首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malignant rhabdoid tumor (MRT) is an aggressive, highly lethal cancer of young children. Tumors occur in various locations, including kidney, brain, and soft tissues. Despite intensive therapy, 80% of affected children die, often within 1 year of diagnosis. The majority of MRT samples and cell lines have sustained biallelic inactivating mutations of the hSNF5 (integrase interactor 1) gene, suggesting that hSNF5 may act as a tumor suppressor. We sought to examine the role of Snf5 in development and cancer in a murine model. Here we report that Snf5 is widely expressed during embryogenesis with focal areas of high-level expression in the mandibular portion of the first branchial arch and central nervous system. Homozygous knockout of Snf5 results in embryonic lethality by embryonic day 7, whereas heterozygous mice are born at the expected frequency and appear normal. However, beginning as early as 5 weeks of age, heterozygous mice develop tumors consistent with MRT. The majority of tumors arise in soft tissues derived from the first branchial arch. Our findings constitute persuasive genetic evidence that Snf5, a core member of the Swi/Snf chromatin-remodeling complex, functions as a tumor suppressor gene, and, moreover, Snf5 heterozygotes provide a murine model of this lethal pediatric cancer.  相似文献   

2.
Yin B  Yang-Iott KS  Chao LH  Bassing CH 《Blood》2011,117(1):175-185
H2AX and Artemis each cooperate with p53 to suppress lymphoma. Germline H2ax(-/-)p53(-/-) mice die of T-cell receptor-β(-) (TCR-β(-)) thymic lymphomas with translocations and other lesions characteristic of human T-cell acute lymphoblastic leukemia. Here, we demonstrate that mice with inactivation of H2ax and p53 in thymocytes die at later ages to TCR-β(-) or TCR-β(+) thymic lymphomas containing a similar pattern of translocations as H2ax(-/-)p53(-/-) tumors. Germline Artemis(-/-) p53(-/-) mice die of lymphomas with antigen receptor locus translocations, whereas Artemis(-/-)H2ax(-/-)p53(-/-) mice die at earlier ages from multiple malignancies. We show here that Artemis(-/-) mice with p53 deletion in thymocytes die of TCR-β(-) tumors containing Tcrα/δ translocations, other clonal translocations, or aneuploidy, as well as Notch1 mutations. Strikingly, Artemis(-/-) mice with H2ax and p53 deletion in thymocytes exhibited a lower rate of mortality from TCR-β(-) tumors, which harbored significantly elevated levels of genomic instability. Our data reveal that the cellular origin of H2ax and p53 loss impacts the rate of mortality from and developmental stage of thymic lymphomas, and suggest that conditional deletion of tumor suppressor genes may provide more physiologic models for human lymphoid malignancies than germline inactivation.  相似文献   

3.
Mice heterozygous for the retinoblastoma (Rb) tumor suppressor gene develop pituitary and thyroid tumors with high penetrance. We demonstrate here that loss of the ARF tumor suppressor strongly accelerates intermediate lobe pituitary tumorigenesis in Rb heterozygous mice. These effects in the pituitary are greater than those conferred by p53 loss in that Rb+-;ARF-- mice display significantly more early atypical lesions than Rb+-; p53-- mice. Also, Rb+-;ARF-- compound mutants do not develop many of the novel tumors or precancerous lesions seen in Rb+-;p53-- compound mutants. Although complete loss of ARF expression is not obligatory for pituitary tumorigenesis in Rb+- mice, alterations of the ARF locus are observed in tumors from Rb+-;ARF+- mice, consistent with a selective advantage of ARF inactivation in this context. We conclude that inactivation of ARF acts more broadly than that of p53 in connecting abrogation of the Rb pathway to tumorigenesis.  相似文献   

