首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anterior cruciate ligament has a complex fiber anatomy and is not considered to be a uniform structure. Current anterior cruciate ligament reconstructions succeed in stabilizing the knee, but they neither fully restore normal knee kinematics nor reproduce normal ligament, function. To improve the outcome of the reconstruction, it may be necessary to reproduce the complex function of the intact anterior cruciate ligament in the replacement graft. We examined the in situ forces in nine human anterior cruciate ligaments as well as the force distribution between the anteromedial and posterolateral bundles of the ligament in response to applied anterioi tibial loads ranging from 22 to 110 N at knee flexion angles of 0–90°. The analysis was performed using a robotic manipulator in conjunction with a universal force-moment sensor. The in situ forces were determined with no device attached to the ligament, while the knee was permitted to move freely in response to the applied loads. We found that the in situ forces in the anterior cruciate ligament ranged from 12.8 ± 7.3 N under 22 N of anterior tibial load applied at 90° of knee flexion to 110.6 ± 14.8 N under 110 N of applied load at 15° of flexion. The magnitude of the in situ force in the posterolateral bundle was larger than that in the anteromedial bundle at knee flexion angles between 0 and 45°, reaching a maximum of 75.2 ± 18.3 N at 15° of knee flexion under an anterior tibial load of 110 N. The magnitude of the in situ force in the posterolateral bundle was significantly affected by knee flexion angle and anterior tibial load in a fashion remarkably similar to that seen in the anterior cruciate ligament. The magnitude of the in situ force in the anteromedial bundle, in contrast, remained relatively constant, not changing with flexion angle. Significant differences in the direction of the in situ force between the anteromedial bundle and the posterolateral bundle were found only at flexion angles of 0 and 60° and only under applied anterior tibial loads greater than 66 N. We have demonstrated the nonuniformity of the anterior cruciate ligament under unconstrained anterior tibial loads. Our data further suggest that in order for the anterior cruciate ligament replacement graft to reproduce the in situ forces of the normal anterior cruciate ligament, reconstruction techniques should take into account the role of the posterolateral bundle in addition to that of the anteromedial bundle.  相似文献   

2.
The anterior cruciate ligament (ACL) can be anatomically divided into anteromedial (AM) and posterolateral (PL) bundles. Current ACL reconstruction techniques focus primarily on reproducing the AM bundle, but are insufficient in response to rotatory loads. The objective of this study was to determine the distribution of in situ force between the two bundles when the knee is subjected to anterior tibial and rotatory loads. Ten cadaveric knees (50+/-10 years) were tested using a robotic/universal force-moment sensor (UFS) testing system. Two external loading conditions were applied: a 134 N anterior tibial load at full knee extension and 15 degrees, 30 degrees, 60 degrees, and 90 degrees of flexion and a combined rotatory load of 10 Nm valgus and 5 Nm internal tibial torque at 15 degrees and 30 degrees of flexion. The resulting 6 degrees of freedom kinematics of the knee and the in situ forces in the ACL and its two bundles were determined. Under an anterior tibial load, the in situ force in the PL bundle was the highest at full extension (67+/-30 N) and decreased with increasing flexion. The in situ force in the AM bundle was lower than in the PL bundle at full extension, but increased with increasing flexion, reaching a maximum (90+/-17 N) at 60 degrees of flexion and then decreasing at 90 degrees. Under a combined rotatory load, the in situ force of the PL bundle was higher at 15 degrees (21+/-11 N) and lower at 30 degrees of flexion (14+/-6 N). The in situ force in the AM bundle was similar at 15 degrees and 30 degrees of knee flexion (30+/-15 vs. 35+/-16 N, respectively). Comparing these two external loading conditions demonstrated the importance of the PL bundle, especially when the knee is near full extension. These findings provide a better understanding of the function of the two bundles of the ACL and could serve as a basis for future considerations of surgical reconstruction in the replacement of the ACL.  相似文献   

