首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit COX activity, reduce the production of retinal VEGF and neovascularization in relevant models of ocular disease. We hypothesized that COX-2 mediates VEGF production in retinal Müller cells, one of its primary sources in retinal neovascular disease. The purpose of this study was to determine the role of COX-2 and its products in VEGF expression and secretion. These studies have more clearly defined the role of COX-2 and COX-2-derived prostanoids in retinal angiogenesis. Müller cells derived from wild-type and COX-2 null mice were exposed to hypoxia for 0-24 h. COX-2 protein and activity were assessed by western blot analysis and GC-MS, respectively. VEGF production was assessed by ELISA. Wild-type mouse Müller cells were treated with vehicle (0.1% DMSO), 10 μM PGE2, or PGE2 + 5 μM H-89 (a PKA inhibitor), for 12 h. VEGF production was assessed by ELISA. Hypoxia significantly increased COX-2 protein (p < 0.05) and activity (p < 0.05), and VEGF production (p < 0.0003). COX-2 null Müller cells produced significantly less VEGF in response to hypoxia (p < 0.05). Of the prostanoids, PGE2 was significantly increased by hypoxia (p < 0.02). Exogenous PGE2 significantly increased VEGF production by Müller cells (p < 0.0039), and this effect was inhibited by H-89 (p < 0.055). These data demonstrate that hypoxia induces COX-2, prostanoid production, and VEGF synthesis in Müller cells, and that VEGF production is at least partially COX-2-dependent. Our study suggests that PGE2, signaling through the EP2 and/or EP4 receptor and PKA, mediates the VEGF response of Müller cells.  相似文献   

2.
3.
The damaged zebrafish retina replaces lost neurons through a regenerative response that initiates with the asymmetric cell division of Müller glia to produce neuronal progenitor cells that proliferate and migrate to the damaged retinal layer, where they differentiate into the lost neuronal cell types. Because Müller glia are known to phagocytose apoptotic retinal cells during development, we tested if Müller glia engulfed apoptotic rod cell bodies in light-damaged retinas. After 24 h of constant intense light, damaged retinas revealed both a strong nuclear TUNEL signal in photoreceptors and a weak cytoplasmic TUNEL signal in Müller glia, although Müller glial apoptosis is not observed in the light-damaged retina. Light damage of a rod-specific transgenic reporter line, Tg(XlRho:EGFP)fl1, resulted in some Müller glia containing both TUNEL signal and EGFP, which indicated that this subset of Müller glia engulfed apoptotic photoreceptor cell bodies.To determine if phagocytosis induced the Müller glial proliferative response in the light-damaged retina, we utilized O-phospho-l-serine (L-SOP), a molecule that mimics the phosphatidylserine head group and partially blocks microglial phagocytosis of apoptotic cells. Intravitreal injection of L-SOP immediately prior to beginning constant intense light treatment: i) did not significantly reduce light-induced photoreceptor cell death, ii) significantly reduced the number of PCNA-positive Müller glia, and iii) significantly reduced the number of cone photoreceptors in the regenerated retina relative to control retinas. Because L-SOP is also a specific group III metabotropic glutamate receptor (mGluR) agonist, we also tested if the more potent specific group III agonist, l-2-amino-4-phosphonobutyrate (L-AP4), the specific group III antagonist (RS)-α-Methylserine-O-phosphate (MSOP) or the specific group I antagonist, l-2-amino-3-phophonopropanoic acid (L-AP3) affected Müller glial proliferation. We found no changes with any of these factors compared to control retinas, revealing that metabotropic glutamate receptors were not necessary in the Müller glia proliferative response. Furthermore, ascl1a and stat3 expression were unaffected in either the L-SOP or MSOP-injected retinas relative to controls, suggesting L-SOP disrupts Müller glia proliferation subsequent to or in parallel with ascl1a and stat3 activation. This implies that at least one signaling mechanism, in addition to the process disrupted by L-SOP, is required to activate Müller glia proliferation in the light-damaged retina.  相似文献   

4.
5.