4.
抑癌基因p53及p16单独或共转染治疗非小细胞肺癌的动 …   总被引:3,自引:0,他引:3  
目的 观察抑癌基因p53和p16单独或或共转染在动物整体中治疗非小细胞肺癌(NSCLC)的效果。方法 采用培养细胞移植法,将2 NSCLC细胞系A569接种于裸小鼠背部皮下,建立裸小鼠皮下肺癌移植瘤模型。将25只荷瘤裸小鼠随机分成空白对照组、十八酰基胺阳离子(SA0对照组、p53基因组、p16基因组、p53+p16基因组,共5组,每组5只。采用瘤体内直接注射的方法,用SA脂质体介异,将p53和(或  相似文献   

5.
6.
7.
孙琳琳  吴松  钟殿胜 《国际呼吸杂志》2011,31(18):1403-1406
LKB1基因编码丝氨酸/苏氨酸蛋白激酶,该基因突变导致黑斑息肉综合征。在非小细胞肺癌中LKB1基因突变率可高达30%。作为抑癌基因,LKB1可以引起细胞周期阻滞在G1期,抑制细胞生长。LKB1主要以p53依赖的机制上调p21表达来对细胞周期进行调控。定位在细胞质中的LKB1可以引起细胞生长负调控的信号传递,而定位在细胞...  相似文献   

8.
Hepatocellular carcinoma (HCC) results from the accumulation of deregulated tumor suppressor genes and/or oncogenes in hepatocytes. Inactivation of TP53 and inhibition of transforming growth factor-beta (TGF-β) signaling are among the most common molecular events in human liver cancers. Thus, we assessed whether inactivation of TGF-β signaling, by deletion of the TGF-β receptor, type II (Tgfbr2), cooperates with Trp53 loss to drive HCC formation. Albumin-cre transgenic mice were crossed with floxed Trp53 and/or floxed Tgfbr2 mice to generate mice lacking p53 and/or Tgfbr2 in the liver. Deletion of Trp53 alone (Trp53(KO) ) resulted in liver tumors in approximately 41% of mice by 10 months of age, whereas inactivation of Tgfbr2 alone (Tgfbr2(KO) ) did not induce liver tumors. Surprisingly, deletion of Tgfbr2 in the setting of p53 loss (Trp53(KO) ;Tgfbr2(KO) ) decreased the frequency of mice with liver tumors to around 17% and delayed the age of tumor onset. Interestingly, Trp53(KO) and Trp53(KO) ;Tgfbr2(KO) mice develop both HCC and cholangiocarcinomas, suggesting that loss of p53, independent of TGF-β, may affect liver tumor formation through effects on a common liver stem cell population. Assessment of potential mechanisms through which TGF-β signaling may promote liver tumor formation in the setting of p53 loss revealed a subset of Trp53(KO) tumors that express increased levels of alpha-fetoprotein. Furthermore, tumors from Trp53(KO) mice express increased TGF-β1 levels compared with tumors from Trp53(KO) ;Tgfbr2(KO) mice. Increased phosphorylated Smad3 and ERK1/2 expression was also detected in the tumors from Trp53(KO) mice and correlated with increased expression of the TGF-β responsive genes, Pai1 and Ctgf. CONCLUSION: TGF-β signaling paradoxically promotes the formation of liver tumors that arise in the setting of p53 inactivation.  相似文献   

