首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of cannabinoid receptors causes inhibition of spasticity, in a mouse model of multiple sclerosis, and of persistent pain, in the rat formalin test. The endocannabinoid anandamide inhibits spasticity and persistent pain. It not only binds to cannabinoid receptors but is also a full agonist at vanilloid receptors of type 1 (VR1). We found here that vanilloid VR1 receptor agonists (capsaicin and N-N'-(3-methoxy-4-aminoethoxy-benzyl)-(4-tert-butyl-benzyl)-urea [SDZ-249-665]) exhibit a small, albeit significant, inhibition of spasticity that can be attenuated by the vanilloid VR1 receptor antagonist, capsazepine. Arvanil, a structural "hybrid" between capsaicin and anandamide, was a potent inhibitor of spasticity at doses (e.g. 0.01 mg/kg i.v.) where capsaicin and cannabinoid CB(1) receptor agonists were ineffective. The anti-spastic effect of arvanil was unchanged in cannabinoid CB(1) receptor gene-deficient mice or in wildtype mice in the presence of both cannabinoid and vanilloid receptor antagonists. Likewise, arvanil (0.1-0.25 mg/kg) exhibited a potent analgesic effect in the formalin test, which was not reversed by cannabinoid and vanilloid receptor antagonists. These findings suggest that activation by arvanil of sites of action different from cannabinoid CB(1)/CB(2) receptors and vanilloid VR1 receptors leads to anti-spastic/analgesic effects that might be exploited therapeutically.  相似文献   

2.
1. This study was directed at exploring the structure-activity relationship for anandamide and certain of its analogues at the rat VR1 receptor in transfected cells and at investigating the relative extent to which anandamide interacts with CB(1) and vanilloid receptors in the mouse vas deferens. 2. pK(i) values for displacement of [(3)H]-resiniferatoxin from membranes of rVR1 transfected CHO cells were significantly less for anandamide (5.78) than for its structural analogues N-(4-hydroxyphenyl)-arachidonylamide (AM404; 6.18) and N-(3-methoxy-4-hydroxy)benzyl-arachidonylamide (arvanil; 6.77). 3. pEC(50) values for stimulating (45)Ca(2+) uptake into rVR1 transfected CHO cells were significantly less for anandamide (5.80) than for AM404 (6.32) or arvanil (9.29). Arvanil was also significantly more potent than capsaicin (pEC(50)=7.37), a compound with the same substituted benzyl polar head group as arvanil. 4. In the mouse vas deferens, resiniferatoxin was 218 times more potent than capsaicin as an inhibitor of electrically-evoked contractions. Both drugs were antagonized to a similar extent by capsazepine (pK(B)=6.93 and 7.18 respectively) but were not antagonized by SR141716A (1 microM). Anandamide was less susceptible than capsaicin to antagonism by capsazepine (pK(B)=6.02) and less susceptible to antagonism by SR141716A (pK(B)=8.66) than methanandamide (pK(B)=9.56). WIN55212 was antagonized by SR141716A (pK(B)=9.02) but not by capsazepine (10 microM). 5. In conclusion, anandamide and certain of its analogues have affinity and efficacy at the rat VR1 receptor. In the mouse vas deferens, which seems to express vanilloid and CB(1) receptors, both receptor types appear to contribute to anandamide-induced inhibition of evoked contractions.  相似文献   

3.
1. We tested the hypothesis that sensory nerves innervating blood vessels play a role in the local and systemic regulation of the cardiovascular and respiratory (CVR) systems. We measured CVR reflexes evoked by administration of anandamide (86 - 863 nmoles) and capsaicin (0.3 - 10 nmoles) into the hindlimb vasculature of anaesthetized rats. 2. Anandamide and capsaicin each caused a rapid dose-dependent reflex fall in blood pressure and an increase in ventilation when injected intra-arterially into the hindlimb. 3. Action of both agonists at the vanilloid receptor (VR1) on perivascular sensory nerves was investigated using capsazepine (1 mg kg(-1) i.a.) a competitive VR1 antagonist, ruthenium red (1 mg kg(-1) i.a.), a non-competitive antagonist at VR1, or a desensitizing dose of capsaicin (200 nmoles i.a.). The cannabinoid receptor antagonist SR141716 (1 mg kg(-1) i.a.) was used to determine agonist activity at the CB(1) receptor. 4. Capsazepine, ruthenium red, or acute VR1 desensitization by capsaicin-pretreatment, markedly attenuated the reflex CVR responses evoked by anandamide and capsaicin (P< 0.05; paired Student's t-test). Blockade of CB(1) had no significant effect on the responses to anandamide. 5. Local sectioning of the femoral and sciatic nerves attenuated CVR responses to anandamide and capsaicin (P< 0.05). Vagotomy or carotid sinus sectioning had no significant effect on anandamide- or capsaicin-induced responses. 6. These data demonstrate that both the endogenous cannabinoid, anandamide, and the vanilloid, capsaicin, evoke CVR reflexes when injected intra-arterially into the rat hindlimb. These responses appear to be mediated reflexly via VR1 located on sensory nerve endings within the hindlimb vasculature.  相似文献   