3.
The two functional bundles of the anterior cruciate ligament (ACL), namely, the anteromedial (AM) and posterolateral (PL) bundles, must work in concert to control displacement of the tibia relative to the femur for complex motions. Thus, the replacement graft(s) for a torn ACL should possess similar tension patterns. The objective of the study was to examine whether a double‐bundle ACL reconstruction with the semitendinosus‐gracilis autografts could replicate the tension patterns of those for the intact ACL under controlled in vitro loading conditions. By means of a robotic/universal force moment sensor (UFS) testing system, the in situ force vectors (both magnitude and direction) for the AM and PL bundles of the ACL, as well as their respective replacement grafts, were determined and compared on nine human cadaveric knees. It was found that double‐bundle ACL reconstruction could closely replicate the in situ force vectors. Under a 134‐N anterior tibial load, the resultant force vectors for the intact ACL and the reconstructed ACL had a difference of 5 to 11 N (p > 0.05) in magnitude and 1 to 13° (p > 0.05) in direction. Whereas, under combined rotatory loads of 10‐N‐m valgus and 5‐N‐m internal tibial torques, the corresponding differences were 10 to 16 N and 4° to 11°, respectively. Again, there were no statistically significant differences except at 30° of flexion where the force vector for the AM graft had a 15° (p < 0.05) lower elevation angle than did the AM bundle. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 879–884, 2009  相似文献   

4.
5.
《Arthroscopy》2001,17(7):708-716
Purpose: Although anterior cruciate ligament (ACL) reconstruction with multistrand autogenous hamstring tendons has been widely performed using a single femoral socket (SS), it is currently advocated to individually reconstruct 2 bundles of the ACL using 2 femoral sockets (TS). However, the difference in biomechanical characteristics between them is unknown. The objective of this study was to clarify their biomechanical differences. Type of Study: This is a cross-over trial using cadaveric knees. Methods: Seven intact human cadaveric knees were mounted in a robotic simulator developed in our laboratory. By applying anterior and posterior tibial load up to ± 100 N at 0°, 15°, 30°, 60°, and 90° of flexion, tibial displacement and load were recorded. After cutting the ACL, the knees underwent ACL reconstruction using TS, followed by that using SS, with 44 or 88 N of initial grafts tension at 20° of flexion. The above-mentioned tests were performed on each reconstructed knee. Results: The tibial displacement in the TS technique was significantly smaller than that in the SS at smaller flexion angles in response to anterior and posterior tibial load of ± 100 N, and the in situ force in the former was significantly greater than that in the latter at smaller flexion angles. Furthermore, in the TS technique, the posterolateral graft acted dominantly in extension, while the anteromedial graft mainly resisted against anterior tibial load in flexion. However, in the SS technique, the anteriorly located graft functioned more predominantly than the posteriorly located graft at all flexion angles. Conclusions: The ACL reconstruction via TS using quadrupled hamstring tendons provides better anterior-posterior stability compared with the conventional reconstruction using a single socket.Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 17, No 7 (September), 2001: pp 708–716  相似文献   

6.
背景:膝关节前交叉韧带(ACL)重建时,胫骨骨道定位不准会产生重建韧带与髁间窝的撞击或起不到维持膝关节稳定性的作用。因此,确定ACL胫骨止点的位置非常重要。目的:研究膝关节ACL胫骨止点前内束(AMB)和后外束(PLB)与软组织标记后交叉韧带(PCL)和外侧半月板前角的距离,从而明确ACL胫骨止点在胫骨平台的位置,为ACL损伤双束重建提供理论支持。方法:解剖18个膝关节尸体标本(左膝10个,右膝8个),测量ACL中点、AMB中点、PLB中点与PCL和外侧半月板前角的距离,并分析左、右膝关节是否存在差异。结果:AMB中点与PCL和外侧半月板前角的距离分别为(15.00±3.97)mm和(19.78±4.10)mm;PLB中点与两者的距离分别为(10.17±5.56)mm和(19.50±4.40)mm;ACL中点与两者的距离分别为(12.67±4.52)mm和(19.61±3.87)mm。左右膝关节ACL中点、AMB中点、PLB中点与软组织解剖标记的距离无明显统计学差异。结论:膝关节ACL损伤行手术重建时,可采用PCL和外侧半月板前角作为定位标记。  相似文献   