9.
10.
The tumor suppressor gene p53 is perhaps the most commonly mutated gene in human cancer, being mutated in a high percentage of colon, breast, skin, bladder, and many cancers of the aerodigestive tract. Individuals with Li-Fraumeni syndrome, who routinely have a germline mutation in the p53 tumor suppressor gene, are at high risk for lung cancer, confirming its intimate role in lung tumorigenesis in humans. In contrast, the majority of chemically induced or spontaneous cancers in rodents do not contain mutations in p53. Therefore, we examined a transgenic mouse that contains a dominant negative mutation (Arg135Val) in the p53 gene placed under the control of its own endogenous promoter. The resulting mice have 3 copies of the mutated transgene as well as 2 normal p53 alleles. In the chemical carcinogenesis studies, we employed mice containing the mutated p53 gene to examine for carcinogen susceptibility. We found that mice with the p53 mutation, on an A/J F1 background, were more susceptible to a number of potential lung carcinogens, including N-methyl-N-nitrosourea (MNU) and the known tobacco carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo(a)pyrene (BP). Mice with a mutant p53 developed larger tumors and roughly 3 times as many tumors, emphasizing the potential effects of a p53 mutation both on tumor initiation and progression. In addition, we examined 2 nonlung carcinogens, 1,2-dimethylhydrazine (DMH), a colon carcinogen, and N-butyl-N-(4-hydroxybutyl)-nitrosamine (OHBBN), a bladder carcinogen. Interestingly a germline p53 mutation increased the incidence of DMH-induced colon, lung, hepatic, and uterine tumors, while having limited effects on OHBBN-induced bladder tumors. Because of its heightened susceptibility we are examining the use of this model in smoke-induced tumorigenesis in A/J mice as well. Employing the lung adenomas induced by NNK, we found that mice with or without a p53 mutation were equally susceptible to the chemopreventive effects of dexamethasone plus myo-inisitol and green tea. These tumors, which arise in a highly reproducible manner in p53 transgenic mice following carcinogen treatment, have mutations in both p53 and the K-ras oncogene. Thus, this model appears useful for examining for potential chemotherapeutic agents. p53-mutated or wild-type mice were equally susceptible to the therapeutic effects of Taxol or Adriamycin. Interestingly, piroxicam was similarly effective in inhibiting colon tumor formation by DMH in mice with or without a mutation in the p53 tumor suppressor gene. In contrast, lung and uterine tumors developing in these mice were not susceptible to the chemopreventive effects of piroxicam. In summary, mice with mutations in the p53 tumor suppressor gene appear to be particularly applicable for basic mechanistic studies, for screening for potential carcinogens, and for screening for chemopreventive or chemotherapeutic agents.  相似文献   

11.
Recent studies have indicated that the tumor suppressor gene p53 limits atherosclerosis in animal models; p53 expression is also increased in advanced human plaques compared with normal vessels, where it may induce growth arrest and apoptosis. However, controversy exists as to the role of endogenous levels of p53 in different cell types that comprise plaques. We examined atherosclerotic plaque development and composition in brachiocephalic arteries and aortas of p53-/-/ApoE-/- mice versus wild type p53 controls. p53-/- mice demonstrated increased aortic plaque formation, with increased rates of cell proliferation and reduced rates of apoptosis in brachiocephalic arteries. Although most proliferating cells were monocyte/macrophages, apoptotic cells were both vascular smooth muscle cells (VSMCs) and macrophages. Transplant of p53 bone marrow to p53-/-/ApoE-/- mice reduced aortic plaque formation and cell proliferation in brachiocephalic plaques, but also markedly reduced apoptosis. To examine p53 regulation of these processes, we studied proliferation and apoptosis in macrophages, bone marrow stromal cells and VSMCs cultured from these mice. Although endogenous p53 promoted apoptosis in macrophages, it protected VSMCs and stromal cells from death, a hitherto unknown function in these cells, in part by inhibiting DNA damage response enzymes. p53 also inhibited stromal cell expression of VSMC markers. We conclude that endogenous levels of p53 protect VSMCs and stromal cells against apoptosis, while promoting apoptosis in macrophages, and protect against atherosclerosis development.  相似文献   