4.
Capsaicin and its analogue N-arachidonoyl-vanillyl-amine (arvanil) are agonists of vanilloid VR1 receptors, and suppress spontaneous activity in mice through an unknown mechanism. Here, we tested in rats the effect on motor behavior of: (1) capsaicin; (2) N-linoleoyl-vanillyl-amine (livanil) and N--linolenoyl-vanillyl-amine (linvanil), which, unlike arvanil, have very little affinity for cannabinoid CB1 receptors; and (3) the endocannabinoid anandamide (N-arachidonoyl-ethanolamine), which is a full agonist at both cannabinoid CB1 and vanilloid VR1 receptors. All compounds, administered i.p., dose-dependently (0.1–10 mg/kg) inhibited ambulation and stereotypic behavior and increased inactivity in the open field test. The rank of potency observed in vivo (livanil>capsaicin>linvanil>anandamide) bore little resemblance with the relative potencies in a functional assay for rat vanilloid VR1 receptors (livanil=linvanil>capsaicin>anandamide) and even less with the relative affinities in rat CB1 receptor binding assays (anandamide>livanil>linvanil>capsaicin). The vanilloid VR1 receptor antagonist capsazepine (10 mg/kg, i.p.) blocked the effect of capsaicin but not of livanil or anandamide, whereas the CB1 receptor antagonist (N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide.HCl (SR141716A, 3 mg/kg, i.p.) antagonized the actions of the CB1 receptor agonist Δ9-tetrahydrocannabinol, but not of livanil, anandamide or capsaicin. Anandamide occluded the effects of livanil on locomotion, possibly suggestive of a common mechanism of action for the two compounds. Finally, stimulation with capsaicin of cells expressing rat vanilloid VR1 receptors led to anandamide formation. These data suggest that motor behavior can be suppressed by the activation of: (1) vanilloid receptors, possibly via the intermediacy of anandamide; or (2) capsazepine- and SR141716A-insensitive sites of action for anandamide, livanil and linvanil, possibly the same that were previously suggested to mediate arvanil hypokinetic effects in mice.  相似文献   

5.
1. Endogenous neuronal lipid mediator anandamide, which can be synthesized in the lung, is a ligand of both cannabinoid (CB) and vanilloid receptors (VR). The tussigenic effect of anandamide has not been studied. The current study was designed to test the direct tussigenic effect of anandamide in conscious guinea-pigs, and its effect on VR1 receptor function in isolated primary guinea-pig nodose ganglia neurons. 2. Anandamide (0.3-3 mg.ml(-1)), when given by aerosol, induced cough in conscious guinea-pigs in a concentration dependent manner. When guinea-pigs were pretreated with capsazepine, a VR1 antagonist, the anandamide-induced cough was significantly inhibited. Pretreatment with CB1 (SR 141716A) and CB2 (SR 144528) antagonists had no effect on anandamide-induced cough. These results indicate that anandamide-induced cough is mediated through the activation of VR1 receptors. 3. Anandamide (10-100 micro M) increased intracellular Ca(2+) concentration estimated by Fluo-4 fluorescence change in isolated guinea-pig nodose ganglia cells. The anandamide-induced Ca(2+) response was inhibited by two different VR1 antagonists: capsazepine (1 micro M) and iodo-resiniferatoxin (I-RTX, 0.1 micro M), indicating that anandamide-induced Ca(2+) response was through VR1 channel activation. In contrast, the CB1 (SR 141716A, 1 micro M) and CB2 (SR 144528, 0.1 micro M) receptor antagonists had no effect on Ca(2+) response to anandamide. 4. In conclusion, these results provide evidence that anandamide activates native vanilloid receptors in isolated guinea-pig nodose ganglia cells and induces cough through activation of VR1 receptors.  相似文献   