7.
BackgroundAn anatomical double bundle ACL reconstruction replicates the anatomy of native ACL as the tunnels are made to simulate the anatomy of ACL with AM and PL bundle foot prints. The goal of anatomic ACL reconstruction is to tailor the procedure to each patient’s anatomic, biomechanical and functional demands to provide the best possible outcome. The shift from single bundle to double bundle technique and also from transtibial to transportal method has been to provide near anatomic tunnel positions.PurposeTo determine the position of femoral and tibial tunnels prepared by double bundle ACL reconstruction using three dimensional Computed tomography.Study designA prospective case series involving forty patients with ACL tear who underwent transportal double bundle ACL reconstruction.MethodComputed tomography scans were performed on forty knees that had undergone double bundle anterior cruciate ligament reconstruction. Three-dimensional computed tomography reconstruction models of the knee joint were prepared and aligned into an anatomical coordinate axis system for femur and tibia respectively. Tibial tunnel centres were measured in the anterior-to-posterior and medial-to-lateral directions on the top view of tibial plateau and femoral tunnel centres were measured in posterior to anterior and proximal-to-distal directions with anatomic coordinate axis method. These measurements were compared with published reference data.ResultsAnalysing the Femoral tunnel, the mean posterior-to-anterior distances for anteromedial and posterolateral tunnel centre position were 46.8% ± 7.4% and 34.5% ± 5.0% of the posterior-to-anterior height of the medial wall and the mean proximal-to-distal distances for the anteromedial and posterolateral tunnel centre position were 24.1% ± 7.1% and 61.6% ± 4.8%. On the tibial side, the mean anterior-to-posterior distances for the anteromedial and posterolateral tunnel centre position were 28.8% ± 4.3% and 46.2% ± 3.6% of the anterior-to posterior depth of the tibia measured from the anterior border and the mean medial-to-lateral distances for the anteromedial and posterolateral tunnel centre position were 46.5% ± 2.9% and 50.6% ± 2.8% of the medial-to-lateral width of the tibia measured from the medial border. There is high Inter-observer and Intra-observer reliability (Intra-class correlation coefficient).Discussion and conclusionFemoral AM tunnel was positioned significantly anterior and nearly proximal whereas the femoral PL tunnel was positioned significantly anterior and nearly distal with respect to the anatomic site. Location of tibial AM tunnel was nearly posterior and nearly medial whereas the location of tibial PL tunnel was very similar to the anatomic site Evaluation of location of tunnels through the anatomic co-ordinate axes method on 3D CT models is a reliable and reproducible method. This method would help the surgeons to aim for anatomic placement of the tunnels. It also shows that there is scope for improvement of femoral tunnel in double bundle ACL reconstruction through transportal technique.  相似文献   

8.
In vivo anterior cruciate ligament (ACL) bundle (anteromedial bundle [AMB] and posterolateral bundle [PLB]) relative elongation during walking and running remain unknown. In this study, we aimed to investigate in vivo ACL relative elongation over the full gait cycle during walking and running. Ten healthy volunteers walked and ran at a self‐selected pace on an instrumented treadmill while biplane radiographs of the knee were acquired at 100 Hz (walking) and 150 Hz (running). Tibiofemoral kinematics were determined using a validated model‐based tracking process. The boundaries of ACL insertions were identified using high‐resolution magnetic resonance imaging (MRI). The AMB and PLB centroid‐to‐centroid distances were calculated from the tracked bone motions, and these bundle lengths were normalized to their respective lengths on MRI to calculate relative elongation. Maximum AMB relative elongation during running (6.7 ± 2.1%) was significantly greater than walking (5.0 ± 1.7%, p = 0.043), whereas the maximum PLB relative elongation during running (1.1 ± 2.1%) was significantly smaller than walking (3.4 ± 2.3%, p = 0.014). During running, the maximum AMB relative elongation was significantly greater than the maximum PLB relative elongation (p < 0.001). ACL relative elongations were correlated with tibiofemoral six degree‐of‐freedom kinematics. The AMB and PLB demonstrate similar elongation patterns but different amounts of relative elongation during walking and running. The complex relationship observed between ACL relative elongation and knee kinematics indicates that ACL relative elongation is impacted by tibiofemoral kinematic parameters in addition to flexion/extension. These findings suggest that ACL strain is region‐specific during walking and running. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1920–1928, 2019  相似文献   

9.
The anterior cruciate ligament (ACL) consists of 2 bundles: a slightly larger anteromedial bundle and a posterolateral bundle, named according to their relative tibial insertion sites. Both bundles are crucial to knee stability. Although it is more technically demanding, a double bundle ACL reconstruction restores the knee biomechanics better and provides more rotational stability than a single bundle ACL reconstruction. Intermediate and long-term clinical investigation including the measurement of rotational laxity and the evaluation of osteoarthritic change is needed to confirm biomechanical and short-term clinical outcomes.  相似文献   

10.