12.
Von Hippel-Lindau (VHL) inactivation develops a tumor syndrome characterized by highly vascularized tumors as a result of hypoxia inducible factors (HIF) stabilization. The most common manifestation is the development of hemangioblastomas typically located in the central nervous system and other organs including the liver. PTEN (Phosphatase and tension homologue deleted on chromosome 10) inactivation also upregulates HIF-1α and may take part in promoting vascular lesions in tumors. The coordinate effect of loss of these tumor suppressors on HIF levels, and the subsequent effect on vascular lesion formation would elucidate the potential for mechanisms to modify HIF dosage supplementally and impact tumor phenotype. We therefore employed models of somatic conditional inactivation of Vhl, Pten, or both tumor suppressor genes in individual cells of the liver by Cre-loxP recombination to study the cooperativity of these two tumor suppressors in preventing tumor formation. Nine months after tumor suppressor inactivation, Vhl conditional deletion (Vhl loxP/loxP) mice showed no abnormalities, Pten conditional deletion (Pten loxP/loxP) mice developed liver steatosis and focal nodular expansion of hepatocytes containing lipid droplet and fat. Vhl and Pten conditional deletion (Vhl loxP/loxP;Pten loxP/loxP) mice, however, developed multiple cavernous liver lesions reminiscent of hemangioblastoma. Liver hemangioblastomas in VHL disease may, therefore, require secondary mutation in addition to VHL loss of heterozygosity which is permissive for vascular lesion development or augments levels of HIF-1α.  相似文献   

13.
Functional inactivation of the tumor suppressor protein p53 by accelerated ubiquitin/proteasome-dependent proteolysis is a common event in tumor progression. Proteasomal degradation is inhibited by the Gly-Ala repeat (GAr) of the Epstein-Barr virus nuclear antigen-1, which acts as a transferable element on a variety of proteasomal substrates. We demonstrate that p53 chimeras containing GAr domains of different lengths and positions within the protein are protected from proteolysis induced by the ubiquitin ligases murine double minute 2 and E6-associated protein but are still ubiquitinated and retain the capacity to interact with the S5a ubiquitin-binding subunit of the proteasome. The GAr chimeras transactivate p53 target genes, induce cell cycle arrest and apoptosis, and exhibit improved growth inhibitory activity in tumor cells with impaired endogenous p53 activity.  相似文献   

14.
Cervical carcinomas are initiated through a series of well-defined stages that rely on the expression of human papillomavirus (HPV) oncogenes. A panel of 100 small hairpin RNAs that target essential kinases in many tumor types was used to study the stepwise appearance of kinase requirements during cervical tumor development. Twenty-six kinases were commonly required in three cell lines derived from frank carcinomas, and each kinase requirement was traced to the specific stage in which the requirement emerged. Six kinases became required following HPV-induced immortalization, and the requirement for two kinases, SGK2 and PAK3, was mapped to the inactivation of p53 in primary human epithelial cells. Loss of the p53 tumor suppressor in other primary epithelial cells also induced dependence on SGK2 and PAK3. Hence, SGK2 and PAK3 provide important cellular functions following p53 inactivation, fulfilling the classical definition of synthetic lethality; loss of p53, SGK2, or PAK3 alone has little effect on cell viability, whereas loss of p53 together with either SGK2 or PAK3 loss leads to cell death. Whereas tumor suppressor gene mutations are not directly druggable, other proteins or pathways that become obligatory to cell viability following tumor suppressor loss provide theoretical targets for tumor suppressor-specific drug discovery efforts. The kinases SGK2 and PAK3 may thus represent such targets for p53-specific drug development.  相似文献   

15.
von Recklinghausen neurofibromatosis (NF1) is a common hereditary disorder characterized by neural crest-derived tumors, particularly benign neurofibromas whose malignant transformation to neurofibrosarcomas can be fatal. The NF1 gene has been mapped to a small region of chromosome 17q, but neither the nature of the primary defect nor the mechanisms involved in tumor progression are understood. We have tested whether NF1 might be caused by the inactivation of a tumor suppressor gene on 17q, analogous to that on chromosome 22 in NF2, by searching for deletions of chromosome 17 in NF1-derived tumor specimens. Both neurofibrosarcomas from patients with "atypical" NF and 5 of 6 neurofibrosarcomas from NF1 patients displayed loss of alleles for polymorphic DNA markers on chromosome 17. However, the common region of deletion was on 17p and did not include the NF1 region of 17q. Since no loss of markers on chromosome 17 was observed in any of 30 benign tumors from NF1 patients, the 17p deletions seen in neurofibrosarcomas are probably associated with tumor progression and/or malignancy. This region contains a candidate gene for tumor progression, p53, which has recently been implicated in the progression of a broad array of human cancers. In a preliminary search for p53 aberrations by direct sequencing of polymerase chain reaction-amplified DNA from 7 neurofibrosarcomas, 2 tumors that contained point mutations in exon 4 of the p53 gene were found, suggesting a role for this gene in at least some neurofibrosarcomas. Thus the formation of malignant neurofibrosarcomas may result from several independent genetic events including mutation of the NF1 gene, whose mechanism of tumorigenesis remains uncertain, and subsequent loss of a "tumor suppressor" gene on 17p, most likely p53.  相似文献   