6.
In anaesthetized rats activation of vanilloid receptors on sensory vagal nerves elicits rapid bradycardia and hypotension (Bezold-Jarisch reflex). Recent in vitro experiments revealed that the endogenous cannabinoid ligand anandamide acts as an agonist at the vanilloid VRI receptors. The present study was aimed at examining whether vanilloid VR1 receptors are involved in the cardiovascular effects of anandamide in the anaesthetized rat. Intravenous injection of anandamide, its stable analogue methanandamide and the vanilloid receptor agonist capsaicin produced a dose-dependent immediate and short-lasting decrease in heart rate and blood pressure with the following rank order of potencies: capsaicin > methanandamide > anandamide. This bradycardia was dose-dependently diminished by the selective vanilloid receptor antagonist capsazepine (0.3-3 micromol/kg) and the nonselective inhibitor of these receptors, ruthenium red (1-10 micromol/kg). Both antagonists reduced or tended to reduce the hypotension stimulated by the agonists. Following this bradycardia and hypotension (presumably evoked by the Bezold-Jarisch reflex; phase I), capsaicin, anandamide and methanandamide led to a brief vasopressor effect (phase II). Subsequently both anandamides, but not capsaicin, induced a more prolonged decrease in blood pressure (phase III). Capsazepine and ruthenium red (at doses up to 3 tmol/kg and 10 micromol/kg, respectively) failed to affect these changes in blood pressure. The cannabinoid CB1 receptor antagonist SR 141716 at 3 micromol/kg abolished the prolonged decrease in blood pressure (phase III) induced by anandamide and methanandamide, but had no effect on the reflex bradycardia and hypotension (phase I) and on the subsequent vasopressor effect (phase II) evoked by capsaicin, anandamide and methanandamide. In conclusion, the endogenous cannabinoid receptor agonist anandamide and its stable analogue methanandamide induce reflex bradycardia and hypotension (phase I) by activating the vanilloid VRI receptor. Whereas the mechanism underlying the brief vasopressor effect (phase II) is unknown, the prolonged hypotension (phase III) results from stimulation of the cannabinoid CB1 receptor.  相似文献   

7.
The endogenous cannabinoid agonist, anandamide produced a modest contractile response in guinea-pig isolated bronchus compared with the vanilloid receptor agonist capsaicin. The contractile response to both anandamide and capsaicin was inhibited by the vanilloid receptor antagonist, capsazepine. Furthermore, the NK(2)-selective antagonist, SR48968 but not the NK(1)-selective antagonist, SR140333 inhibited contractile responses to anandamide. The contractile response to anandamide was abolished in tissues desensitized by capsaicin. However, anandamide failed to cross-desensitize the contractile response to capsaicin. The contractile response to anandamide was not significantly altered in the presence of the CB(1) receptor antagonist, SR141716A, nor the amidase inhibitor, phenylmethylsulphonyl fluoride (PMSF) but was significantly increased in the presence of the neutral endopeptidase inhibitor, thiorphan. The cannabinoid agonist, CP55,940 failed to significantly attenuate the excitatory non-adrenergic non-cholinergic (eNANC) response in guinea-pig airways. In contrast, the ORL(1) receptor agonist, nociceptin, significantly inhibited this response. The results demonstrate that anandamide induces a modest contractile response in guinea-pig isolated bronchus that is dependent upon the activation of vanilloid receptors on airway sensory nerves. However, cannabinoid receptors do not appear to play a role in this regard, nor in regulating the release of neuropeptides from airway sensory nerves under physiological conditions.  相似文献   

8.
This study examined the effect of intrathecal (i.t.) injection of the endocannabinoid anandamide in urethane-anesthetized rats. The tip of the i.t. cannula was positioned at the T12–L1 level of the spinal cord. Either anandamide or its metabolically stable analogue methanandamide (25 to 100 nmol) produced dose-dependent decreases in the blood pressure that persisted at least for up to 30 min. The hypotensive responses to 100 nmol anandamide and to 100 nmol methanandamide were –17.7±1.6 mmHg (n=5) and –17.9±2.0 mmHg (n=4), respectively. Hypotensive effects were also obtained with the CB1 cannabinoid receptor agonist WIN 55212-2 (20 nmol; i.t.) as well as with the vanilloid VR1 receptor agonist capsaicin (3 nmol; i.t.). Nicotinic ganglionic blockade with hexamethonium bromide [10 mg/kg; intravenous(i.v.)] abolished the responses to both anandamide and capsaicin. The i.t. administration of the CB1 receptor antagonist, 20 nmol SR 141716A, as well as the VR1 receptor antagonist, 20 nmol capsazepine, prevented almost completely the hypotensive responses to both anandamide and methanandamide. SR 141716A prevented the hypotension caused by WIN 55212-2 but did not modify the response to the vanilloid receptor agonist capsaicin. On the contrary, capsazepine antagonized the hypotension caused by capsaicin but failed to affect the decrease in blood pressure caused by the CB1 cannabinoid receptor agonist WIN 55212-2. These results suggest that anandamide could modulate the blood pressure through the activation of cannabinoid CB1 receptors and vanilloid VR1 receptors localized at the spinal cord.  相似文献   