Background

The anterior cruciate ligament is composed of two functional bundles and is crucial for knee function. There is limited understanding of the role of each individual bundle and the influence on length pattern due to difference in bone tunnel position under loading conditions throughout the range of motion. We measured point to point length between the femoral and tibial footprints of the ligament throughout the range of motion in normal knees, under normal loading conditions, and investigated length pattern changes secondary to differences in the femoral footprint. We hypothesized that anteromedial and posterolateral bundles have complementary roles, and the ligament length pattern is influenced by the footprint position.

Methods

We studied the squat movements of six healthy knees and measured point to point footprint distance. The footprint distances were measured after changing them to be 10% lower, 10% shallower, and both 10% lower and shallower than the defined anatomical femoral footprint.

Results

Average length changes of 12.0 and 14.1 mm from maximum extension (10°) to deep flexion (150°) were observed when the anteromedial and posterolateral bundles were defined by the default anatomical position. Maximum and minimum length were reached during full extension and flexion for both the anteromedial and posterolateral bundles, respectively. At 10% lower, length increased 2.2 mm over the default value in both the anteromedial and posterolateral lengths. At 10% shallower, decreases of 4.1 mm and 3.9 mm were observed compared with the default anteromedial and posterolateral lengths, respectively. In the 10% lower and 10% shallower position, anteromedial and posterolateral lengths decreased 2.1 mm and 1.9 mm compared with the default value, respectively.

Conclusions

The anteromedial and posterolateral bundles have a complementary role. Femoral footprint position defined in the lower direction leads to stronger tension during extension, while the higher and shallower direction leads to isometry during flexion, and the deeper direction leads to laxity during flexion. The target bone tunnel position is that the anteromedial bundle should not to be too low and too deep to maintain function of bundle with less change in length. In addition, the posterolateral bundle should be somewhat lower and/or deeper than the anteromedial, with the expectation that it will function to induce stronger tension at the extended position. However, we should avoid lower position when we cannot prepare a sufficient diameter of reconstructed bundle to avoid re-injury due to excessive tension.  相似文献   

11.
Reconstruction of the anterior cruciate ligament using the double bundle technique provides better covering of the anatomic insertion site areas and fiber length change behavior. Biomechanical studies and intraoperative measurements with computer navigation systems document increased stability in particular due to rotational stability. To date the impact of the posterolateral bundle is questioned and clinical studies have reported divergent outcomes. In favor of enhanced rotational stability, some techniques leave the basic principles of aperture or central graft fixation, decreasing primary stability and running the risk of tunnel widening especially on the femoral site. Additional use of interference screws means increased implants and costs and bone void in cases of revision is challenging. A technique for anatomic double-bundle reconstruction without the use of implants is presented, which allows for femoral aperture fixation with high primary stability of both bundles. In terms of the knot/press-fit technique of Paessler in the U-shaped tendons, a knot is created at the free end, which serves as a rigid press-fit anchoring in bottleneck shaped femoral drill holes at the insertion site of the anteromedial and posterolateral bundles. The drill holes are prepared in flexion of 110–115° using common offset and target drill devices. Mersilen tapes are applied to introduce the grafts from femoral to tibial and to fix the tendons over a bony bridge on the tibial site after preconditioning. The gracilis tendon mimics the posterolateral bundle and is fixed in 20° of flexion, the semi- tendinosus tendon is used for the anteromedial bundle and is fixed in 40° of flexion. The advantages of the presented technique are the central, rigid femoral anchoring without hardware, the thin bone tunnels which show no tunnel widening and allow for an optimal bone tendon contact to enhance bony ingrowth. The technique is cost-efficient and provides anatomic double bundle reconstruction of the anterior cruciate ligament. The sacrifice of hardware ensures easy revisions. The disadvantages are the peripheral tibial fixation, the preparation of the tendons needs tendon length and the creation of tendon knots providing high stability requires practice. The two femoral bone tunnels have proved to be safe regarding the stability of the lateral femoral condyle.  相似文献   

