首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Type I collagen cross-linked N-telopeptide (NTx) in urine, the degraded form of type I collagen cross-linked in bone, has been evaluated as a marker of bone resorption. In this study, the clinical usefulness of NTx as a marker of bone metastasis of prostate cancer was compared with that the carboxyterminal propeptide of type I procollagen (PICP), the aminoterminal propeptide of type I procollagen (PINP), and the pyridinoline cross-linked carboxyterminal telopeptide of type I collagen (ICTP) in serum. We assessed 37 cases of prostatic cancer in which the diagnosis had been confirmed pathologically. The patients were 15 patients with prostatic cancer with bone metastasis (before treatment or during a relapse) (Group 1); 11 patients, with bone metastasis, but for whom treatment was effective and condition had stabilized (Group 2); and 11 patients, with localized prostatic cancer and no evidence of bone metastasis (Group 3). The serum PICP, PINP, and ICTP levels and concentration of NTx in urine were compared among the three groups with the Mann-Whitney U test, with p values less than 0.05 considered significant. Urine NTx concentrations in Groups 1, 2 and 3 were 539.3 +/- 202.9, 160.6 +/- 97.6 and 48.6 +/- 7.6 nMBCE/mMCr, respectively. The differences between the Group 1 and Group 2 and between Group 1 and Group 3 were significant (p < 0.01 and p < 0.001). The differences between Group 1 and Group 3 and between Group 2 and Group 3 were significant for serum PICP, PINP and ICTP concentrations (p < 0.05). The correlation coefficient between urine NTx and each serum bone metabolic marker was 0.8 for PICP, 0.4 for PINP and 0.5 for ICTP. These bone metabolic markers are promising clinical markers of bone metastatic and may be useful for prediction of therapeutic efficacy and recurrence in bone and quantification of the extent of bone metastates.  相似文献   

2.
J E Head  B J Bryant  B L Grills  P R Ebeling 《BONE》2001,29(5):437-441
Prostaglandins are known to be involved in the metabolism of bone, having a significant influence on bone resorption in cases of bone pathology. We therefore investigated the short-term effects of two commonly used nonsteroidal anti-inflammatory drugs (NSAIDs), ibuprofen and acetaminophen (paracetamol), on bone resorption in healthy men. In a randomized, double-blind pilot study, 28 healthy, age- and weight-matched male volunteers were treated with ibuprofen (n = 10), acetaminophen (n = 9), or a placebo (n = 9) for 3 days. As an indication of bone resorption rate, levels of the biochemical bone markers N-telopeptide (NTx) and free deoxypyridinoline (D-Pyr) were measured in urine. Differences in resorption marker levels pre- and post-NSAID use were then compared between groups. We found that NTx concentrations in the acetaminophen group were lower than placebo (p = 0.048), whereas NTx levels in the ibuprofen group were higher than in the acetaminophen group (p = 0.016). By contrast, D-Pyr concentrations in the ibuprofen group were significantly lower than in the placebo group (p = 0.009). A comparison of the percentage changes of D-Pyr:NTx ratios found that the ratio in the ibuprofen group was significantly lower than that of both the control (p = 0.0065) and acetaminophen (p = 0.01) groups. These results show the differential effects of ibuprofen and acetaminophen on urinary excretion of peptide-bound and free deoxypyridinoline cross-links of type I collagen. Short-term ibuprofen use may alter the renal handling of collagen cross-links and increase bone resorption to a greater extent than acetaminophen in normal men.  相似文献   

3.
Pycnodysostosis (Pycno) is an autosomal recessive osteosclerotic skeletal dysplasia that is caused by the markedly deficient activity of cathepsin K. This lysosomal cysteine protease has substantial collagenase activity, is present at high levels in osteoclasts, and is secreted into the subosteoclastic space where bone matrix is degraded. In vitro studies revealed that mutant cathepsin K proteins causing Pycno did not degrade type I collagen, the protein that constitutes 95% of organic bone matrix. To determine the in vivo effects of cathepsin K mutations on bone metabolism in general and osteoclast-mediated bone resorption specifically, several bone metabolism markers were assayed in serum and urine from seven Pycno patients. Two markers of bone synthesis, type I collagen carboxy-terminal propeptide and osteocalcin, were normal in all Pycno patients. Tartrate-resistent acid phosphatase, an osteoclast marker, was also normal in these patients. Two markers that detect type I collagen telopeptide cross-links from the N and C termini, NTX and CTX, respectively, were low in Pycno. A third marker which detects a more proximal portion of the C terminus of type I collagen in serum, ICTP, was elevated in Pycno, a seemingly paradoxical result. The finding of decreased osteoclast-mediated type I collagen degradation as well as the use of alternative collagen cleavage sites by other proteases, and the accumulation of larger C-terminal fragments containing the ICTP epitope, established a unique biochemical phenotype for Pycno.  相似文献   