9.
1. We have investigated the vascular effects of N-arachidonoyl-dopamine (NADA), a novel endocannabinoid/vanilloid. NADA caused vasorelaxant effects comparable to those of anandamide in small mesenteric vessels (G3), the superior mesenteric artery (G0) and in the aorta. 2. In G3, addition of N(G)-nitro-l-arginine methyl ester (300 microm) or the dopamine (D(1)) receptor antagonist (SCH23390, 1 microm) did not affect responses to NADA. In the presence of 60 mm KCl, after de-endothelialisation, or after K(+) channel inhibition with charybdotoxin (100 nm) and apamin (500 nm), relaxant responses to NADA were inhibited. 3. In G3, pretreatment with the vanilloid receptor (VR) agonist capsaicin (10 microm) or the VR antagonist capsazepine (10 microm) reduced vasorelaxation to NADA. 4. In G3, application of the CB(1) antagonist SR141716A at 1 microm but not 100 nm reduced the potency of NADA. Another CB(1) antagonist, AM251 (100 nm and 1 microm), did not affect vasorelaxation to NADA. After endothelial denudation, SR141716A (1 microm) did not reduce the responses further. A combination of capsaicin and SR141716A (1 microm) reduced vasorelaxation to NADA further than with capsaicin pretreatment alone. The novel endothelial cannabinoid (CB) receptor antagonist O-1918 opposed vasorelaxation to NADA in G3. 5. In the superior mesenteric artery (G0), vasorelaxation to NADA was not dependent on an intact endothelium and was not sensitive to O-1918, but was sensitive to capsaicin and SR141716A or AM251 (both 100 nm). 6. The results of the present study demonstrate for the first time that NADA is a potent vasorelaxant. In G3, the effects of NADA are mediated by stimulation of the VR and the novel endothelial CB receptor, while in G0, vasorelaxation is mediated through VR(1) and CB(1) receptors.  相似文献   

10.
1. There is considerable interest in elucidating potential endogenously derived agonists of the vanilloid receptor and the role of anandamide in this regard has received considerable attention. In the present study, we have used an electrophysiological technique to investigate the mechanism of activation of vanilloid receptors in an isolated vagal preparation. 2. Both capsaicin and anandamide depolarized de-sheathed whole vagal nerve preparations that was antagonized by the VR1 antagonist, capsazepine (P<0.05) whilst this response was unaltered by the cannabinoid (CB1) selective antagonist SR141716A or the CB2 selective antagonist, SR144528, thereby ruling out a role for cannabinoid receptors in this response. 3. The PKC activator, phorbol-12-myristate-13-acetate (PMA) augmented depolarization to both anandamide and capsaicin and this response was significantly inhibited with the PKC inhibitor, bisindolylmaleimide (BIM) (P<0.05). 4. The role of lipoxygenase products in the depolarization to anandamide was investigated in the presence of the lipoxygenase inhibitor, 5,8,11-Eicosatriynoic acid (ETI). Depolarization to anandamide and arachidonic acid was significantly inhibited in the presence of ET1 (P<0.05). However, in the absence of calcium depolarization to anandamide was not inhibited by ETI. 5. Using confocal microscopy we have demonstrated the presence of vanilloid receptors on both neuropeptide containing nerves and nerves that did not stain for sensory neuropeptides. 6. These results demonstrate that anandamide evokes depolarization of guinea-pig vagus nerve, following activation of vanilloid receptors, a component of which involves the generation of lipoxygenase products. Furthermore, these receptors are distributed in both neuropeptide and non-neuropeptide containing nerves.  相似文献   

