首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Latent inhibition (LI) is a behavioral paradigm in which prior exposure to a stimulus not followed by reinforcement retards subsequent conditioning to that stimulus when it is paired with reinforcement. Two experiments investigated the effects of 0.1 mg/kg haloperidol administration on LI as a function of number of CS pre-exposures. The investigation was carried out using a conditioned emotional response (CER) procedure consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus, tone, was repeatedly presented without reinforcement; conditioning, in which the pre-exposed stimulus was paired with shock; and test, where LI was indexed by animals' suppression of licking during tone presentation. The three stages were conducted 24 h apart. In Experiment 1, 40 CS pre-exposures were given. LI was obtained in both the placebo and haloperidol conditions, but the effect was much more pronounced under the drug. Experiment 2 used ten CS pre-exposures. LI was not obtained in the placebo animals but was clearly evident in animals injected with haloperidol. The implications of these findings for the effects of neuroleptics on learning are discussed.  相似文献   

2.
In the present study we have examined the effect of clozapine, an atypical antipsychotic drug, on latent inhibition (LI) using the conditioned emotional response (CER) procedure. In this procedure, ten pre-exposures to the to-be-conditioned stimulus result in weak or no LI whereas 30 pre-exposures produce robust LI. Three different experimental protocols were used to study the effects of clozapine: facilitation of LI in animals subjected to ten pre-exposures to the to-be-conditioned stimulus; antagonism of the disruptive effect of amphetamine (1mg/kg, s.c.) on LI in animals receiving 30 pre-exposures; antagonism of the disruptive effect of nicotine (0.6mg/kg, s.c.) on LI in animals receiving 30 pre-exposures. High doses of clozapine (3 and 10mg/kg, s.c.) disrupted the CER in non pre-exposed animals. Despite this, clozapine significantly facilitated the development of LI at 1 and 10mg/kg and significantly attenuated the disruptive effects of nicotine at 0.3 and 1mg/kg and of amphetamine at 2 and 5mg/kg. These results demonstrate that clozapine is active in the LI model and further support the utility of this model in the study of mechanisms of action of antipsychotic drugs.  相似文献   

3.

Rationale  

Latent inhibition (LI) is the poorer conditioning to a stimulus seen when conditioning is preceded by repeated non-reinforced pre-exposure to the stimulus. LI indexes the ability to ignore irrelevant stimuli and is used extensively to model attentional impairments in schizophrenia. We showed that the pro-psychotic muscarinic antagonist scopolamine can produce LI disruption or LI persistence depending on dose and stage of administration: low doses disrupt LI acting in the pre-exposure stage of the LI procedure, whereas higher dose produces abnormally persistent LI via action in the conditioning stage. The two LI abnormalities show distinct response to antipsychotic drugs (APDs), with LI disruption, but not LI persistence, reversed by APDs.  相似文献   

4.
Latent inhibition (LI) is a behavioral paradigm in which animals learn to ignore a repeatedly presented stimulus not followed by meaningful consequences. We previously reported that LI was disrupted following the administration of 1.5 mg/kg dl-amphetamine. The present experiments investigated the effects of 6 mg/kg dl-amphetamine administration on LI in a conditioned emotional response (CER) procedure consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus, tone, was repeatedly presented without reinforcement; conditioning, in which the pre-exposed stimulus was paired with shock; and test, where LI was indexed by animals' suppression of licking during tone presentation. The three stages were conducted 24 h apart. In Experiment 1, the drug was administered in a 2×2 design, i.e. drug-no drug in pre-exposure and drug-no drug in conditioning. LI was obtained in all conditions. In Experiment 2, animals were given either 5 days of 6 mg/kg amphetamine pretreatment and amphetamine in pre-exposure and conditioning or 7 days of saline. LI was not obtained under amphetamine, but this outcome reflected a state-dependency effect. In Experiment 3, animals received either 5 days of amphetamine pretreatment and amphetamine in pre-exposure, conditioning and test or 8 days of saline. LI was obtained in both the placebo and amphetamine conditions. Experiments 4a and 4b compared the effects of two drug doses, 1.5 (4a) and 6 mg/kg (4b), administered in pre-exposure and conditioning. LI was abolished with the 1.5 mg/kg dose but not with the 6 mg/kg dose.  相似文献   

