首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Insulin resistance and PPAR insulin sensitizers   总被引:1,自引:0,他引:1  
Drugs that reverse insulin resistance are of importance as insulin resistance is frequently associated with type 2 diabetes. The three peroxisome proliferator-activated receptors (PPARs) PPARalpha, PPAR90 and PPARgamma are essential for the actions of the many insulin sensitizers. PPARalpha activation enhances free fatty acid oxidation and potentiates anti-inflammatory effects, while PPARgamma is essential for normal adipocyte differentiation and proliferation, as well as fatty acid uptake and storage. Thiazolidinediones (TZDs) are selective ligands of PPARgamma and act as insulin sensitizers. TZDs also suppress free fatty acids via the inhibition of lipolysis in adipose tissue. Insulin sensitizers currently under development include partial PPARgamma agonists and antagonists, and dual PPARalpha/PPARgamma agonists. Given that TZDs show anti-inflammatory, anti-oxidant and antiprocoagulant properties in addition to their insulin sensitizing and antilipotoxic properties, a case may be made for initiating TZD therapy early in the treatment of type 2 diabetes, particularly in those patients at risk of cardiovascular disease. TZDs may also be an important therapeutic option in the treatment of metabolic syndrome.  相似文献   

3.
4.
5.
6.
Type 2 diabetes mellitus (T2DM) is highly prevalent chronic disease. Recently, many biological targets are discovered for treatment of this disease. The identification of the nuclear hormone receptor peroxisome proliferator activated receptors (PPAR) and their subtypes alpha, gamma and delta or beta as targets for controlling lipid, glucose and energy homeostasis has proved to be exciting. As hyperlipidaemia, obesity and insulin resistance are independent risk factors for coronary heart disease and macrovascular complications of diabetes; new agents that increase insulin sensitivity as well as decrease hyperlipidaemia by distinct yet complementary mechanism are being studied as they may provide improved therapy for T2DM and related disorders. In this article, we review highly potent PPARgamma agonists, PPARalpha/gamma dual agonists, PPAR pan agonists, alternative PPAR ligands like partial agonists or selective PPAR modulators (SPPARMs) and antagonists from a chemist point of view.  相似文献   

7.
Retinoid X receptor (RXR) forms heterodimers with peroxisome proliferator-activated receptors (PPARs, with subtypes of alpha, delta and gamma), and the heterodimers can be activated by either an RXR or a PPAR subtype-specific ligand. Based on the chemical structure of the RXR natural ligand, 9-cis-retinoic acid (9-cis-RA), we designed and synthesized a retinoid-like compound, CS018. In vitro characterizations by cell-based reporter gene assays indicated that CS018 activated RXR homodimers and the heterodimers of RXR with PPARs, but not with farnesoid X-activated receptor (FXR) and liver X-activated receptor (LXR). Furthermore, RT-PCR results showed that CS018 induced the expression of the PPARgamma target genes, CD36 and lipoprotein lipase (LPL). In vivo studies on the diabetic db/db mice demonstrated that CS018 dramatically lowered the animal blood glucose levels. CS018 thus may represent a new retinoid-like compound that activates RXR/PPARs and has potential therapeutic applications in type 2 diabetes and other metabolic diseases.  相似文献   

8.
9.
The phthalates di(2-ethylhexyl)phthalate (DEHP) and di-n-butyl phthalate (DBP) are environmental contaminants with significant human exposures. Both compounds are known reproductive toxins in rodents and DEHP also induces rodent hepatocarcinogenesis in a process believed to be mediated via the peroxisome proliferator-activated receptor alpha (PPARalpha). DEHP and DBP are metabolised to their respective monoesters, mono-(2-ethylhexyl)phthalate (MEHP) and mono-n-butyl phthalate (MBP), which are the active metabolites. MEHP also activates another member of the PPAR subfamily, PPARgamma. The effects of PPARalpha and PPARgamma activation in human breast cells appears to be opposing; PPARalpha activators in breast cells cause an increase in proliferation, while PPARgamma activation in breast cells is associated with differentiation and an inhibition of cell proliferation. Further to this the activation of the PPARs is cell and ligand specific, suggesting the importance of examining the effect of MEHP and MBP on the activation of PPARalpha, PPARbeta and PPARgamma in human breast. We used the common model of human breast cancer MCF-7 and examined the ability of MEHP and MBP to activate human PPARs in this system. The ability of MBP and MEHP to block PPAR responses was also assessed. We found that both human PPARalpha and PPARgamma were activated by MEHP whereas MEHP could not activate PPARbeta. MBP was unable to activate any PPAR isoforms in this breast model, despite being a weak peroxisome proliferator in liver, although MBP was an antagonist for both PPARgamma and PPARbeta. Our results suggest that the toxicological consequences of MEHP in the breast could be complex given the opposing effects of PPARalpha and PPARgamma in human breast cells.  相似文献   