Purpose

In an effort to generate inducible RPE-specific Cre mice using a 3.0-kb human vitelliform macular dystrophy-2 (VMD2) promoter, we identified a mouse line with unanticipated Cre activity in the neural retina, including Müller glial cells. Müller cells play important roles in the function and maintenance of the retina, and this mouse line would be potentially useful for conditional gene targeting in Müller glia. We therefore characterized the timing, inducibility, and cell specificity of Cre expression, as well as Müller cell-specific efficiency of Cre-mediated recombination in this mouse line.

Methods

Transgenic mice carrying cassettes of human PVMD2-rtTA and TRE-cre were generated. Cre expression was characterized using a Cre-activatable lacZ reporter mouse line (R26R) and a floxed interleukin six signal transducing receptor (gp130) mouse line.

Results

β-Galactosidase (β-gal) assay and immunohistochemical analysis of VMD2-cre/R26R double transgenic mice indicated that Cre activity was detected in cells located in the inner nuclear layer, with prominent expression of β-gal in Müller cells. Cre activity was also detected in photoreceptors in the outer nuclear layer. PCR analysis demonstrated that Cre-mediated recombination initiated by embryonic day 15. Immunohistochemical analysis indicated that Cre-mediated deletion of floxed gp130 gene occurred in 52% of the retinal Müller cells. Retinal function and morphology were normal in 10-month-old VMD2-cre mice.

Conclusion

We generated a transgenic cre mouse that is useful to study gene activation and inactivation in retinal Müller cells.  相似文献   

6.
Aquaporin-1 (AQP1) channels are expressed by trabecular meshwork (TM) and Schlemm's canal cells of the conventional outflow pathway where fluid movement is predominantly paracellular, suggesting a non-canonical role for AQP1. We hypothesized that AQP1 functions to protect TM cells during periods of mechanical strain. To test this idea, primary cultures of confluent human TM cells on Bioflex membranes were exposed to static and cyclic stretch for 8 and 24 h using the Flexcell system. AQP1 expression in TM cells was assessed by SDS-PAGE and Western blot using anti-AQP1 IgGs. AQP1 protein bands were analyzed using densitometry and normalized to β-actin expression. Cell damage was monitored by measuring lactate dehydrogenase (LDH) and histone deacetylase appearance in conditioned media. Recombinant expression of AQP1 in TM cell cultures was facilitated by transduction with adenovirus. Results show that AQP1 expression significantly increased 2-fold with 10% static stretch and 3.5-fold with 20% static stretch at 8 h (n = 4, p < 0.05) and 24 h (n = 6, p < 0.05). While histone deacetylase levels were unaffected by treatments, release of LDH from TM cells was the most profound at the 20% static stretch level (n = 4, p < 0.05). Significantly, cells were refractory to the 20% static stretch level when AQP1 expression was increased to near tissue levels. Analysis of LDH release with respect to AQP1 expression revealed an inverse linear relationship (r2 = 0.7780). Taken together, AQP1 in human TM appears to serve a protective role by facilitating improved cell viability during conditions of mechanical strain.  相似文献   

7.
Shyong MP  Lee FL  Hen WH  Kuo PC  Wu AC  Cheng HC  Chen SL  Tung TH  Tsao YP 《Vision research》2008,48(22):2394-2402
This study was designed to evaluate the efficacy of subretinal injection of recombinant adeno-associated virus vector expressing heme oxygenase-1 (rAAV-HO-1) in attenuating photoreceptor apoptosis induced by experimental retinal detachment (RD) in Sprague-Dawley rats. Our results disclosed that subretinal rAAV-HO-1 delivery achieved localized high HO-1 gene expression in retinal outer nuclear layer (ONL) compared with rAAV-lacZ-injected eyes and eyes with RD left untreated both at 2 (p = 0.003) and 28 (p = 0.007) days of RD. The ONL thickness (p = 0.018) and mean photoreceptor nuclei count (p = 0.009) in eyes receiving rAAV-HO-1 injection was significantly higher than in rAAV-lacZ-injected or eyes with RD left untreated at 28 days of RD. There were fewer apoptotic photoreceptor nuclei at 2 (p = 0.008) and 5 (p = 0.018) days of RD and less activated caspase-3 expression (p = 0.008) at 2 days of RD in rAAV-HO-1 treated eyes than in control eyes. These data supported that gene transfer approach might attenuate photoreceptor apoptosis caused by RD with a resultant better ONL preservation.  相似文献   