5.
Abstract Rationale. Latent inhibition (LI) refers to retarded conditioning to a stimulus as a consequence of its inconsequential pre-exposure, and disrupted LI in the rat is considered to model an attentional deficit in schizophrenia. Blockade of NMDA receptor transmission, which produces behavioral effects potentially relevant to schizophrenic symptomatology in several animal models, has been reported to spare LI. Objectives. To show that systemic administration of the non-competitive NMDA antagonist MK-801 will lead to an abnormally persistent LI which will emerge under conditions that disrupt LI in controls, and that this will be reversed by the atypical neuroleptic clozapine but not by the typical neuroleptic haloperidol, as found for other NMDA antagonist-induced models. Methods. LI was measured in a thirst-motivated conditioned emotional response (CER) procedure by comparing suppression of drinking in response to a tone in rats which previously received 0 (non-pre-exposed) or 40 tone exposures (pre-exposed) followed by two (experiment 1) or five (experiments 2–5) tone – foot shock pairings. Results. MK-801 at doses of 0.1 and 0.2 mg/kg reduced conditioned suppression while no effect on suppression was seen at the 0.05 mg/kg dose. At the latter dose, intact LI was seen with parameters that produced LI in controls (40 pre-exposures and two conditioning trials). Raising the number of conditioning trials to five disrupted LI in control rats, but MK-801-treated rats continued to show LI, and this abnormally persistent LI was due to the action of MK-801 in the conditioning stage. MK-801-induced LI perseveration was unaffected by both haloperidol (0.1 mg/kg) and clozapine (5 mg/kg) administered in conditioning, and was reversed by clozapine but not by haloperidol administered in pre-exposure. Conclusion. MK-801-induced perseveration of LI is consistent with other reports of perseverative behaviors, suggested to be particularly relevant to negative symptoms of schizophrenia, following NMDA receptor blockade. We suggest that LI perseveration may model impaired attentional set shifting associated with negative symptoms of schizophrenia. Moreover, the finding that the action of MK-801 on LI and the action of clozapine are exerted in different stages of the LI procedure suggests that the MK-801-based LI model may provide a unique screening tool for the identification of novel antipsychotic compounds, whereby the schizophrenia-mimicking LI abnormality is drug-induced, but the detection of the antipsychotic action is not dependent on the mechanism of action of the pro-psychotic drug. Electronic Publication  相似文献   

6.
Latent inhibition (LI) refers to retarded conditioning to a stimulus as a consequence of its non-reinforced pre- exposure. LI is impaired in some subsets of schizophrenic patients and in rats treated with amphetamine. Antipsychotic drugs (APDs) potentiate LI under conditions that are insufficient to produce LI in control animals, namely, low number of pre-exposures or high number of conditioning trials. The present experiments tested the proposition that LI potentiation under both conditions stems from the action of APDs in the conditioning stage. Experiments 1-3 used 10 pre-exposures and 2 conditioning trials, and tested the effects of 2.5, 5, and 10 mg/kg clozapine, respectively. Experiments 4-6 used 40 pre-exposures and 5 conditioning trials, with clozapine doses as above. Clozapine was administered in either the pre-exposure, the conditioning stage, or in both. In all the experiments, vehicle controls did not show LI. Overall, clozapine administration in conditioning, irrespective of drug condition in pre-exposure, produced LI. The implications of these results for the mechanism of action of antipsychotic drugs are discussed.  相似文献   