10.
The molecular pharmacological discovery of the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR alpha) as the master regulator of lipid and lipoprotein homeostasis, and the rapid development of a parallel screening approach to evaluate activity towards other PPAR subtypes (PPAR delta, and PPAR gamma) have provided an opportunity to develop novel PPAR alpha-selective, PPAR alpha/gamma dual, and PPAR pan agonists. This review focuses on the molecular pharmacology of PPAR alpha, and summarizes our current design, synthesis, and evaluation of subtype-selective PPAR alpha agonists. The species selectivity of several classes of PPAR alpha selective agonists in response to in vitro PPAR alpha transactivation activity is also reported. These studies should help us to understand the structure-activity relationships and the mode of interaction between ligands and PPAR alpha, and also help to create novel therapeutic choices for the treatment of metabolic disorders.  相似文献   

11.
12.
13.
14.
15.
16.
The generation of homology models of human, rat and mouse peroxisome proliferator-activated receptor alpha (PPAR alpha) are reported, based on the recently published crystal structure of the human PPAR gamma ligand-binding domain (LBD) with bound ligand, rosiglitazone. It is found that a template of peroxisome proliferating fibrate drugs and related compounds can fit within the putative ligand-binding site of rat PPAR alpha, via contacts with amino acid residues which are consistent with their biological potency for peroxisome proliferation, site-directed mutagenesis experiments and with quantitative structure-activity relationship (QSAR) analysis studies. The experimental binding affinity of leukotriene B(4) (LTB(4)) for the mouse PPAR alpha agrees closely with the calculated value based on the modelled interactions, whereas selective PPAR alpha ligands such as clofibric acid are able to fit the human PPAR alpha binding site in agreement with reported site-directed mutagenesis information.  相似文献   

17.
The peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily and there are three primary subtypes, PPARalpha, beta, and gamma. These receptors regulate important physiological processes that impact lipid homeostasis, inflammation, adipogenesis, reproduction, wound healing, and carcinogenesis. These nuclear receptors have important roles in reproduction and development and their expression may influence the responses of an embryo exposed to PPAR agonists. PPARs are relevant to the study of the biological effects of the perfluorinated alkyl acids as these compounds, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), activate PPARalpha. Exposure of the rodent to PFOA or PFOS during gestation results in neonatal deaths, developmental delay and growth deficits. Studies in PPARalpha knockout mice demonstrate that the developmental effects of PFOA, but not PFOS, depend on expression of PPARalpha. This review provides an overview of PPARalpha, beta, and gamma protein and mRNA expression during mouse, rat, and human development. The review presents the results from many published studies and the information is organized by organ system and collated to show patterns of expression at comparable developmental stages for human, mouse, and rat. The features of the PPAR nuclear receptor family are introduced and what is known or inferred about their roles in development is discussed relative to insights from genetically modified mice and studies in the adult.  相似文献   