8.
9.
During the developmental process of emmetropization evidence shows that visual feedback guides the eye as it approaches a refractive state close to zero, or slightly hyperopic. How this “set-point” is internally defined, in the presence of continuous shifts of the focal plane with different viewing distances and accommodation, remains unclear. Minimizing defocus blur over time should produce similar end-point refractions in different individuals. However, we found that individual chickens display considerable variability in their set-point refractive states, despite that they all had the same visual experience. This variability is not random since the refractions in both eyes were highly correlated - even though it is known that they can emmetropize independently. Furthermore, if chicks underwent a period of experimentally induced ametropia, they returned to their individual set-point refractions during recovery (correlation of the refractions before treatment versus after recovery: n = 19 chicks, 38 eyes, left eyes: slope 1.01, R = 0.860; right eyes: slope 0.85, R = 0.610, p < 0.001, linear regression). Also, the induced deprivation myopia was correlated in both eyes (n = 18 chicks, 36 eyes, p < 0.01, orthogonal regression). If chicks were treated with spectacle lenses, the compensatory changes in refraction were, on average, appropriate but individual chicks displayed variable responses. Again, the refractions of both eyes remained correlated (negative lenses, n = 18 chicks, 36 eyes, slope 0.89, R = 0.504, p < 0.01, positive lenses: n = 21 chicks, 42 eyes, slope 1.14, R = 0.791, p < 0.001). The amount of deprivation myopia that developed in two successive treatment cycles, with an intermittent period of recovery, was not correlated; only vitreous chamber growth was almost significantly correlated in both cycles (n = 7 chicks, 14 eyes; p < 0.05). The amounts of ametropia and vitreous chamber changes induced in two successive cycles of treatment, first with lenses and then with diffusers, were also not correlated, suggesting that the “gains of lens compensation” are different from those in deprivation myopia. In summary, (1) there appears to be an endogenous, possibly genetic, definition of the set-point of emmetropization in each individual, which is similar in both eyes, (2) visual conditions that induce ametropia produce variable changes in refractions, with high correlations between both eyes, (3) overall, the “gain of emmetropization” appears only weakly controlled by endogenous factors.  相似文献   

10.
Understanding the mechanisms regulating expression of retinal ganglion cell (RGC) specific and axon-guidance genes during development and in retinal stem cells will be critical for successful optic nerve regeneration. Müller glia have some characteristics of retinal stem cells but in mammals have demonstrated limited potential to differentiate into RGCs. Chromatin remodeling through histone deacetylation and DNA methylation are a potential mechanism for silencing genes necessary for neuronal differentiation of glial cells. We investigated DNA methylation as a mechanism for regulating expression of mouse EphA5, one member of a large family of ephrin receptor genes that regulate patterning of the topographic connections of RGCs during visual system development. We analyzed spatial and age-related patterns of EphA5 promoter methylation by bisulfite sequencing and mRNA expression by quantitative RT-PCR in the mouse retina. The CpG island in the EphA5 promoter was hypomethylated in the retina and showed no change in overall methylation with age, despite a decline in EphA5 mRNA expression levels in the adult retina. In the nasal retina of post-natal day 0 mice, there was a modest, but statistically significant increase in methylation. Increased methylation corresponded with lower levels of receptor mRNA expression in the nasal retina. We cloned the EphA5 promoter and found that site-specific differences in methylation could preferentially activate or repress promoter activity in transient transfections of rat retinal progenitor cells (R28) using luciferase assays. In sphere cultures generated by EGF/FGF2 stimulation of conditionally immortalized mouse Müller glia (ImM10), EphA5 promoter was hypermethylated and EphA5 mRNA was not detected. Demethylation using 5-azadeoxycytidine (AzadC) resulted in a significant decrease of methylation of the EphA5 promoter and re-expression of the EphA5 mRNA. The inverse relationship between EphA5 promoter methylation and mRNA expression is consistent with a role for DNA methylation in modulating the spatial patterns of EphA5 gene expression in the retina and in silencing EphA5 expression in ImM10 cells. The robust up-regulation of EphA5 in ImM10 cells following demethylation suggests that modulation of chromatin structure may be a useful approach for promoting expression of silenced developmental genes and increasing the neurogenic potential of Müller glia.  相似文献   