7.
Latent inhibition (LI), that is, retarded conditioning to a stimulus following its nonreinforced pre-exposure, is impaired in some subsets of schizophrenia patients and in amphetamine-treated rats. Potentiation of LI by antipsychotic drugs (APDs) given in conditioning, under conditions that do not lead to LI in controls, is a well-established index of antipsychotic activity. Recently, we have shown that the atypical APD, clozapine, in addition disrupts LI if administered in pre-exposure, under conditions that lead to LI in controls. This study demonstrates the same behavioral profile for the atypical APD risperidone. LI was measured in a thirst-motivated conditioned emotional response procedure by comparing suppression of drinking in response to a tone previously paired with a foot shock in rats that received nonreinforced exposure to the tone prior to conditioning (pre-exposed (PE)) and rats for whom the tone was novel (non-pre-exposed (NPE)). We show that under conditions that did not yield LI in vehicle controls (40 pre-exposures and five conditioning trials), risperidone (0.25, 0.5, and 1.2 mg/kg) led to LI when administered in conditioning. Under conditions that led to LI in vehicle controls (40 pre-exposures and two conditioning trials), risperidone (0.25, 0.5, and 2.5 mg/kg) abolished LI when administered in pre-exposure; the latter effect was not evident with haloperidol. In addition, the effects of risperidone administered in both the pre-exposure and conditioning stages were dose-dependent so that the pre-exposure-based action was manifested at lower but not at higher doses. It is concluded that atypical APDs exert in the LI model a dual pattern of effects, which enables detection of their 'typical' action (conditioning-based LI potentiation) as well as a dissociation from typical APDs by their 'atypical' action (pre-exposure-based LI disruption). It is suggested that the former and latter effects are subserved by D2 and 5HT2A antagonism, respectively.  相似文献   

8.
Latent inhibition (LI) reflects a cognitive process whereby repeated pre-exposure of a to-be-conditioned stimulus impairs subsequent conditioning. Since it is believed to reflect the ability of an organism to screen out irrelevant stimuli, disrupted LI has been suggested as a model for a cognitive deficit in schizophrenia. Animal studies have previously shown that indirect dopamine (DA) agonists can disrupt LI, an effect which is reversed by neuroleptics. Conversely, neuroleptics given alone potentiate LI. In this study, using pre-exposure to a tone stimulus which is subsequently paired with mild footshock, we have demonstrated that haloperidol given before conditioning only is equally as effective as haloperidol given twice, before pre-exposure and conditioning, in potentiating LI after 10 pre-exposures. This supports our earlier results with nicotine, pointing to conditioning as the critical time for the action of dopaminergic manipulations on LI. The implications for the use of potentiated LI as a screening test for neuroleptic action are discussed.  相似文献   

9.
Although there are presently no highly selective agonists for the D3 dopamine receptor, a number of compounds reported to bind with moderate selectivity to D3 receptors are currently employed to investigate the importance of D3 receptors in the behavioral effects of psychostimulant drugs. For example, 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) has been used extensively to investigate the role of D3 receptors in the reinforcing and discriminative stimulus properties of cocaine and d-amphetamine. However, recent investigations with a relatively selective D3 antagonist, PNU-99194A, have led us to question the importance of D3 receptors in the discriminative stimulus effects of 7-OH-DPAT. In the present study, 16 male Sprague-Dawley rats were trained to discriminate (+)-7-OH-DPAT (0.03 mg/kg, subcutaneously (s.c.)) from saline in a two-choice operant procedure using a fixed-ratio 20 schedule of water reinforcement. Consistent with previous findings, PNU-99194A appeared to attenuate only partially (+)-7-OH-DPAT discrimination at a dose that disrupted responding in most subjects. Moreover, a highly selective D2 agonist, PNU-91356A, substituted completely and in a dose-dependent manner for (+)-7-OH-DPAT, while d-amphetamine produced only partial substitution for the training drug. These data indicate that D2 receptor actions appear to be more important than D3 receptor actions in exerting the discriminative stimulus effects of (+)-7-OH-DPAT. Continued efforts to determine the relative importance of D2 vs D3 receptor actions in the modulation of the discriminative stimulus effects of (+)-7-OH-DPAT are discussed.  相似文献   

10.
The present study aimed at characterising the effects of the new antipsychotic olanzapine in a Latent Inhibition (LI) paradigm. A conditioned emotional response (CER) procedure was used, consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus (a tone) was presented six times without being followed by reinforcement; conditioning, in which the pre-exposed stimulus was paired twice with reinforcement (a foot shock); and test, in which LI was assessed by the suppression of licking during the tone presentation. In Experiment I, it was found that pre-treatment with an intermediate dose (0.312mg/kg) of olanzapine, but not with lower (0.003; 0.031mg/kg) or higher doses (0.625; 1.25mg/kg), restored LI in amphetamine-treated (1.5mg/kg) animals. This effect could not be attributed to a disruptive effect of olanzapine on CER learning, as olanzapine per se had no effect on this conditioning (Experiment 2). In Experiment 3, olanzapine did not antagonise the amphetamine-induced locomotor hyperactivity. As olanzapine has not only dopaminergic, but also serotonergic, adrenergic, histaminergic and cholinergic activities, the differential effects of olanzapine on amphetamine-induced disruption of LI and hyperactivity may reflect an action on several pharmacological targets, possibly interacting with one another.  相似文献   