4.
5.
Cathepsin K is a cysteine protease that plays an essential role in osteoclast-mediated degradation of the organic matrix of bone. Knockout of the enzyme in mice, as well as lack of functional enzyme in the human condition pycnodysostosis, results in osteopetrosis. These results suggests that inhibition of the human enzyme may provide protection from bone loss in states of elevated bone turnover, such as postmenopausal osteoporosis. To test this theory, we have produced a small molecule inhibitor of human cathepsin K, SB-357114, that potently and selectively inhibits this enzyme (Ki = 0.16 nM). This compound potently inhibited cathepsin activity in situ, in human osteoclasts (inhibitor concentration [IC]50 = 70 nM) as well as bone resorption mediated by human osteoclasts in vitro (IC50 = 29 nM). Using SB-357114, we evaluated the effect of inhibition of cathepsin K on bone resorption in vivo using a nonhuman primate model of postmenopausal bone loss in which the active form of cathepsin K is identical to the human orthologue. A gonadotropin-releasing hormone agonist (GnRHa) was used to render cynomolgus monkeys estrogen deficient, which led to an increase in bone turnover. Treatment with SB-357114 (12 mg/kg subcutaneously) resulted in a significant reduction in serum markers of bone resorption relative to untreated controls. The effect was observed 1.5 h after the first dose and was maintained for 24 h. After 5 days of dosing, the reductions in N-terminal telopeptides (NTx) and C-terminal telopeptides (CTx) of type I collagen were 61% and 67%, respectively. A decrease in serum osteocalcin of 22% was also observed. These data show that inhibition of cathepsin K results in a significant reduction of bone resorption in vivo and provide further evidence that this may be a viable approach to the treatment of postmenopausal osteoporosis.  相似文献   

6.
The variability over time in the excretion of a hone resorption metabolite (collagen type I N-telopeptide crosslink, NTx) was evaluated in a cohort of community-dwelling elderly men and women (mean age 73 years). Three annual 24-h urine samples were collected. NTx concentration was measured using an established ELISA. Total (24-h) NTx excretion as well as NTx/creatinine concentration were compared. Men had a significantly lower excretion of NTx/creatinine than women who were not on hormone replacement therapy. Overall, the within-subject long-term coefficient of variability for NTx/creatinine was 26%. The correlation coefficient between the samples taken a year apart was higher for the 24-h NTx excretion (r=0.66) than for the 24-h creatinine excretion (r=0.51). The consistency of NTx excretion over time was also evaluated in all 93 subjects with three yearly samples using Kendall’s rank correlation method; the resulting coefficient of concordance was 0.78 (significant at the 0.01 level). These results indicate that while NTx excretion varies in subject samples collected over a period of 2 years, this variability is not much greater than the daily variation reported for NTx and other bone metabolism markers. The relative reproducibility of NTx excretion over time in this age group was also evident in the coefficient of concordance. The results provide support for stratifying subjects according to level of bone resorption and identifying those subjects with high turnover who may be at greater risk of osteoporotic fracture.  相似文献   