11.
1. Cannabinoids are known to cause coronary vasodilatation and reduce left ventricular developed pressure (LVDP) in isolated hearts although the identity of the receptor(s) mediating these responses is unknown. Our objective was to pharmacologically characterize cannabinoid receptors mediating cardiac responses to the endocannabinoid, anandamide. 2. Dose-response curves for coronary perfusion pressure (CPP) and LVDP were constructed to anandamide, R-(+)-methanandamide, palmitoylethanolamide (PEA) and JWH015 in isolated Langendorff-perfused rat hearts. Anandamide dose-response curves were also constructed in the presence of antagonists selective for CB(1), CB(2) or VR(1) receptors. 3. Anandamide and methanadamide significantly reduced CPP and LVDP but the selective CB(2) receptor agonists, PEA and JWH015 had no significant effect, compared with equivalent vehicle doses. 4. Single bolus additions of the selective CB(1)-receptor agonist, ACEA (5 nmol), decreased LVDP and CPP. When combined with JWH015 (5 nmol) these responses were not augmented. 5. Anandamide-mediated reductions in CPP were significantly blocked by the selective CB(1) receptor antagonists SR 141716A (1 microM) and AM251 (1 microM) and the selective CB(2) receptor antagonist SR 144528 (1 microM) but not by another selective CB(2) receptor antagonist AM630 (10 microM) nor the vanilloid VR(1) receptor antagonist capsazepine (10 microM). 6. SR 141716A, AM281 and SR 144528 significantly blocked negative inotropic responses to anandamide that were not significantly affected by AM251, AM630 and capsazepine. 7. One or more novel sites mediate negative inotropic and coronary vasodilatatory responses to anandamide. These sites can be distinguished from classical CB(1) and CB(2) receptors, as responses are sensitive to both SR 141716A and SR 144528.  相似文献   

12.
1. The cannabinoid arachidonyl ethanolamide (anandamide) caused concentration-dependent relaxation of 5-HT-precontracted, myograph-mounted, segments of rat left anterior descending coronary artery. 2. This relaxation was endothelium-independent, unaffected by the fatty acid amide hydrolase inhibitor, arachidonyl trifluoromethyl ketone (10 microM), and mimicked by the non-hydrolysable anandamide derivative, methanandamide. 3. Relaxations to anandamide were attenuated by the cannabinoid receptor antagonist, SR 141716A (3 microM), but unaffected by AM 251 (1 microM) and AM 630 (1 microM), more selective antagonists of cannabinoid CB(1) and CB(2) receptors respectively. Palmitoylethanolamide, a selective CB(2) receptor agonist, did not relax precontracted coronary arteries. 4. Anandamide relaxations were not affected by inhibition of sensory nerve transmission with capsaicin (10 microM) or blockade of vanilloid VR1 receptors with capsazepine (5 microM). Nevertheless capsaicin relaxed coronary arteries in a concentration-dependent and capsazepine-sensitive manner, confirming functional sensory nerves were present. In contrast, capsazepine and capsaicin did inhibit anandamide relaxations in methoxamine-precontracted rat small mesenteric arteries. 5. Relaxations to anandamide were inhibited by TEA (1 mM) or iberiotoxin (50 nM), blockers of large conductance, Ca(2+)-activated K(+) channels (BK(Ca)). Gap junction inhibition with 18alpha-glycyrrhetinic acid (100 microM) did not affect anandamide relaxations. 6. This study shows anandamide relaxes the rat coronary artery by a novel mechanism. Anandamide-induced relaxations do not involve the endothelium, degradation into active metabolites, or activation of cannabinoid CB(1) or CB(2) receptors, but may involve activation of BK(Ca). Vanilloid receptor activation also has no role in the effects of anandamide in coronary arteries, even though functional sensory nerves are present.  相似文献   

13.
1. We have studied the effect of capsaicin, piperine and anandamide, drugs which activate vanilloid receptors and capsazepine, a vanilloid receptor antagonist, on upper gastrointestinal motility in mice. 2. Piperine (0.5 - 20 mg kg(-1) i.p.) and anandamide (0.5 - 20 mg kg(-1) i.p.), dose-dependently delayed gastrointestinal motility, while capsaicin (up to 3 mg kg(-1) i.p.) was without effect. Capsazepine (15 mg kg(-1) i.p.) neither per se affected gastrointestinal motility nor did it counteract the inhibitory effect of both piperine (10 mg kg(-1)) and anandamide (10 mg kg(-1)). 3. A per se non effective dose of SR141716A (0.3 mg kg(-1) i.p.), a cannabinoid CB(1) receptor antagonist, counteracted the inhibitory effect of anandamide (10 mg kg(-1)) but not of piperine (10 mg kg(-1)). By contrast, the inhibitory effect of piperine (10 mg kg(-1)) but not of anandamide (10 mg kg(-1)) was strongly attenuated in capsaicin (75 mg kg(-1) in total, s.c.)-treated mice. 4. Pretreatment of mice with N(G)-nitro-L-arginine methyl ester (25 mg kg(-1) i.p.), yohimbine (1 mg kg(-1), i.p.), naloxone (2 mg kg(-1) i.p.), or hexamethonium (1 mg kg(-1) i.p.) did not modify the inhibitory effect of both piperine (10 mg kg(-1)) and anandamide (10 mg kg(-1)). 5. The present study indicates that the vanilloid ligands anandamide and piperine, but not capsaicin, can reduce upper gastrointestinal motility. The effect of piperine involves capsaicin-sensitive neurones, but not vanilloid receptors, while the effect of anandamide involves cannabinoid CB(1), but not vanilloid receptors.  相似文献   