16.
Expression of Tax in the mature lymphoid compartment of transgenic mice resulted in a lymphoproliferative malignancy of natural killer cells and cytotoxic T lymphocytes. Transgenic mouse tumors exhibited mutations in the p53 tumor suppressor gene, and functional inactivation of wild-type p53 protein. Tax transgenic mice heterozygous for the p53 gene exhibited more rapid tumor dissemination and accelerated mortality. Studies of Tax trans-activation in an infectious clone of HTLV-1 demonstrated a critical role for nuclear factor B activation in lymphocyte immortalization. A mutant disrupting Tax activation of the cAMP response element binding (CREB) protein resulted in preferential immortalization of CD8(+) lymphocytes, rather than preferential immortalization of CD4(+) lymphocytes seen with the wild-type infectious clone. A mutation disrupting Tax interaction with CREB-binding protein, CBP, did not affect lymphocyte immortalization by the infectious molecular clone. These models provide new insights into the molecular details of HTLV-1 leukemogenesis.  相似文献   

17.
Activating KRAS mutations and p16(Ink4a) inactivation are near universal events in human pancreatic ductal adenocarcinoma (PDAC). In mouse models, Kras(G12D) initiates formation of premalignant pancreatic ductal lesions, and loss of either Ink4a/Arf (p16(Ink4a)/p19(Arf)) or p53 enables their malignant progression. As recent mouse modeling studies have suggested a less prominent role for p16(Ink4a) in constraining malignant progression, we sought to assess the pathological and genomic impact of inactivation of p16(Ink4a), p19(Arf), and/or p53 in the Kras(G12D) model. Rapidly progressive PDAC was observed in the setting of homozygous deletion of either p53 or p16(Ink4a), the latter with intact germ-line p53 and p19(Arf) sequences. Additionally, Kras(G12D) in the context of heterozygosity either for p53 plus p16(Ink4a) or for p16(Ink4a)/p19(Arf) produced PDAC with longer latency and greater propensity for distant metastases relative to mice with homozygous deletion of p53 or p16(Ink4a)/p19(Arf). Tumors from the double-heterozygous cohorts showed frequent p16(Ink4a) inactivation and loss of either p53 or p19(Arf). Different genotypes were associated with specific histopathologic characteristics, most notably a trend toward less differentiated features in the homozygous p16(Ink4a)/p19(Arf) mutant model. High-resolution genomic analysis revealed that the tumor suppressor genotype influenced the specific genomic patterns of these tumors and showed overlap in regional chromosomal alterations between murine and human PDAC. Collectively, our results establish that disruptions of p16(Ink4a) and the p19(ARF)-p53 circuit play critical and cooperative roles in PDAC progression, with specific tumor suppressor genotypes provocatively influencing the tumor biological phenotypes and genomic profiles of the resultant tumors.  相似文献   