11.
The animal amphetamine model of schizophrenia has been based primarily on stereotyped behavior. The present study sought to demonstrate an amphetamine-induced deficit in attentional processes. To this end, the effects of acute and chronic (14 days) 1.5 mg/kg dl-amphetamine administration on the ability of rats to ignore irrelevant stimuli were examined using the paradigm of latent inhibition (LI) in a conditioned emotional response (CER) procedure. The procedure consisted of three stages: pre-exposure, in which the to-be-conditoned stimulus, tone, was presented without being followed by reinforcement; acquisition, in which the pre-exposed tone was paired with shock; and test, in which LI was indexed by animals' suppression of licking during tone presentation. Experiment 1 showed that chronic but not acute treatment abolished LI. Experiment 2 showed that animals receiving chronic amphetamine pretreatment but pre-exposed and conditioned without the drug, exhibited normal LI. In Experiment 3, animals which received chronic amphetamine pretreatment and were pre-exposed under the drug but conditioned without it, also showed normal LI. The implications of these results for the animal amphetamine model of schizophrenia are discussed.  相似文献   

12.
Latent inhibition (LI) is a behavioral model of selective attention that has been used to study the attentional deficits seen in schizophrenia. In the present study, we examined the effect of 5-hydroxytryptamine3 (5-HT3) receptor blockade on LI using the conditioned emotional response (CER) procedure. Prior exposure to 20, 30, or 40 stimulus presentations significantly, and almost completely, inhibited the CER to that stimulus. This LI effect was much weaker when only 10 preexposures were given. 1H-indole-3-carboxylic acid, trans-octahydro-3-oxo-2,6-methano-2H-quinolizin-8-yl ester methanesulfonate (MDL 73,147EF), a selective 5-HT3 receptor antagonist, significantly facilitated the LI effect observed after 10 preexposures at 0.1 mg/kg but not at 0.01 mg/kg. The magnitude of this effect was comparable to that observed with the classical neuroleptic haloperidol (0.1 mg/kg). Neither MDL 73,147EF nor haloperidol affected the CER in animals not preexposed to the stimulus. These results strongly corroborate suggestions that 5-HT3 receptor antagonists will be of use in the treatment of schizophrenia.  相似文献   

13.
RATIONALE: Latent inhibition (LI) refers to the decrease in conditioned response induced by the repeated non-reinforced pre-exposure to the conditioned stimulus before its pairing with the unconditioned stimulus during the conditioning stage. LI has been considered as a relevant animal model for the study of the biological bases of schizophrenia. LI has recently been demonstrated to depend on the integrity of the entorhinal cortex, as lesioning of this area disrupted LI. OBJECTIVES: The present study aimed to verify whether the classical neuroleptic haloperidol and/or the atypical antipsychotic olanzapine would prevent the effect of entorhinal cortex lesioning. METHODS: LI was studied in an off-baseline conditioned emotional response (CER) paradigm in which a tone is paired with a footshock. Entorhinal cortex lesions were produced by the electrolytic method. After a recovery period, both lesioned and control rats received either haloperidol (0.3 mg/kg), olanzapine (0.3 mg/kg) or vehicle before both the pre-exposure and conditioning stages of the experiment. RESULTS: In control rats, pre-exposure to the tone induced LI, which was affected by neither haloperidol nor olanzapine. Lesioning of the entorhinal cortex produced a deficit of LI, which was restored by olanzapine but not by haloperidol. CONCLUSIONS: This result suggests a dissociation of the anatomical and pharmacological targets of the two drugs. The possible involvement of dopamine D3 receptors in the effects of olanzapine is discussed.  相似文献   

14.
Vomiting was suppressed in cats pretreated with 8-OH-DPAT and then challenged with an emetic stimulus; motion, xylazine or cisplatin. The antiemetic effect is likely due to stimulation of postsynaptic serotonin-1A receptors. The most parsimonious explanation is that it acts at a convergent structure, presumably at or near the vomiting center. If so, 8-OH-DPAT may block emesis elicited by virtually any other stimulus. A supplementary experiment revealed that lorazepam suppressed motion sickness at a dose that produced ataxia, but did not suppress xylazine-induced emesis. These results do not support the possibility that the antiemetic effects of 8-OH-DPAT were the result of anxiolytic activity.  相似文献   