14.
The analgesic and anti-hyperalgesic effects of cannabinoid- and vanilloid-like compounds, plus the fatty acid amide hydrolase (FAAH) inhibitor Cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), and acetaminophen, were evaluated in the phenyl-p-quinone (PPQ) pain model, using different routes of administration in combination with opioid and cannabinoid receptor antagonists. All the compounds tested produced analgesic effects. Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and (R)-(+)-arachidonyl-1'-hydroxy-2'-propylamide ((R)-methanandamide) were active by three routes of administration: i.p., s.c. and, p.o. Delta(9)-THC produced ED(50)s of 2.2 mg/kg (0.3-15.6) i.p., 9 mg/kg (4.3-18.9) s.c., and 6.4 mg/kg (5.5-7.6) p.o. Similarly, (R)-methanandamide yielded ED(50)s of 2.9 mg/kg (1-8) i.p., 11 mg/kg (7-17) s.c., and 11 mg/kg (0.9-134) p.o. N-vanillyl-arachidonyl-amide (arvanil) was active by two routes, producing ED(50)s of 4.7 mg/kg (3.0-7.4) s.c. and 0.06 mg/kg (0.02-0.2) i.p. Palmitoylethanolamide, URB597, and acetaminophen were active i.p., resulting in ED(50)s of 3.7 mg/kg (3.2-4.2), 22.9 mg/kg (11.1-47.2), and 160 mg/kg (63-405), respectively. None of the cannabinoid or opioid receptor antagonists tested blocked the compounds evaluated, with two exceptions: the antinociceptive effects of Delta(9)-THC and URB597 were completely blocked by SR141716A, a cannabinoid CB(1) receptor antagonist. Western immunoassays performed using three opioid receptor antibodies, a cannabinoid CB(1) receptor antibody and a transient receptor potential vanilloid type 1(TRPV(1)) receptor antibody, yielded no change in receptor protein levels after short-term arvanil, (R)-methanandamide or Delta(9)-THC administration. These data suggest that all the compounds tested, except Delta(9)-THC and URB597, produced analgesia via a non-cannabinoid CB(1), non-cannabinoid CB(2) pain pathway not yet identified.  相似文献   

15.
1. The endogenous fatty acid anandamide (AEA) is a partial agonist at cannabinoid CB1 receptors and has been reported to be a full agonist at the recombinant vanilloid receptor, VR1. 2. Whole cell voltage clamp techniques were used to examine the efficacy of AEA and related analogues methanandamide and N-(4-hydroxyphenyl)-arachidonylamide (AM404) at native VR1 receptors in acutely isolated mouse trigeminal neurons. 3. Superfusion of the VR1 agonist capsaicin onto small trigeminal neurons voltage clamped at +40 mV produced outward currents in most cells, with a pEC(50) of 6.3+/-0.1 (maximum currents at 10-30 micro M). 4. AEA produced outward currents with a pEC(50) of 5.6+/-0.1. Maximal AEA currents (30-100 micro M) were 38+/-2% of the capsaicin maximum. AEA currents were blocked by the VR1 antagonist capsazepine (30 micro M), but unaffected by the CB1 antagonist SR141716A (1 micro M). 5. Methanandamide and AM404 were less potent than AEA at activating VR1. Methanandamide (100 micro M) produced currents 37+/-6% of the capsaicin maximum, the highest concentration of AM404 tested (100 micro M) produced currents that were 55+/-9% of the capsaicin maximum. 6. Capsazepine abolished the currents produced by AM404 (100 micro M) and strongly attenuated (>70%) those produced by methanandamide (100 micro M). 7. Co-superfusion of AEA (30 micro M, methanandamide (100 micro M) or AM404 (100 micro M) with capsaicin (3 micro M) resulted in a significant reduction of the capsaicin current. 8. These data indicate that AEA, methanandamide and AM404 activate native VR1 receptors, but that all three compounds are partial agonists when compared with capsaicin.  相似文献   