7.
The localization of cathepsin K protein in mouse osteoclasts was examined by immunolight and immunoelectron microscopy using the avidin-biotin-peroxidase complex method with anti-cathepsin K (mouse) antibody. With light microscopy, a strong immunoreaction for cathepsin K was found extracellularly along the bone and cartilage resorption lacunae and detected intracellularly in vesicles, granules, and vacuoles throughout the cytoplasm of multinuclear osteoclasts and chondroclasts attached to the surface of the bone or cartilage. Mononuclear cells, probably preosteoclasts, some distance from the bone also contained a few cathepsin K-positive vesicles and granules. Cathepsin K was sometimes found in the cisternal spaces of the rough endoplasmic reticulum and vesicles of the Golgi apparatus with electron microscopy of the basolateral region of the osteoclasts. Cathepsin K-positive vesicles and granules as lysosomal compartments were present in various stages of fusion with vacuoles as endosomal compartments that contained fragmented cathepsin K-negative fibril-like structures. Some of the vacuoles (endolysosomes), which seemed to be formed by this process of fusion, contained cathepsin K-positive vesicles and fibril-like structures that did not show the regular cross striation of type I collagen fibrils. In the apical region of the osteoclasts, cathepsin K-positive vesicles and pits had already fused with or were in the process of fusing with the ampullar extracellular spaces. There were large deposits of cathepsin K on fragmented fibril-like structures without regular cross striation in the extracellular spaces, as well as on and between the cytoplasmic processes of the ruffled border. There were also extensive deposits of cathepsin K on the type I collagen fibrils with cross striation in the bone resorption lacunae. Osteoblasts and osteocytes were negative for cathepsin K. In the immunocytochemical controls, no immunoreaction was found in the osteoclasts or preosteoclasts, or on the collagen fibrils in the resorption lacunae. The results indicate that cathepsin K is produced in mature osteoclasts attached to the bone and secreted into the bone resorption lacunae. The findings suggest that cathepsin K participates in the extracellular degradation of collagen fibrils in the resorption lacunae and in the subsequent degradation of the fragmented fibrils in the endolysosomes. It is also suggested that cathepsin K degrades the organic cartilage matrix.  相似文献   

8.
Cathepsin K is an osteoclast-derived cysteine protease that has been implicated as playing a major role in bone resorption. A substantial body of evidence indicates that cathepsin K is critical in osteoclast-mediated bone resorption and suggests that its pharmacological inhibition should result in inhibition of bone resorption in vivo. Here we report the pharmacological characterization of SB-462795 (relacatib) as a potent and orally bioavailable small molecule inhibitor of cathepsin K that inhibits bone resorption both in vitro in human tissue and in vivo in cynomolgus monkeys. SB-462795 is a potent inhibitor of human cathepsins K, L, and V (K(i, app)=41, 68, and 53 pM, respectively) that exhibits 39-300-fold selectivity over other cathepsins. SB-462795 inhibited endogenous cathepsin K in situ in human osteoclasts and human osteoclast-mediated bone resorption with IC50 values of approximately 45 nM and approximately 70 nM, respectively. The anti-resorptive potential of SB-462795 was evaluated in normal as well as medically ovariectomized (Ovx) female cynomolgus monkeys. Serum levels of the C- and N-terminal telopeptides of Type I collagen (CTx and NTx, respectively) and urinary levels of NTx were monitored as biomarkers of bone resorption. Administration of SB-462795 to medically ovariectomized or normal monkeys resulted in an acute reduction in both serum and urinary markers of bone resorption within 1.5 h after dosing, and this effect lasted up to 48 h depending on the dose administered. Our data indicate that SB-462795 potently inhibits human cathepsin K in osteoclasts, resulting in a rapid inhibition of bone resorption both in vitro and in vivo in the monkey. These studies also demonstrate the therapeutic potential of relacatib in the treatment of postmenopausal osteoporosis and serves to model the planned clinical trials in human subjects.  相似文献   

9.
Osteoporosis in men is an important and growing public health problem. While there has been extensive work done on defining the mechanism(s) of the age-related increase in bone resorption in women, our knowledge regarding the pathogenesis of bone loss in elderly men is still incomplete. We previously demonstrated that the age-related increase in serum PTH contributes substantially to the increased bone resorption in elderly women, since suppression of PTH levels by an intravenous calcium infusion decreased bone resorption markers to a greater extent in elderly compared to premenopausal women. In the present study, we tested the hypothesis that the comparable increase in PTH levels in elderly men (age 70–78 years) was driving bone resorption to a greater extent in these men than in younger men (age 40–50 years). PTH secretion was suppressed by an intravenous calcium infusion and the corresponding changes in the bone resorption marker, urine N-telopeptide of type I collagen (NTx) were assessed. In contrast to our previous findings in pre- versus postmenopausal women, suppression of PTH secretion in elderly men did not result in a greater decrease in urine NTx excretion than in the younger men (change in NTx excretion in the elderly men, -2.79±1.99 nmol/mmol Cr, versus that in the younger men, –5.07±1.39 nmol/mmol Cr, P=0.356). Collectively, these data suggest that the relationship between the age-related increase in serum PTH levels and bone resorption differs between elderly men and women. Since both estrogen and testosterone can attenuate the bone resorbing effects of PTH, it is possible that this difference may be due to the much milder degree of sex steroid deficiency in elderly men as compared to postmenopausal women.  相似文献   