11.
Ciliary neurotrophic factor (CNTF) acts in several processes in the vertebrate retina, including neuroprotection of photoreceptors in the stressed adult retina and regulation of neuronal progenitor cell proliferation during retinal development. However, the signaling pathway it utilizes (Jak/Stat, MAPK, or Akt) in these processes is ambiguous. Because dark-adapted albino zebrafish exhibit light-induced rod and cone cell death and subsequently regenerate the lost photoreceptor cells, zebrafish should be a useful model to study the role of CNTF in both neuroprotection and neuronal progenitor cell proliferation. We therefore investigated the potential roles of CNTF in both the undamaged and light-damaged adult zebrafish retinas. Intraocular injection of CNTF suppressed light-induced photoreceptor cell death, which then failed to exhibit the regeneration response that is marked by proliferating Müller glia and neuronal progenitor cells. Inhibiting the MAPK signaling pathway, but neither the Stat3 nor Akt pathways, significantly reduced the CNTF-mediated neuroprotection of light-induced photoreceptor cell death. Intraocular injection of CNTF into non-light-treated (undamaged) eyes mimicked constant intense light treatment by increasing Stat3 expression in Müller glia followed by increasing the number of proliferating Müller glia and neuronal progenitors. Knockdown of Stat3 expression in the CNTF-injected non-light-treated retinas significantly reduced the number of proliferating Müller glia, while coinjection of CNTF with either MAPK or Akt inhibitors did not inhibit the CNTF-induced Müller glia proliferation. Thus, CNTF utilizes a MAPK-dependant signaling pathway in neuroprotection of light-induced photoreceptor cell death and a Stat3-dependant signaling pathway to stimulate Müller glia proliferation.  相似文献   

12.
Background: We report a modified method for the isolation and propagation of adult human Müller cells in culture. Methods: The retina of postmortem human eyes was mechanically dissociated and cultured. Using immunocytochemical techniques, these cells were stained with monoclonal antibodies specific for Müller cells, glial fibrillary acidic protein (GFAP), vimentin, glutamine synthetase (GS) and keratin. Transmission electron microscopy (TEM) was also performed. Results: The dissociated and cultured cells expressed vimentin and GS, but not GFAP. At least 85% of these cells stained with a Müller tell-specific monoclonal antibody. Using TEM, flat cells containing 13-nm intermediate filaments and glycogen were identified. Conclusion: Human retinal Müller cells tan be isolated and propagated in culture. Purified cell cultures are required for controlled studies of the normal physiology and pathologie responses of Müller cells.  相似文献   