16.
The anticonvulsant effect of cannabinoids has been shown to be mediated through activation of the cannabinoid CB(1) receptor. This study was initiated to evaluate the effects of endogenously occurring cannabinoids (endocannabinoids) on seizure severity and threshold. The anticonvulsant effect of the endocannabinoid, arachidonylethanolamine (anandamide), was evaluated in the maximal electroshock seizure model using male CF-1 mice and was found to be a fully efficacious anticonvulsant (ED(50)=50 mg/kg i.p.). The metabolically stable analog of anandamide, (R)-(20-cyano-16,16-dimetyldocosa-cis-5,8,11,14-tetraenoyl)-1'-hydroxy-2'-propylamine (O-1812), was also determined to be a potent anticonvulsant in the maximal electroshock model (ED(50)=1.5 mg/kg i.p.). Furthermore, pretreatment with the cannabinoid CB(1) receptor specific antagonist N-(piperidin-1-yl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride (SR141716A) completely abolished the anticonvulsant effect of anandamide as well as O-1812 (P< or =0.01, Fisher exact test), indicating a cannabinoid CB(1) receptor-mediated anticonvulsant mechanism for both endocannabinoid compounds. Additionally, the influence of cannabinoid CB(1) receptor endogenous tone on maximal seizure threshold was assessed using SR141716A alone. Our data show that SR141716A (10 mg/kg i.p.) significantly reduced maximal seizure threshold (CC(50)=14.27 mA) compared to vehicle-treated animals (CC(50)=17.57 mA) (potency ratio=1.23, lower confidence limit=1.06, upper confidence limit=1.43), indicating the presence of an endogenous cannabinoid tone that modulates seizure activity. These data demonstrate that anandamide and its analog, O-1812, are anticonvulsant in a whole animal model and further implicate the cannabinoid CB(1) receptor as a major endogenous site of seizure modulation.  相似文献   

17.
Anandamide (0.01 to 10 microM) caused greater concentration-dependent reductions of the contractile-induced responses to noradrenaline in female than in male mesenteric vascular beds isolated from adult Sprague-Dawley rats. Greater relaxant responses in females were also induced by the vanilloid TRPV1 receptor agonist capsaicin (0.01 to 10 microM), whereas no sex differences were observed for the relaxations caused by either acetylcholine or sodium nitroprusside. The effect of anandamide in either sex was reduced by the vanilloid TRPV1 receptor antagonist capsazepine but not by the cannabinoid CB1 receptor antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (SR141716A). In males, the anandamide-induced relaxations were potentiated by in vitro exposure during 5 min to 0.5 microM 17beta-oestradiol and unmodified by the protein synthesis inhibitor cycloheximide. The vasorelaxant effects of anandamide in female rats were decreased by ovariectomy. This decrease was prevented by in vivo treatment with 17beta-oestradiol-3-benzoate (450 microg/kg i.m., once a week during 3 weeks) and counteracted by in vitro exposure to oestrogen. In vivo treatment with 17beta-oestradiol also potentiated anandamide-induced responses in males. In conclusion, this study shows an oestrogen-dependent sensitivity to the vanilloid TRPV1 receptor-mediated vasorelaxant effects of anandamide in the mesenteric vasculature of Sprague-Dawley rats, that could be mediated by both genomic and non-genomic mechanisms.  相似文献   

18.
The endogenous fatty acid ethanolamide, palmitylethanolamide, alleviated, in a dose-dependent manner, pain behaviors elicited in mice by injections of formalin (5%, intraplantar), acetic acid (0.6%, 0.5 ml per animal, intraperitoneal, i.p.), kaolin (2.5 mg per animal, i.p.), and magnesium sulfate (120 mg per kg, i.p.). The antinociceptive effects of palmitylethanolamide were prevented by the cannabinoid CB2 receptor antagonist SR144528 [N-([1s]-endo-1.3.3-trimethylbicyclo[2.3.1]heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide], not by the cannabinoid CB1 receptor antagonist SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide x HCl]. By contrast, palmitylethanolamide had no effect on capsaicin-evoked pain behavior or thermal nociception. The endogenous cannabinoid, anandamide (arachidonylethanolamide), alleviated nociception in all tests (formalin, acetic acid, kaolin, magnesium sulfate, capsaicin and hot plate). These effects were prevented by the cannabinoid CB1 receptor antagonist SR141716A, not the cannabinoid CB2 receptor antagonist SR141716A. Additional fatty acid ethanolamides (oleylethanolamide, myristylethanolamide, palmitoleylethanolamide, palmitelaidylethanolamide) had little or no effect on formalin-evoked pain behavior, and were not investigated in other pain models. These results support the hypothesis that endogenous palmitylethanolamide participates in the intrinsic control of pain initiation. They also suggest that the putative receptor site activated by palmitylethanolamide may provide a novel target for peripherally acting analgesic drugs.  相似文献   