10.
Bone remodeling consists of two phases--bone resorption and bone formation--that are normally balanced. When bone resorption exceeds bone formation, pathologic processes, such as osteoporosis, can result. Cathepsin K is a member of the papain family of cysteine proteases that is highly expressed by activated osteoclasts. Cathepsin K readily degrades type I collagen, the major component of the organic bone matrix. With such a major role in the initial process of bone resorption, cathepsin K has become a therapeutic target in osteoporosis. The antiresorptive properties of cathepsin K inhibitors have been studied in phase I and phase II clinical trials. Phase III studies are currently underway for odanacatib, a selective cathepsin K inhibitor.  相似文献   

11.
Urinary excretion of cross-linked N-telopeptide of type I collagen (NTx) has been reported to be a specific marker of bone resorption [18]. We assessed a new immunoassay for NTx as an indicator of changes in bone resorption caused by spontaneous menopause and compared cross-sectionally the levels of urinary NTx, hydroxylysylpyridinoline (HP), lysylpyridinoline (LP), hydroxyproline (OH-Pr), other serum biochemical indices, and lumbar spine and proximal femur bone mineral density (BMD). Eighty-one Japanese women aged 22–77 participated in this study; 36 were premenopausal and 45 were postmenopausal. Urinary HP, LP, and NTx stayed at low levels in the premenopausal period and rose 21%, 30%, and 67% in the postmenopausal period, respectively. The rise in LP and NTx was statistically significant (P < 0.01), suggesting that NTx is mostly released from bone matrix when bone resorption is accelerated. When premenopausal women were divided into two age groups and postmenopausal women were divided into two groups according to years since menopause (YSM) there were significant differences in LP and NTx between women <4 YSM and women aged <40 and those women aged 41+ (P < 0.01 and P < 0.05, respectively). A significant 110% increase in urinary NTx and a 48% increase in urinary LP were observed in postmenopausal women compared with age-matched premenopausal women aged 45–55. All biochemical markers other than serum PTH correlated significantly with each other (r = 0.243–0.858, P < 0.05–0.0001). Urinary NTx inversely correlated with lumbar spine BMD. When postmenopausal women were divided into three groups, the correlation between bone resorption and formation markers in women 0-1 YSM was greater than in women 2–10 YSM and in women 11 + YSM, indicating that resorption and formation are coupled at the early postmenopausal period. We conclude that urinary NTx is responsive to changes in bone metabolism caused by estrogen deficiency and may be a more sensitive and specific marker than HP, LP, or OH-Pr in the early postmenopausal years. Received: 15 February 1995 / Accepted: 18 October 1996  相似文献   

12.
Effects of alendronate on osteopenic postmenopausal Chinese women   总被引:2,自引:0,他引:2  
Yen ML  Yen BL  Jang MH  Hsu SH  Cheng WC  Tsai KS 《BONE》2000,27(5):681-685
To evaluate the effects of alendronate on postmenopausal Chinese women with osteopenia, we treated 46 subjects daily with either 10 mg alendronate (N = 24) or placebo plus 500 mg calcium supplement (N = 22), and measured their bone mineral density (BMD) at the lumbar spine and hip, and urinary bone resorption markers before, during, and after the 1 year treatment period. The bone markers included N-telopeptide of type I collagen (NTx) and deoxypyridinoline (Dpd); both were corrected by the concentration of creatinine in the same sample (NTx/Cr and Dpd/Cr). Both NTx/Cr and Dpd/Cr decreased significantly by 44% and 28%, respectively (p < 0.05 for both), in 1 month in the active treatment group but did not change in the placebo group. BMD at the spine, femoral neck, trochanter, and Ward's triangle increased significantly by 6 months and showed a further increase through month 12 at the spine in the alendronate-treated group. Relative to the placebo group, BMD changes at various sites in the alendronate-treated group were higher at 12 months by 6%-11%. Thus, our data suggest that 10 mg alendronate daily resulted in significant increases in spine and hip BMD, and decreases of urinary resorption markers in the osteopenic postmenopausal Chinese women studied. The amplitude of responses was higher than in previous reports in the USA and Europe.  相似文献   