18.
The commitment of cells to replicate and divide correlates with the activation of cyclin-dependent kinases and the inactivation of Rb, the product of the retinoblastoma tumor suppressor gene. Rb is a target of the cyclin-dependent kinases and, when phosphorylated, is inactivated. Biochemical studies exploring the nature of the relationship between cyclin-dependent kinase inhibitors and Rb have supported the hypothesis that these proteins are on a linear pathway regulating commitment. We have been able to study this relationship by genetic means by examining the phenotype of Rb+/-p27-/- mice. Tumors arise from the intermediate lobe cells of the pituitary gland in p27-/- mice, as well as in Rb+/- mice after loss of the remaining wild-type allele of Rb. Using these mouse models, we examined the genetic interaction between Rb and p27. We found that the development of pituitary tumors in Rb+/- mice correlated with a reduction in p27 mRNA and protein expression. To determine whether the loss of p27 was an indirect consequence of tumor formation or a contributing factor to the development of this tumor, we analyzed the phenotype of Rb+/-p27-/- mice. We found that these mice developed pituitary adenocarcinoma with loss of the remaining wild-type allele of Rb and a high-grade thyroid C cell carcinoma that was more aggressive than the disease in either Rb+/- or p27-/- mice. Importantly, we detected both pituitary and thyroid tumors earlier in the Rb+/-p27-/- mice. We therefore propose that Rb and p27 cooperate to suppress tumor development by integrating different regulatory signals.  相似文献   

19.
OBJECTIVE: The tumor suppressor p53 regulates cell proliferation and apoptosis, two key processes in the pathogenesis of occlusive vascular disease. Here, we examined the consequences of heightening p53 function on neointimal lesion formation in the setting of atherosclerosis and mechanical injury. METHODS: For this study we employed immunohistopathological characterization of neointimal lesions in atherosclerosis-prone apolipoprotein E-null mice with normal p53 gene dosage (apoE-KO) and carrying a p53 transgene (Super-p53/apoE-KO). We also carried out molecular studies in macrophages and smooth muscle cells (SMCs) obtained from these mice. RESULTS: The p53 transgene conferred p53 gain-of-function in cultured cells and mice. In vitro, survival of irradiated Super-p53 macrophages and femoral SMCs was reduced, but only Super-p53 SMCs exhibited attenuated proliferation. In vivo, whereas the size of spontaneously formed and diet-induced aortic atheromas was indistinguishable in apoE-KO and Super-p53/apoE-KO mice, the latter exhibited attenuated neointimal thickening in mechanically injured femoral artery. In both models, neither apoptosis nor cell proliferation were affected by additional p53 gene dosage when examined in established neointimal lesions. However, at 2 days after mechanical injury when neointimal lesions were not yet formed, cell proliferation was significantly attenuated within medial SMCs of Super-p53/apoE-KO mice. CONCLUSION: Heightening p53 function has differential effects on in vitro proliferation of macrophages (unaffected) versus SMCs (reduced), and on native atherosclerosis (unaffected) versus mechanically induced neointimal thickening (reduced) in apoE-KO mice. The protective effect of p53 in mechanically injured femoral artery coincided with limited medial SMC proliferation at early time points preceding neointima formation, but neither medial nor neointimal cell proliferation was affected in vessels with established occlusive lesions. These findings corroborate p53 gain-of-function as a promising therapeutic strategy to limit post-angioplasty restenosis but not native atherosclerosis.  相似文献   

20.
A key tumor suppressor mechanism that is disrupted frequently in human cancer involves the ARF and p53 genes. In mouse fibroblasts, the Arf gene product responds to abnormal mitogenic signals to activate p53 and trigger either cell cycle arrest or apoptosis. Recent evidence indicates that Arf also has p53-independent functions that may contribute to its tumor suppressor activity. Using Arf(-/-) and p53(-/-) mice, we have discovered a p53-independent requirement for Arf in the developmental regression of the hyaloid vascular system (HVS) in the mouse eye. Arf is expressed in the vitreous of the eye and is induced before HVS regression in the first postnatal week. In the absence of Arf, failed HVS regression causes a pathological process that resembles persistent hyperplastic primary vitreous, a developmental human eye disease thought to have a genetic basis. These findings demonstrate an essential and unexpected role for Arf during mouse eye development, provide insights into the potential genetic basis for persistent hyperplastic primary vitreous, and indicate that Arf regulates vascular regression in a p53-independent manner. The latter finding raises the possibility that Arf may function as a tumor suppressor at least in part by regulating tumor angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号