15.
RATIONALE: Pre-exposure to either one of the two to-be-associated stimuli alone is known to reduce the efficiency of the learning of their association when they are subsequently paired explicitly. In classical conditioning, pre-exposure to the conditioned stimulus (CS) gives rise to latent inhibition (LI); and pre-exposure to the unconditioned stimulus (US) results in the US pre-exposure effect (USPEE). Considerable evidence supports an important role of central dopamine in the regulation and modulation of LI; it has been suggested that the USPEE may be similarly controlled by dopamine, but this parallelism has only been directly demonstrated in the conditioned taste aversion paradigm. OBJECTIVE: The present study tested this hypothesis by comparing the efficacy of systemic amphetamine treatment to affect the expression of LI and the USPEE in a two-way active avoidance paradigm. METHODS: C57BL/6 male mice were tested in active avoidance using a tone CS and a foot-shock US. Twenty-four hours before, they were pre-exposed to 100 presentations of the CS or the US, or to the test apparatus only. Amphetamine (2.5 mg/kg) or saline was administered before stimulus pre-exposure and conditioned avoidance test, in which the mice learned to avoid the shock by shuttling in response to the tone. RESULTS: Amphetamine disrupted both stimulus pre-exposure effects, thus, lending further support to the hypothesis that the USPEE is similar to LI in its sensitivity to dopamine receptor agonist. Hence, the USPEE paradigm may represent a valuable addition to the study of dopamine-sensitive processes of selective learning currently implicated in LI and Kamin blocking.  相似文献   

16.
Previous studies have shown that dopamine (DA) receptor subtype-specific agonists differentially affect responding for conditioned reward D1-like agonists impair, whereas D2-like agonists enhance responding. The present study compared the effects of the D2-like agonists bromocriptine and 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT). Food-deprived rats (N=159) were preexposed to a chamber with two levers, one producing a tone (3 s) and the other turning the house lights off (3 s), for five 40-min sessions. In four subsequent 65-min conditioning sessions with the levers removed, the lights-off stimulus was paired with food (80 presentations per session). During two 40-min test sessions, the lights-off (CR) and tone (NCR) levers were replaced and responses at each lever were recorded. Confirming previous results, bromocriptine (0.50-5.0 mg/kg) dose-dependently enhanced responding on the lever producing conditioned reward. In contrast, 7-OH-DPAT had a biphasic effect on responding for conditioned reward. Low doses (0.10-0.25 mg/kg) reduced CR lever responding, whereas a higher dose of 1.0 mg/kg enhanced such responding. An intermediate dose of 0.50 mg/kg neither impaired nor enhanced CR lever responding. The biphasic profile of 7-OH-DPAT may arise through differential actions at D3 vs. D2 receptors or presynaptic vs. postsynaptic DA receptors at low and high doses, respectively.  相似文献   

17.
Numerous studies have suggested that dopamine (DA) D2 and D3 receptors are involved in the behavioral effects of cocaine. The present experiments evaluated the reinforcing and cocaine-like discriminative stimulus effects of several D2/D3 agonists in rhesus monkeys. In the first experiment, animals (n = 4) were trained to self-administer 0.03 mg/kg/inj cocaine under a fixed-interval (FI) 5-min schedule. When substituted for cocaine, the D2/D3 agonist quinpirole (0.003-0.03 mg/kg/inj) functioned as a reinforcer in all monkeys. In two cocaine-naive monkeys trained to respond under an FI 3-min schedule of food presentation, quinpirole maintained low rates of responding in one subject, while at the highest dose (0.03 mg/kg/inj) it functioned as a reinforcer in the second monkey. In this animal, increased activity was observed at this dose, which may have contributed to the overall rate of responding. In the second experiment, monkeys (n = 4) were trained to discriminate cocaine from saline using a two-lever, food-reinforced, drug discrimination procedure. The D2/D3 agonists quinpirole, (+/-)-7-OH-DPAT, and R-( + )-7-OH-DPAT fully substituted for cocaine. However, the time-course of substitution differed between quinpirole, which substituted for cocaine 10 min after administration, and (+/-)- and R-(+)-7-OH-DPAT, which required 60-min pretreatments. The behavioral potencies, as determined from ED50, values, correlated with previously reported in vitro binding affinity and functional activity at the D3 receptor [R-(+ )-7-OH-DPAT > (+/-)-7-OH-DPAT > quinpirole]. These results further indicate that direct-acting D2/D3 agonists can function as reinforcers and produce cocaine-like discriminative stimulus effects, and support the idea that D3 receptors should continue to be a valuable target for future behavioral studies evaluating cocaine's mechanisms of action.  相似文献   

