/- 4.9 ms; mean +/- SE) than in VB (tau(D,W) = 15.8 +/- 1.0 ms) neurons. Decay kinetics in RTN neurons did not differ at P21-30 (45.5 +/- 4.7 ms) or P42-60 (51.6 +/- 10.6 ms). In contrast, VB sIPSCs were significantly faster at both P21-30 (tau(D,W) = 10.8 +/- 0.9 ms) and P42-60 (tau(D,W) = 9.2 +/- 0.4 ms) compared with P8-12 animals. IPSCs displayed differential outward rectification and temperature dependence, providing further support for nucleus-specific responses. tau(D,W) increased with membrane depolarization but with a net larger effect in VB. By contrast, tau(D,W) was always smaller at higher temperatures but with relatively greater difference observed in RTN. Thus nuclear differences in GABA(A) IPSCs are not only maintained, but enhanced in the mature rodent under physiological conditions. These findings support our hypothesis that unique GABA(A) receptors mediate slowly decaying RTN IPSCs that are a critical and enduring feature of the thalamic circuit. This promotes powerful intranuclear inhibition and likely prevents epileptiform thalamocortical hypersynchrony.  相似文献   

20.
Patch-clamp recording techniques were applied to thin slices of the rat pituitary gland in order to study synaptic transmission between hypothalamic nerve terminals and neuroendocrine cells of the intermediate lobe. Inhibitory postsynaptic currents (IPSCs) could be evoked by electrical stimulation of afferent neuronal fibres in the surrounding tissue of the slice. The IPSCs could be evoked in an all-or-nothing mode depending on the stimulus intensity, suggesting that single afferent fibres were stimulated. They had a chloride-dependent reversal potential and were blocked by bicuculline (K d=0.1 M), indicating that they were mediated by -aminobutyric acid A (GABAA) receptors. In symmetrical chloride solutions the current/voltage relation of the IPSC peak amplitudes was linear. The IPSCs were characterized by a fast (1–2 ms) rise time and a biexponential decay, with time constants of 21±4 ms and 58±14 ms at a holding potential of –60 mV (n=6 cells). Both decay time constants increased with depolarization in an exponential manner. Spontaneously occurring IPSCs had a time course that was similar to that of evoked IPSCs. These miniature IPSCs, recorded in 1 M tetrodotoxin, displayed an amplitude distribution that was well fitted by single Gaussian functions, with a mean value of its maxima of 18.1±2.3 pA (n=4 cells). Amplitude histograms of evoked IPSCs were characterized by multiple peaks with a modal amplitude of about 18 pA (n=6 cells). These findings indicate the quantal nature of GABAergic synaptic transmission in this system, with a quantal conductance step of about 280 pS. Single-channel currents underlying the IPSCs were studied by bath application of GABA to outside-out patches excised from intermediate lobe cells. Such GABA-induced currents revealed two conductance levels of 14 pS and 26 pS. In conclusion, GABAergic synaptic transmission in neuroendocrine cells of the pituitary has properties that are quite similar to those observed in neurones of the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号