13.
Osteoclasts degrade bone matrix by secretion of hydrochloric acid and proteases. We studied the processes involved in the degradation of the organic matrix of bone in detail and found that lysosomal acidification is involved in this process and that MMPs are capable of degrading the organic matrix in the absence of cathepsin K. INTRODUCTION: Osteoclasts resorb bone by secretion of acid by the vacuolar H+-adenosine triphosphatase (V-ATPase) and the chloride channel ClC-7, followed by degradation of the matrix, mainly collagen type I, by cathepsin K and possibly by matrix metalloproteinases (MMPs). However, the switch from acidification to proteolysis and the exact roles of both the ion transporters and the proteinases still remain to be studied. MATERIALS AND METHODS: We isolated CD14+ monocytes from human peripheral blood from either controls or patients with autosomal dominant osteopetrosis type II (ADOII) caused by defective ClC-7 function and cultured them in the presence of RANKL and macrophage-colony stimulating factor (M-CSF) to generate osteoclasts. We decalcified cortical bovine bone slices and studied the osteoclasts with respect to morphology, markers, and degradation of the decalcified matrix in the presence of various inhibitors of osteoclast acidification and proteolysis, using normal calcified bone as a reference. RESULTS: We found that ADOII osteoclasts not only have reduced resorption of the calcified matrix, but also 40% reduced degradation of the organic phase of bone. We found that both acidification inhibitors and cathepsin K inhibitors reduced degradation of the organic matrix by 40% in normal osteoclasts, but had no effect in the ADOII osteoclasts. Furthermore, we showed that inhibition of MMPs leads to a 70% reduction in the degradation of the organic bone matrix and that MMPs and cathepsin K have additive effects. Finally, we show that osteoclastic MMPs mediate release of the carboxyterminal telopeptide of type I collagen (ICTP) fragment in the absence of cathepsin K activity, and therefore, to some extent, are able to compensate for the loss of cathepsin K activity. CONCLUSIONS: These data clearly show that osteoclastic acidification of the lysosomes plays a hitherto nonrecognized role in degradation of the organic matrix. Furthermore, these data shed light on the complicated interplay between acidification dependent and independent proteolytic processes, mediated by cathepsin K and the MMPs, respectively.  相似文献   

14.
Uncoupling of bone turnover following hip replacement   总被引:3,自引:0,他引:3  
Studies using total hip replacement surgery as a model for acute hip injury have shown that bone mineral density of the proximal femur decreases 6-18% in the 6 months following surgery. To examine the acute biochemical mechanism associated with bone loss, we measured two indicators of bone formation [serum osteocalcin (OC), serum bone-specific alkaline phosphatase (BSAP)], as well as two markers for bone resorption [urine and serum N-telopeptide cross-linked collagen type 1 (NTx)], in 20 patients (10 men, 10 women, mean age 59.4 years) prior to hip replacement and 1-2 days postsurgery. The average OC value (ng/ml) decreased by 57.3% following surgery (7.5 +/- 4.3 to 3.2 +/- 1.1, P <0.001), and the average BSAP level (U/L) decreased by 27.6% (19.9 +/- 5.6 to 14.4 +/- 3.7, P <0.001). In contrast, levels of urine NTx (nmol BCE/mmol Cr) did not change significantly after the surgery (73.9 +/- 47.2 to 70.1 +/- 29.7). In addition, there was no change in serum NTx (nmol BCE) after surgery (11.8 +/- 2.3 to 11.8 +/- 3.0). Six months after surgery, bone mass had not changed significantly from baseline. These findings suggest that there is an uncoupling of bone turnover following hip replacement surgery which is characterized by significant reductions in bone formation without compensatory decreases in bone resorption, potentially leading to bone loss. Longer periods of follow-up are needed to assess long-term bone mass changes.  相似文献   