13.
Rabbit retinas were treated with low-intensity laser coagulation at five different wavelengths. Using an indirect immunocytochemical method, the retinas were stained for glial fibrillary acidic protein (GFAP) at 2, 4, 21 and 32 days after coagulation such that we could follow GFAP expression in the Müller cells during retinal repair. GFAP-positive staining was found in the end feet of the Müller cells at 2 days after laser coagulation. GFAP immunoreactivity was observed throughout the Müller cells, surrounding the central necrotic tissue, at days 4, 21 and 32 after laser coagulation. Scar tissue in the subretinal space at days 21 and 32, which was more pronounced for the longer wavelengths produced by the Krypton and Nd-YAG lasers, also showed GFAP immunoreactivity. The Müller cells remained GFAP-immunoreactive for at least 32 days after laser coagulation.Presented at the 17th meeting of the Club Jules Gonin, Lausanne, September 2–6, 1990 Offprint requests to: M.-J. Tassignon  相似文献   

14.
Osmotic swelling of retinal glial (Müller) cells may contribute to the development of edema in diabetic retinopathy. Here, we tested whether oxidative stress and mitochondrial dysfunction are pathogenic factors involved in the osmotic swelling of Müller cells in retinal slices from control and streptozotocin-injected hyperglycemic rats. Hypotonic challenge did not change the size of Müller cell somata from control animals but induced soma swelling in Müller cells of diabetic animals. Administration of a reducing agent blocked the osmotic swelling of Müller cell somata. In retinal tissues from control animals, administration of the reducing agent blocked also the swelling-inducing effects of antagonists of P2Y1 and adenosine A1 receptors. In tissues from diabetic animals, inhibition of xanthine oxidase decreased the soma swelling by approximately 50% while inhibition of NADPH oxidase and nitric oxide synthase had no effects. Blockade of mitochondrial oxidative stress by perindopril, as well as of mitochondrial permeability transition by cyclosporin A or minocycline, attenuated the swelling. In addition, activation of mitochondrial KATP channels by pinacidil fully prevented the swelling. The data suggest that oxidative stress produced by xanthine oxidase, as well as the mitochondria, are implicated in the induction of osmotic swelling of Müller cells from diabetic rats.  相似文献   

15.
Purines (in particular, ATP and adenosine) act as neuro- and gliotransmitters in the sensory retina where they are involved in bidirectional neuron-glia signaling. This review summarizes the present knowledge about the expression and functional importance of P1 (adenosine) and P2 (nucleotide) receptors in Müller glial cells of the mammalian retina. Mammalian Müller cells express various subtypes of adenosine receptors and metabotropic P2Y receptors. Human Müller cells also express ionotropic P2X7 receptors. Müller cells release ATP upon activation of metabotropic glutamate receptors and/or osmotic membrane stretching. The osmotic mechanism is abrogated under conditions associated with ischemia-hypoxia and inflammation, resulting in swelling of the Müller cells when the extracellular milieu is hypoosmotic. However, exogenous glutamate, which induces the release of ATP and adenosine, and thus activates P2Y1 and A1 adenosine receptors, respectively, prevents such osmotic swelling under pathological conditions, suggesting unimpaired receptor-induced release of ATP. In addition to the inhibition of swelling, which is implicated in regulating the volume of the extracellular space, purinergic signaling is involved in mediating neurovascular coupling. Furthermore, purinergic signals stimulate the proliferation of retinal precursor cells and Müller cells. In normal retinal information processing, Müller cells regulate the synaptic activity by the release of ATP and adenosine. In retinopathies, abrogation of the osmotic release of ATP, and the upregulation of ecto-apyrase (NTPDase1), may have neuroprotective effects by preventing the overactivation of neuronal P2X receptors that are implicated in apoptotic cell death. Pharmacological modulation of purinergic receptors of Müller cells may have clinical importance, e.g., for the clearance of retinal edema and for the inhibition of dysregulated cell proliferation in proliferative retinopathies.  相似文献   