18.
Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI.  相似文献   

19.
Latent inhibition (LI) is a cross species selective attention phenomenon, which is disrupted by amphetamine and enhanced by antipsychotic drugs (APDs). Accumulating data of LI in gene-modified mice as well as in mouse inbred strains suggest genetic component of LI. Here we study modulation of LI in mouse inbred strains with spontaneously disrupted LI by parametric manipulations (number of pre-exposures and conditioning trials) and pharmacological treatments with antipsychotics and NMDA modulator, D-serine. C3H/He and CBA/J inbred mice showed disrupted LI under conditions with 40 pre-exposures (PE) and 2 trials of the conditioned stimulus-unconditioned stimulus (CS-US) due to either loss of the pre-exposure effect or a ceiling effect of poor learning, respectively. The increased number of pre-exposures and/or number of conditioning trials corrected expression of LI in these inbred mice. The disrupted LI was also reversed by haloperidol in both inbred strains at 1.2 mg/kg but not at 0.4 mg/kg, as well as by clozapine (at 3 mg/kg in C3H/He and at 9 mg/kg in CBA/J mice). D-serine potentiated LI in C3H/He mice at 600 mg/kg, but not in the CBA/J at both studied doses (600 and 1800 mg/kg). Desipramine (10 mg/kg) had no effect on LI in both inbred mouse strains. Our findings demonstrated some resemblance between the effects of parametric and pharmacological manipulations on LI, suggesting that APDs may affect the capacity of the brain processes environmental stimuli in LI. Taken together, LI may offer a translational strategy that allows prediction of drug efficacy for cognitive impairments in schizophrenia.  相似文献   

20.
This study examined the role of dopamine D3 receptors in the stimulus generalization produced by 7-OH-DPAT and PD 128907 in rats trained to discriminate cocaine from saline. Twelve male Sprague-Dawley rats were trained to discriminate cocaine (10 mg/kg) from saline in a two-choice operant procedure using a FR20 schedule of water reinforcement. Stimulus generalization tests were administered with the D3-preferring agonists (+/-)-7-OH-DPAT (0.01-0.3 mg/kg), (+)-7-OH-DPAT (0.01-0.3 mg/kg), and PD 128907 (0.01-0.3 mg/kg), and the selective D2 agonist PNU-39156 (0.01-0.3 mg/kg). Complete generalization to cocaine was observed with (+/-)-7-OH-DPAT at doses that markedly suppressed response rate. Only partial stimulus generalization was observed with (+)-7-OH-DPAT and PD 128907 when these compounds were administered intraperitoneally, although subcutaneous injections of these compounds produced complete substitution. Response rate was also significantly reduced by these compounds. The selective D2 agonist, PNU-91356 also fully substituted for the cocaine cue and suppressed response rate in a dose-dependent manner. To ascertain the importance of D3 receptor actions in the stimulus generalization produced by (+/-)-7-OH-DPAT (0.1 mg/kg) and PD-128907 (0.3 mg/kg), the fairly selective D3 antagonist, PNU-99194A (2.5-20 mg/kg) was also tested in combination with these compounds. Although PNU-99194A partially attenuated the stimulus generalization produced by (+/-)-7-OH-DPAT, it failed to block PD-128907 substitution for cocaine. These results indicate at least some involvement of D3 receptors in the stimulus effects of (+/-)-7-OH-DPAT, although further investigations are clearly warranted. The present results also suggest that the cue properties of cocaine may be dissociated from the locomotor activating effects of this drug, because D3/D2 receptor agonists suppress locomotor activity but produce stimulus generalization to cocaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号