15.
Biochemical markers of bone turnover originating from type I procollagen synthesis or type I collagen breakdown were examined in men using a classic twin study design based on monozygotic (MZ) and dizygotic (DZ) twins. The aim was to estimate the influence of heredity (genes and shared family childhood elements) and constitutional factors in determining procollagen type I amino-terminal propeptide (PINP), type I collagen carboxy-terminal telopeptide (ICTP), and urinary amino-terminal type I collagen telopeptide (NTx) marker levels in a sample of in 98 MZ and 108 DZ male twin pairs. We are not aware of any prior studies conducted in men that address the influence of genetic factors on bone turnover marker variability. The findings support a dominant role for heredity in the variation of bone resorption marker levels in men, with additive genetic effects explaining two-thirds of the variance in the bone resorption markers NTx and ICTP. Genetic factors may contribute less for PINP, a marker of bone formation. The genetic loci influencing PINP or NTx and body weight/disc axial area, although related in part, appeared to be largely independent, indicating that genetic effects on bone turnover are unlikely to be to a large degree a result of genetic regulation of individual body weight.  相似文献   

16.
OBJECTIVE: By measuring urinary cross-linked N-telopeptide (NTx) as a bone resorption marker and urinary C-telopeptide of type II collagen (CTx-II) as a cartilage degradation marker, we asked whether differences in skeletal stresses in college athletes undergoing high-intensity training for diverse types of aerobic sports affect their skeletal metabolism and, if so, differentially or in unison. METHODS: The study was cross-sectional at a Division 1 college campus with 60 student athletes representing crew, cross-country running and swimming. Controls were 16 non-athlete undergraduates. Urine samples were collected for NTx and CTx-II analysis by enzyme-linked immunosorbent assay, normalizing results to creatinine. Two-way analysis of variance models and pair-wise comparisons were used to test whether biomarker levels differed by sport and the significance when adjusted for body mass index (BMI). RESULTS: NTx and CTx-II showed significant differences between groups before and after adjusting for BMI. NTx was highest in the rowers, and higher in rowers and runners than in swimmers or controls. CTx-II was significantly higher in runners than in crew, swimmers or controls, when unadjusted for BMI. After adjusting for BMI, these group differences remained significant except for runners over crew. CONCLUSION: Athletes in-training in the three sports show significant differences in these markers of bone resorption and cartilage collagen degradation. The results suggest that crew undergo the highest bone remodeling and runners the highest cartilage degradation. The results also show how these markers can vary physiologically between individuals, at extremes of skeletal exercise.  相似文献   

17.
Biochemical markers of bone resorption can be used clinically to predict the risk of osteoporosis-related fractures (prognostic tool) and to assess the response of an osteoporotic patient to an antiresorptive therapy (monitoring tool). Our aim was to assess the ability of four currently marketed biochemical markers of bone resorption, based on the measurement of degradation products from collage type I telopeptides to monitor the elevated resorption associated with menopause. Women (846) were stratified for menopause, age, and bone mineral density and the following markers were measured: urinary cross-linked N-telopeptides of type I collagen (NTx), the levels of breakdown products of type I collagen C-telopeptides in serum (S-CTx), and in urine, by ELISA (U-CTx-E), and RIA (U-CTx-R). Furthermore, the ratio (alpha/beta) between the alphaL form of CTx measured in the CTx RIA and the betaL form measured in the ELISA was calculated. The mean difference was calculated for each marker in women with osteopenia (Op) or osteoporosis (PMO) (WHO definition) compared with healthy premenopausal (Pre) women and postmenopausal (N Post) women with normal bone mass. Serum CTx showed the highest elevation in post- compared with premenopausal women. All marker values were significantly higher in Op and PMO subjects compared with both Pre and to N Post women. Compared with premenopausal values, the largest elevation in both Op and PMO women was observed for serum CTx. Compared with N Post, urine NTx showed the highest increase in OP subjects. The alpha/beta CTx ratio was elevated in post- compared with Pre women, but there was no difference in the ratio among N Post, Op, or PMO women. In conclusion, postmenopausal women showed elevated turnover with all bone resorption markers, but with substantial individual variation in resorption levels. Furthermore, the turnover process in postmenopausal women appears to be quantitatively different from the premenopausal stage, apparent as altered alpha/beta CTx ratios.  相似文献   