12.
《Arthroscopy》2006,22(11):1250.e1-1250.e6
The native anterior cruciate ligament (ACL) consists of 2 bundles, which have distinct biomechanical yet synergistic functions with respect to anterior tibial translation and combined rotatory loads. Traditionally, most ACL reconstruction techniques have primarily addressed the restoration of the anteromedial bundle, and less consideration was given to the posterolateral bundle. Recently, various ACL double-bundle reconstruction techniques have been described. With most of these techniques, however, an indirect extra-anatomic fixation far from the articular surface was performed. Because extra-anatomic fixation techniques, rather than aperture fixation techniques, are associated with graft tunnel motion, windshield wiper action, and suture stretch-out, concerns may arise regarding delayed biological incorporation, tunnel enlargement, and secondary rotational and anterior instability. We, therefore, present a novel arthroscopic technique that reapproximates the footprints of native ACL with the use of double-strand semitendinosus and gracilis autografts for reconstruction of the anteromedial and posterolateral bundles, respectively. A separate femoral and tibial tunnel is drilled for each double-strand autograft. The femoral tunnel for the anteromedial bundle is drilled primarily through a transtibial technique, and the femoral tunnel for the posterolateral bundle is drilled via an accessory anteromedial portal with the use of a 4-mm offset drill guide in the anteroinferior aspect of the femoral tunnel for the anteromedial bundle. Bioabsorbable interference screws are used in aperture fixation for anatomic fixation of each bundle. This technique attempts to reproduce closely the native ligament and its biomechanical function.  相似文献   

13.
The clinical diagnosis of a partial tear of the anterior cruciate ligament (ACL) is still subject to debate. Little is known about the contribution of each ACL bundle during the Lachman test. We investigated this using six fresh-frozen cadaveric lower limbs. Screws were placed in the femora and tibiae as fixed landmarks for digitisation of the bone positions. The femur was secured horizontally in a clamp. A metal hook was screwed to the tibial tubercle and used to apply a load of 150?N directed anteroposteriorly to the tibia to simulate the Lachman test. The knees then received constant axial compression and 3D knee kinematic data were collected by digitising the screw head positions in 30° flexion under each test condition. Measurements of tibial translation and rotation were made, first with the ACL intact, then after sequential cutting of the ACL bundles, and finally after complete division of the ACL. Two-way analysis of variance analysis was performed. During the Lachman test, in all knees and in all test conditions, lateral tibial translation exceeded that on the medial side. With an intact ACL, both anterior and lateral tibial landmarks translated significantly more than those on the medial side (p < 0.001). With sequential division of the ACL bundles, selective cutting of the posterolateral bundle (PLB) did not increase translation of any landmark compared with when the ACL remained intact. Cutting the anteromedial bundle (AMB) resulted in an increased anterior translation of all landmarks. Compared to the intact ACL, when the ACL was fully transected a significant increase in anterior translation of all landmarks occurred (p < 0.001). However, anterior tibial translation was almost identical after AMB or complete ACL division. We found that the AMB confers its most significant contribution to tibial translation during the Lachman test, whereas the PLB has a negligible effect on anterior translation. Section of the PLB had a greater effect on increasing the internal rotation of the tibia than the AMB. However, its contribution of a mean of 2.8° amplitude remains low. The clinical relevance of our investigation suggests that, based on anterior tibial translation only, one cannot distinguish between a full ACL and an isolated AMB tear. Isolated PLB tears cannot be detected solely by the Lachman test, as this bundle probably contributes more resistance to the pivot shift.  相似文献   