19.
1. In the absence of indomethacin, anandamide did not contract the guinea-pig bronchus at concentrations up to 100 microM. In the presence of indomethacin (10 microM), anandamide induced concentration-related contractions with a pEC(50) value of 5.18+/-0.11. It was significantly less potent than capsaicin (pEC(50) 7.01+/-0.1). The anandamide uptake inhibitor AM404, produced only a 14.1+/-3.22% contraction at 100 microM. All experiments were conducted in the presence of PMSF (20 microM). 2. The vanilloid receptor antagonist, capsazepine (10 microM), significantly attenuated the contractile effect of anandamide, the response to 100 microM anandamide being 40.53+/-7.04% in the presence of vehicle and 1.57+/-8.93% in the presence of 10 microM capsazepine. The contractile actions of anandamide and AM404 were markedly enhanced by the peptidase inhibitor thiorphan. 3. The log concentration-response curve of anandamide was unaltered by the CB1 receptor antagonist, SR141716A. The pEC(50) values for anandamide were 4.88+/-0.08 and 5.17+/-0.19 in the presence of vehicle and SR141716A (1 microM) respectively. 4. The lipoxygenase inhibitors 5,8,11,14-eicosatetraynoic acid (ETYA) and 5,8,11 eicosatriynoic acid (ETI) reduced the effect of 100 microM anandamide from 34.7+/-1.9% (vehicle) to 7.7+/-5% (ETYA, 10 microM) and from 41.85+/-4.25% (n=6) (vehicle) to 10.31+/-3.54 (n=6) (ETI, 20 microM). Neither inhibitor significantly affected contraction of the tissue by substance P. 5. This study provides evidence that anandamide acts on vanilloid receptors in the guinea-pig isolated bronchus. These data raise the possibility that the contractile action of anandamide may be due, at least in part, to lipoxygenase metabolites of this fatty acid amide that are vanilloid receptor agonists.  相似文献   

20.
The effects of cannabinoid drugs on the cholinergic response evoked by electrical field stimulation (0.2 ms pulse width, 20 V amplitude, 10 Hz, 7.5 s train duration) in guinea-pig tracheal preparations were investigated. The stable analogue of the endocannabinoid anandamide, R(+)-methanandamide (10(-7)-10(-4) M), produced a dose-dependent inhibition (up to 27+/-5% of control) of electrical field stimulation-mediated atropine-sensitive response. This effect was not blocked by the selective cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3 carboxamide hydrochloride (SR 141716A; 10(-6) M), and was not reproduced with the cannabinoid CB(1)/CB(2) receptor agonist R(+)-[2,3-dihydro-5-methyl-[(morpholinyl)methyl]pyrrolo [1,2,3-de]-1,4-benzoxazin-6-yl]-(1-naphthalenyl)methanone mesylate) (WIN 55,212-2; 10(-8)-10(-5) M) or the cannabinoid CB(2) receptor selective agonist 1-propyl-2-methyl-3-(1-naphthoyl)indole (JWH-015; 10(-8)-10(-5) M); it was, on the contrary, antagonized by the vanilloid antagonist 2-[2-(4-chlorophenyl)ethyl-amino-thiocarbonyl]-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-2 benzazepine (capsazepine; 10(-6) M). At the postjunctional level, neither R(+)-methanandamide nor WIN 55,212-2 nor JWH-015 did affect tracheal contractions induced by exogenous acetylcholine (10(-6) M). An inhibitory vanilloid receptor-mediated effect on the cholinergic response evoked by electrical stimulation was confirmed with the vanilloid agonist capsaicin, at doses (3-6 x 10(-8) M) which poorly influenced the basal smooth muscle tone of trachea. In conclusion, our data indicate that in guinea-pig trachea (a) neither CB(1) nor CB(2) cannabinoid receptor-mediated modulation of acetylcholine release occurs; (b) vanilloid VR1-like receptors appear involved in R(+)-methanandamide inhibitory activity on the cholinergic response to electrical field stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号