18.
We previously reported prevention of urolithiasis and associated rat urinary bladder tumors by urine acidification (via diet acidification) in male rats treated with the dual peroxisome proliferator-activated receptor (PPAR)alpha/gamma agonist muraglitazar. Because urine acidification could potentially alter PPAR signaling and/or cellular proliferation in urothelium, we evaluated urothelial cell PPARalpha, PPARdelta, PPARgamma, and epidermal growth factor receptor (EGFR) expression, PPAR signaling, and urothelial cell proliferation in rats fed either a normal or an acidified diet for 5, 18, or 33 days. A subset of rats in the 18-day study also received 63 mg/kg of the PPARgamma agonist pioglitazone daily for the final 3 days to directly assess the effects of diet acidification on responsiveness to PPARgamma agonism. Urothelial cell PPARalpha and gamma expression and signaling were evaluated in the 18- and 33-day studies by immunohistochemical assessment of PPAR protein (33-day study only) and quantitative real-time polymerase chain reaction (qRT-PCR) measurement of PPAR-regulated gene expression. In the 5-day study, EGFR expression and phosphorylation status were evaluated by immunohistochemical staining and egfr and akt2 mRNA levels were assessed by qRT-PCR. Diet acidification did not alter PPARalpha, delta, or gamma mRNA or protein expression, PPARalpha- or gamma-regulated gene expression, total or phosphorylated EGFR protein, egfr or akt2 gene expression, or proliferation in urothelium. Moreover, diet acidification had no effect on pioglitazone-induced changes in urothelial PPARgamma-regulated gene expression. These results support the contention that urine acidification does not prevent PPARgamma agonist-induced bladder tumors by altering PPARalpha, gamma, or EGFR expression or PPAR signaling in rat bladder urothelium.  相似文献   

19.
This study evaluates the potential for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to activate peroxisome proliferator-activated receptors (PPARs), using a transient transfection cell assay. Cos-1 cells were cultured in Dulbecco's Minimal Essential Medium (DMEM) with fetal bovine serum in 96-well plates and transfected with mouse or human PPARalpha, beta/delta, or gamma reporter plasmids. Transfected cells were exposed to PFOA (0.5-100 microM), PFOS (1-250 microM), positive controls (i.e., known agonists and antagonists), and negative controls (i.e., DMEM, 0.1% water, and 0.1% dimethyl sulfoxide). Following treatment for 24 h, activity was measured using the Luciferase reporter assay. In this assay, PFOA had more transactivity than PFOS with both the mouse and human PPAR isoforms. PFOA significantly increased mouse and human PPARalpha and mouse PPARbeta/delta activity relative to vehicle. PFOS significantly increased activation of mouse PPARalpha and PPARbeta/delta isoforms. No significant activation of mouse or human PPARgamma was observed with PFOA or PFOS. The PPARalpha antagonist, MK-886, significantly suppressed PFOA and PFOS activity of mouse and human PPARalpha. The PPARgamma antagonist, GW9662, significantly suppressed PFOA activity on the human isoform. In conclusion, this study characterized the dose response and differential activation of mouse and human PPARalpha, beta/delta, gamma by PFOA and PFOS. While this model allows opportunities to compare potential activation by perfluoroalkyl acids, it only evaluates the interaction and activation of the PPAR reporter constructs and is not necessarily predictive of a toxicological response in vivo.  相似文献   

20.
Mast cells produce chemical mediators, including histamine and arachidonate metabolites such as prostaglandin D(2) (PGD(2)) after antigen stimulation. Cyclopentenone prostaglandins of the J series, prostaglandin J(2) (PGJ(2)) and 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), are thought to be derivatives of PGD(2). In this study, the biphasic effects of the PGJ(2) and 15d-PGJ(2) on proliferation and apoptosis in rat basophilic leukemia cells (RBL-2H3), a tumor analog of mast cells, were examined. At low concentrations, 1 or 3 microM PGJ(2) and 15d-PGJ(2) induced cell proliferation, respectively. At high concentrations (10-30 microM) both the inhibition of viability and decrease in histamine content in RBL-2H3 cells were dose dependent. These effects were independent of the nuclear hormone receptor, peroxisome proliferator-activated receptor gamma (PPARgamma), since troglitazone, an agonist of PPARgamma did not cause any effects in RBL-2H3 cells. Cell death induced by PGJ(2) and 15d-PGJ(2) was the result of apoptotic processes, since RBL-2H3 cells treated with 30 microM of the prostaglandins had condensed nuclei, DNA fragmentation and increase in activities of caspase-3 and -9. Moreover, PGJ(2) or 15d-PGJ(2)-induced apoptotic effects were prevented by the caspase inhibitor, z-VAD-fmk. In conclusion, the PGJ(2) or 15d-PGJ(2)-induced apoptosis in RBL-2H3 cells occurs mainly via mitochondrial pathways instead of by PPARgamma-dependent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号