14.
The function of the anterior cruciate ligament was investigated for different conditions of kinematic constraint placed on the intact knee using a six-degree-of-freedom robotic manipulator combined with a universal force-moment sensor. To do this, the in situ forces and force distribution within the porcine anterior cruciate ligament during anterior tibial loading up to 100 N were compared at 30, 60, and 90° of flexion under: (a) unconstrained, five-degree-of-freedom knee motion, and (b) constrained, one-degree-of-freedom motion (i.e., anterior translations only). The robotic/universal force-moment sensor testing system was used to both apply the specified external loading to the in tact joint and measure the resulting kinematics. After tests of the intact knee were completed, all soft tissues except the anterior cruciate ligament were removed, and these motions were reproduced such that the in situ force and force distribution could be determined. No significant differences in the magnitude of in situ forces in the anterior cruciate ligament were found between the unconstrained and constrained testing conditions. In contrast, the direction of in situ force changed significantly; the force vector in the unconstrained case was more parallel with the direction of the applied tibial load. In addition, the distribution of in situ force between the anteromedial and posterolateral bundles of the ligament was nearly equal for all flexion angles for the unconstrained case, whereas the anteromedial bundle carried higher forces than the posterolateral bundle at both 60 and 90° of flexion for the constrained case. This demonstrates that the constraint conditions placed on the joint have a significant effect on the apparent role of the anterior cruciate ligament. Specifically, constraining joint motion to one degree of freedom significantly alters both the direction and distribution of the in situ force in the ligament from that observed for unconstrained joint motion (five degrees of freedom). Furthermore, the changes observed in the distribution of force between the anteromedial and posterolateral bundles for different constraint conditions may help elucidate mechanisms of injury by providing new insight into the response of the anterior cruciate ligament to different types of external knee loading.  相似文献   

15.
《Arthroscopy》2005,21(11):1402.e1-1402.e5
An anterior cruciate ligament (ACL) reconstruction technique is described to place bone–patellar tendon–bone (BPTB) graft in an anatomically oriented fashion to mimic the 2 bundles of the normal ACL, based on the concept of twin tunnel ACL reconstruction, to maximize the graft-tunnel interface. In this technique, the attached bone plug is introduced into a rectangular femoral socket via a halfway rectangular tibial tunnel for the anterior portion of the graft to function as the anteromedial bundle and for its posterior portion to behave as the posterolateral bundle. A snug fitting of the graft is achieved not only at the femoral socket, but also in the tibial tunnel.  相似文献   

16.
《Arthroscopy》2006,22(11):1143-1145
The anterior cruciate ligament (ACL) consists of two major fiber bundles, namely the anteromedial (AM) and posterolateral (PL) bundles. Although disagreement exists among arthroscopic surgeons about the occurrence of isolated ruptures of the AM or PL bundle, there are reports of partial ruptures of the ACL in the literature. A potential reason for controversy could be that with conventional magnetic resonance imaging, isolated PL ruptures are difficult to diagnose because of the oblique course of this bundle. Another reason could be that isolated ruptures of the AM or PL bundle are difficult to diagnose during arthroscopy. During arthroscopy, an isolated PL bundle rupture can easily be missed when viewing from the standard anterolateral portal. The AM bundle overlies the PL bundle, and the PL bundle can only be seen by retraction of the AM bundle with a probe. When the knee is extended, the PL bundle is tight and the AM bundle is moderately lax. As the knee is flexed, the femoral attachment of the ACL becomes horizontally oriented, causing the AM bundle to tighten and the PL bundle to relax. Whereas the AM bundle is the primary restraint against anterior tibial translation in flexion, the PL bundle tends to stabilize the knee near full extension, particularly against rotatory loads. The different bundle contributions to knee stability in the flexed or extended positions can aid in the diagnosis of partial ACL ruptures. Isolated rupture of the AM bundle has more effect on the anterior drawer sign than on the Lachman test, whereas the converse is true for isolated rupture of the PL bundle. Rotational instability as a result of PL bundle rupture can be tested with the pivot-shift test. Pivot shift can be negative in cases with isolated AM bundle rupture. If only one bundle of the ACL is torn, isolated AM or PL bundle reconstruction should be considered. Although potentially difficult, a careful diagnostic evaluation is necessary before ACL surgery.  相似文献   

17.
Introduction  Recently, several publications investigated the rotational instability of the human knee joint under pivot shift examinations and reported the internal tibial rotation as measurement for instrumented knee laxity measurements. We hypothesize that ACL deficiency leads to increased internal tibial rotation under a simulated pivot shift test. Furthermore, it was hypothesized that anatomic single bundle ACL reconstruction significantly reduces the internal tibial rotation under a simulated pivot shift test when compared to the ACL-deficient knee. Methods  In seven human cadaveric knees, the kinematics of the intact knee, ACL-deficient knee, and anatomic single bundle ACL reconstructed knee were determined in response to a 134 N anterior tibial load and a combined rotatory load of 10 N m valgus and 4 N m internal tibial rotation using a robotic/UFS testing system. Statistical analyses were performed using a two-way ANOVA test. Results  Single bundle ACL reconstruction reduced the anterior tibial translation under a simulated KT-1000 test significantly compared to the ACL-deficient knee (P < 0.05). After reconstruction, there was a statistical significant difference to the intact knee at 30° of knee flexion. Under a simulated pivot shift test, anatomic single bundle ACL reconstruction could restore the intact knee kinematics. Internal tibial rotation under a simulated pivot shift showed no significant difference in the ACL-intact, ACL-deficient and ACL-reconstructed knee. Conclusion  In conclusion, ACL deficiency does not increase the internal tibial rotation under a simulated pivot shift test. For objective measurements of the rotational instability of the knee using instrumented knee laxity devices under pivot shift mechanisms, the anterior tibial translation should be rather evaluated than the internal tibial rotation. This study was supported in part by a grant of the German Speaking Association of Arthroscopy (AGA).  相似文献   