16.
This study was conducted to investigate whether augmentation of macular pigment (MP) enhances visual performance (VP). 121 normal subjects were recruited. The active (A) group consumed 12 mg of lutein (L) and 1 mg of zeaxanthin (Z) daily. MP optical density (MPOD) was assessed by customized heterochromatic flicker photometry. VP was assessed as best corrected visual acuity (BCVA), mesopic and photopic contrast sensitivity (CS), glare disability, photostress, and subjective visual function. Subjects were assessed at baseline; 3; 6; 12 months (V1, V2, V3 and V4, respectively). Central MPOD increased significantly in the A group (p < 0.05) but not in the placebo group (p > 0.05). This statistically significant increase in MPOD in the A group was not, in general, associated with a corresponding improvement in VP (p > 0.05, for all variables), with the exception of a statistically significant time/treatment effect in “daily tasks comparative analysis” (p = 0.03). At V4, we report statistically significant differences in mesopic CS at 20.7 cpd, mesopic CS at 1.5 cpd under high glare conditions, and light/dark adaptation comparative analysis between the lower and the upper MP tertile groups (p < 0.05) Further study into the relationship between MP and VP is warranted, with particular attention directed towards individuals with low MP and suboptimal VP.  相似文献   

17.
RNA-binding proteins, and in particular, the Musashi genes, function as essential regulators of progenitor functioning in both the developing and adult organism. In this report, we characterize the differential subcellular distribution of Musashi-1 in cells engaged in either proliferating or differentiating contexts in the developing mouse retina, and in cultured Müller glia. During retinal cell differentiation, Musashi-1 immunoreactivity shifts from exclusively cytoplasmic in retinal progenitor cells, to predominantly nuclear localization in differentiating neurons. This nuclear shift is transient, with localization in the adult retina becoming predominantly perinuclear and cytoplasmic in Müller glia and photoreceptors. A correlation between cell cycle progression and subcellular distribution of Musashi-1 is observed in passageable, adult Müller glial cells in vitro. Furthermore, treatment of Müller cultures with neuron-promoting differentiation media induces asymmetric cytoplasmic Musashi-1 immunoreactivity in dividing daughter cells. The observed shifts in subcellular Musashi-1 localization are consistent with contrasting roles for Musashi-1 during cell proliferation and differentiation. These data provide evidence that nuclear, and cytoplasmic sequestering of Musashi-1 in retinal cells is context-specific, and may contribute to downstream functioning of Musashi-1.  相似文献   

18.
This study determined retinal thinning in a mammalian model of high myopia using optical coherence tomography (OCT) and histological sections from the same retinal tissue. High myopia was induced in three tree shrews (Tupaia belangeri) by deprivation of form vision via lid suture of one eye, with the other eye a control. Ocular biometry data was obtained by Ascan ultrasonography, keratometry and retinoscopy. The Zeiss StratusOCT was used to obtain Bscans in vivo across the retina. Subsequently, eyes were enucleated and retinas fixed, dehydrated, embedded and sectioned. Treated eyes developed a high degree of axial myopia (−15.9 ± 2.3 D; n = 3). The OCT analysis showed that in myopic eyes the nasal retina thinned more than the temporal retina relative to the disc (p = 0.005). Histology showed that the retinas in the myopic eyes comprise all layers but were thinner than the retinas in normal and control eyes. Detailed thickness measurements in corresponding locations of myopic and control eyes in superior nasal retina using longitudinal reflectivity profiles from OCT and semithin vertical histological sections showed the percentage of retinal thinning in the myopic eyes was similar between methods (OCT 15.34 ± 5.69%; histology 17.61 ± 3.02%; p = 0.10). Analysis of retinal layers revealed that the inner plexiform, inner nuclear and outer plexiform layers thin the most. Cell density measurements showed all neuronal cell types are involved in retinal thinning. The results indicate that in vivo OCT measurements can accurately detect retinal thinning in high myopia.  相似文献   