18.
Salmon calcitonin is a potent inhibitor of osteoclastic activity. The effect of calcitonin in elderly women with high bone turnover at higher risk of developing osteoporosis has not been studied. To investigate acute effects of calcitonin treatment on bone resorption markers in elderly women, we conducted a randomized trial in women >65 years of age with high bone turnover assessed as urinary N-telopeptide of type-I collagen (NTx) levels 1 SD higher than mean premenopausal levels, which was irrespective of bone density. A total of 98 elderly women were randomly assigned to receive either 200 IU calcitonin nasal spray (n = 75) with calcium (500 mg) and vitamin D (200 IU) or calcium and vitamin D (n = 23) alone for 6 months. Blood and urine samples were collected at 0, 2, 4, and 6 months and analyzed for urinary NTx and serum C-telopeptide of type-1 collagen (CTx). At baseline, mean age was 72.1 ± 4.7 (mean ± SD) in the calcitonin group and 72.2 ± 6 years in the control group. The spine and total hip BMD, serum PTH levels and urinary calcium/creatinine ratios were similar in both groups. Mean BMD was in the osteopenic range in both groups. Calcitonin treatment resulted in significant decreases in serum CTx levels, 2, 4 and 6 months after treatment as compared to baseline, and after 4 and 6 months as compared to controls. A maximum decrease from baseline of 33% was seen at 6 months. The urinary resorption marker, urine NTx, showed a significant decrease in the calcitonin group when compared to baseline only at the 6-month time point. Analysis of least significance change (LSC) showed that 70% of calcitonin patients were categorized as responders using serum CTx after 6 months of treatment. We conclude that 200 IU calcitonin effectively decreases bone resorption within 60 days of therapy, thus preventing further bone loss in elderly women who are at a high risk of developing osteoporosis.  相似文献   

19.
We compared the distribution of a cysteine proteinase inhibitor, cystatin C, with that of cathepsin K in osteoclasts of the mouse tibia by immunolight and immunoelectron microscopy. Light microscopically, strong immunoreactivity for cystatin C was found extracellularly along the resorption lacuna and intracellularly in the organelles of osteoclasts. In serial sections, various patterns of cystatin C and cathepsin K localization were seen, specifically: (1) some resorption lacuna were positive for both cystatin C and cathepsin K; (2) others were positive for either cystatin C or cathepsin K, but not both; and (3) some lacuna were negative for both. In osteoclasts, the localization of cystatin C was similar to that of cathepsin K. Furthermore, cystatin C immunoreactivity was detected in preosteoclasts and osteoblasts, whereas cathepsin K was seen only in preosteoclasts. Electron microscopically, cystatin C immunoreactive products were found in the rough endoplasmic reticulum (ER), Golgi apparatus, vesicles, granules, and vacuoles of osteoclasts. These cystatin C-positive vesicles had fused or were in the process of fusion with the ampullar vacuoles (extracellular spaces) containing cystatin C-positive, fragmented, fibril-like structures. The extracellular cystatin C was deposited on and between the cytoplasmic processes of ruffled borders, and on and between type I collagen fibrils. In the basolateral region of osteoclasts, cystatin C-positive vesicles and granules also fused with vacuoles that contained cystatin C-positive or negative fibril-like structures. These results indicate that osteoclasts not only synthesize and secrete cathepsin K from the ruffled border into the bone resorption lacunae, but also a cysteine proteinase inhibitor, cystatin C. Therefore, it is suggested that cystatin C regulates the degradation of bone matrix by cathepsin K, both extracellularly and intracellularly.  相似文献   

20.
Periprosthetic osteolysis is often nonsymptomatic and hard to visualize by conventional radiography. Cross-linked N-telopeptide of type I collagen (NTx), a marker of osteoclast mediated bone resorption, has been suggested to evaluate local particulate-induced osteolysis in patients operated on with a total hip prosthesis. Urine specimens were sampled after hip joint replacement in 160 patients. NTx was analyzed by a commercially available ELISA kit. Osteolysis was identified in the acetabulum and confirmed at operation. Using analysis of covariance to correct for differences in age, gender, and time after operation, NTx (mean SD) was 36+/-12 BCE/nM creatinine in patients with osteolysis (n=33) and 27+/-13 BCE/nM creatinine in patients without osteolysis (n=127) (p=0.003). Eighteen hips of 38 (47%), demonstrating an annual wear of more than 0.2 mm and an NTx value above 29 BCE/nM creatinine, had been revised due to osteolysis. The osteolysis prevalence in this group was increased 10 times (CI 4-23, p<0.05). Indeed, NTx release and annual wear were both associated with increased prevalence of osteolysis, however, independently of each other. NTx seems a feasible marker of periprosthetic osteolysis. A preoperative baseline NTx level is likely needed for its use as a predictor of periprosthetic osteolysis in individual cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号