18.
Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring, and gastrocnemius muscle‐tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment, and internal or external tibial torque) was applied to the distal tibia while recording the 3D knee loads and tibofemoral kinematics. AM‐ACL relative strain was measured using a 3 mm DVRT. In this repeated measures experiment, the Wilcoxon signed‐rank test was used to test the null hypotheses with p < 0.05 considered significant. The mean (±SD) peak AM‐ACL relative strains were 5.4 ± 3.7% and 3.1 ± 2.8% under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM‐ACL strain rates reached 254.4 ± 160.1%/s and 179.4 ± 109.9%/s, respectively. The hypotheses were supported in that the normalized mean peak AM‐ACL relative strain and strain rate were 70 and 42% greater under internal than under external tibial torque, respectively (p = 0.023, p = 0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM‐ACL than does a corresponding external tibial torque. © 2011 Orthopaedic Research Society. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 30:528–534, 2012  相似文献   

19.

Objective

Partial augmentation of isolated tears of the anteromedial and posterolateral bundle of the anterior cruciate ligament (ACL) with autologous hamstring tendons. The intact fibers of the ACL are preserved.

Indications

Symptomatic isolated tear of the anteromedial or posteromedial bundle of the ACL or rotational instability after ACL reconstruction with malplaced tunnels (e.g., high femoral position)

Contraindications

In revision cases: loss of motion due to malplaced ACL and excessive tunnel widening of the present tunnels with the risk of tunnel confluence.

Surgical technique

Examination of anterior–posterior translation and rotational instability under anesthesia. Diagnostic arthroscopy, repetition of the clinical examination under direct visualization of the ACL, meticulous probing of the functional bundles. Resection of ligament remnants, preparation/preservation of the femoral and tibial footprint. Harvesting one of the hamstring tendons, graft preparation. Positioning of a 2.4 mm K-wire in the anatomic center of the femoral anteromedial/posterolateral bundle insertion, cannulated drilling according to the graft diameter. Positioning of a 2.4 mm K-wire balanced according to the femoral tunnel at the tibia, cannulated drilling. Insertion of the graft and fixation.

Postoperative management

Analogous to that for ACL reconstruction.  相似文献   

20.
The anterior cruciate ligament (ACL) is the major contributor to limit excessive anterior tibial translation (ATT) when the knee is subjected to an anterior tibial load. However, the importance of the medial and lateral structures of the knee can also play a significant role in resisting anterior tibial loads, especially in the event of an ACL injury. Therefore, the objective of this study was to determine quantitatively the increase in the in-situ forces in the medial collateral ligament (MCL) and posterolateral structures (PLS) of the knee associated with ACL deficiency. Eight fresh-frozen cadaveric human knees were subjected to a 134-N anterior tibial load at full extension and at 15°, 30°, 60°, and 90° of knee flexion. The resulting 5 degrees of freedom kinematics were measured for the intact and the ACL-deficient knees. A robotic/universal force-moment sensor testing system was used for this purpose, as well as to determine the in-situ force in the MCL and PLS in the intact and ACL-deficient knees. For the intact knee, the in-situ forces in both the MCL and PLS were less than 20 N for all five flexion angles tested. But in the ACL-deficient knee, the in-situ forces in the MCL and PLS, respectively, were approximately two and five times as large as those in the intact knee (P < 0.05). The results of this study demonstrate that, although both the MCL and PLS play only a minor role in resisting anterior tibial loads in the intact knee, they become significant after ACL injury. Received: December 3, 1999 / Accepted: July 19, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号