19.
Although several studies have previously focused on the conjunctival epithelial response to surface dryness, little is known about the effect of a dry environment on corneal epithelium, which is the most clinically significant tissue affected in dry eye. The aim of this study was to quantitatively evaluate the effect of desiccating stress on the number of proliferating corneal epithelial cells and corneal epithelial thickness in mice placed in a controlled-environment chamber (CEC) that induces dry eye. Corneal epithelial cell proliferation and thickness were studied in 8- to 12-week-old female BALB/c mice placed in the CEC (temperature: 22.3 ± 0.7 °C; relative humidity: 22.5 ± 4.5%; airflow: 15 L/min) for 7 days and compared to a control group of mice with no dry eye. Actively proliferating cells were identified by immunofluorescence using a FITC-conjugated antibody against the Ki-67 protein, a cell proliferation marker expressed during active phases of the cell cycle. To detect the spatial distribution of proliferative cells, Ki-67+ cells were counted in three areas of the epithelium: center, periphery, and limbus. Corneal epithelial thickness was evaluated in the central cornea after staining with hematoxylin-eosin. Results from each experimental group were compared using the Mann-Whitney test. The number of Ki-67+ cells observed in the corneal epithelium of mice exposed to the CEC was significantly higher in each area (center: 32.1 ± 1.1; periphery: 94.2 ± 5.3; limbus: 4.0 ± 1.5) than in the control group (center: 13.2 ± 1.0, p = 0.02; periphery: 42.9 ± 2.3, p = 0.02; limbus: 0.0, p = 0.01). In mice subjected to desiccating stress, a significant number of Ki-67+ positive cells were detected in the basal and suprabasal cell layers (central area 46%; periphery 30.8%: limbus 0%), whereas in the control group the cells were exclusively distributed through the basal cell layer. Ki-67+ cells were not found in the corneal stroma or endothelium in any group. The corneal epithelium was found to be significantly thicker in dry eye mice (54.94 ± 6.09 μm) as compared to the controls (43.9 ± 6.23 μm, p < 0.0001) by a mean of 25%. These results demonstrate that desiccating stress increases corneal epithelial turnover and thickness, similar to what is observed in other chronic inflammatory states of other epithelialized surfaces. The CEC can facilitate the study of the regulation of epithelial cell function and turnover at the molecular and cellular levels under desiccating stress conditions.  相似文献   

20.
Y Sun  D Wang  F Ye  D-N Hu  X Liu  L Zhang  L Gao  E Song  D Y Zhang 《Eye (London, England)》2013,27(11):1299-1307

Purpose

Müller cells have important roles in the pathogenesis of diabetic retinopathy by promoting cell proliferation and inducing the production of vascular endothelial growth factor (VEGF) under hyperglycemic conditions. The objective of this study was to determine the potential mechanism of Müller cell proliferation and VEGF production due to high-glucose conditions.

Methods

Primary cultured rat Müller cells were incubated with medium containing variable concentrations of glucose and/or embelin, a specific inhibitor of X-linked inhibitor of apoptosis protein (XIAP), for 72 h. The proliferation of Müller cells was assessed by the MTT assay. The expression and/or phosphorylation of 146 proteins were assessed using protein pathway array.

Results

High concentrations of glucose-induced Müller cell proliferation and altered expression and/or phosphorylation of 47 proteins that have been identified to have key roles in several important signaling pathways (XIAP, VEGF, HIF1α, NFκB, etc) and are involved in the regulation of cell survival, proliferation, or apoptosis. However, Müller cell alterations induced by high-glucose conditions were counteracted by the XIAP inhibitor embelin, and 26 proteins/phosphorylations (out of 47) were restored to their normal levels. Nine proteins, including NFκB p65, p-p38, tumor necrosis factor-α, urokinase-type plasminogen activator, CREB, IL-1β, HCAM, estrogen receptor-α, and p-Stat3, were involved in regulatory networks between XIAP and VEGF.

Conclusions

The current study suggests that XIAP may be a potential regulator that can mediate a series of pathological changes induced by high-glucose conditions in Müller cells. Therefore, embelin could be a potential agent for the prevention and treatment of diabetic retinopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号