首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Objective Losartan is metabolized to the active carboxylic acid metabolite EXP3174 by CYP2C9. In this study, we determined the effects of the single CYP2C9*3 variant on the pharmacokinetics and pharmacodynamics of losartan.Methods Seven healthy Japanese subjects (CYP2C9*1/*1, n=4 and CYP2C9*1/*3, n=3) were phenotyped with a single dose of losartan (25 mg). Blood and urine samples were collected and assayed for losartan and EXP3174. Blood pressure and pulse rate were also measured using a sphygmomanometer.Results The maximum plasma concentration of EXP3174 was significantly (P<0.05) lower in the CYP2C9*1/*3 (n=3) group than in the CYP2C9*1/*1 (n=4) group. Diastolic blood pressure in the CYP2C9*1/*1 group, but not that in the CYP2C9*1/*3 group except for at 6 h and 8 h, was reduced from 1.5 h to 12 h compared with the baseline level. Systolic blood pressure in the CYP2C9*1/*1 group, but not that in the CYP2C9*1/*3 group, was reduced from 1 h to 12 h compared with the baseline level. The metabolic ratio (MR) of EXP3174 concentration to the losartan concentration in plasma at 6 h post-dosing and the 4-h to 8-h urinary EXP3174/losartan MR were significantly lower in the CYP2C9*1/*3 group than in the CYP2C9*1/*1 group. The plasma 6-h MR and the 4-h to 8-h urinary MR were significantly (P<0.05) correlated with the plasma AUC ratio (AUCEXP3174/AUClosartan), with Spearman rank correlation coefficients of 0.75 and 0.89, respectively.Conclusion The single CYP2C9*3 variant reduces the metabolism of losartan and its hypotensive effect. Plasma MR, as well as urine MR, may be useful for phenotyping assays of CYP2C9 activity.  相似文献   

2.
  1. The aim of the study was to determine the pharmacokinetics of losartan in relation to the CYP2C9*13 allele.

  2. A single oral dose of 50?mg losartan was administrated to each of the 16 healthy male volunteers with a different genotype (CYP2C9*1/*1, n?=?6; CYP2C9*1/*13, n?=?4; and CYP2C9*1/*3, n?=?6). Blood samples were collected from pre-dose up to 24?h after the drug administration. Plasma losartan and E3174 (an active metabolite of losartan) were assayed by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

  3. All the subjects finished the study without adverse drug effects. In the present study, the frequencies of CYP2C9*13 and *13 alleles were 0.6% and 2.6% in Chinese healthy volunteers, respectively, and both alleles were in Hardy–Weinberg equilibrium. Compared with the subjects in the CYP2C9*1/*1 group, individuals carrying the CYP2C9*1/*13 genotype showed significantly a longer t1/2 of losartan and E3174 and markedly increased the area under the curve (AUC) of losartan. Meanwhile, the CYP2C9*1/*3 genotype group had significant differences in t1/2 and Cmax of E3174 compared with the CYP2C9*1/*1 group. The ratio of AUCE3174/AUClosartan after losartan administration in the CYP2C9*1/*13 and CYP2C9*1/*3 groups was also statistically different from that in the CYP2C9*1/*1 group.

  4. The data indicate that the presence of the CYP2C9*13 allele results in poor metabolism of losartan after a single oral dose.

  相似文献   

3.
STUDY OBJECTIVE: To determine if differences in the pharmacokinetics of losartan and its pharmacologically active E3174 metabolite exist among individuals expressing the cytochrome P450 (CYP) 2C9*1/*1, *1/*2, and *1/*3 genotypes. DESIGN: Single-dose pharmacokinetic study. SETTING: University general clinical research center. SUBJECTS: Fifteen healthy volunteers, five from each genotype: CYP2C9*1/*1, *1/*2, and *1/*3. INTERVENTION: A single oral dose of losartan 50 mg. MEASUREMENTS AND MAIN RESULTS: Plasma and urine samples were collected for 24 hours, and losartan and E3174 pharmacokinetic data were compared across the three genotypes. Orthostatic blood pressure was measured over 12 hours after dosing. No significant differences were observed among the three groups in losartan or E3174 area under the plasma concentration-time curve, losartan or E3174 elimination half-life, or losartan oral clearance. A significant association between CYP2C9 genotype and losartan to E3174 formation clearance was observed, such that 50% of the variability was accounted for by the genotype. No significant relationship between that genotype and blood pressure was observed at any time. CONCLUSION: Differences in the pharmacokinetics of losartan and its active E3174 metabolite were not observed in healthy subjects with the genotype of CYP2C9*1/*2 and *1/*3 compared with those expressing *1/*1. Alterations in losartan dosing in CYP2C9*1/*2 and *1/*3 individuals does not appear necessary.  相似文献   

4.
Purpose  To investigate the effects of silymarin on the pharmacokinetics of losartan and its active metabolite E-3174 and its relationship with CYP2C9 genotypes. Methods  Twelve healthy adult men of known CYP2C9 genotype (six CYP2C9*1/*1 and six CYP2C9*1/*3) were recruited in a two-phase randomized crossover design study. The pharmacokinetics of losartan and E-3174 were measured before and after a 14-day treatment with 140 mg of silymarin three times daily. Results  The area under the plasma concentration–time curve (AUC) of losartan increased significantly following a 14-day silymarin treatment in subjects with the CYP2C9*1/*1 genotype, but not in those with the CYP2C9*1/*3 genotype. The AUC of E-3174 decreased significantly with a silymarin pretreatment in both CYP2C9*1/*1 and the CYP2C9*1/*3 subjects. The metabolic ratio of losartan (ratio of of E-3174 to of losartan) decreased significantly after a 14-day treatment with silymarin in individuals with the CYP2C9*1/*1 genotype (p < 0.05), but not in those with the CYP2C9*1/*3 genotype (p = 0.065). Conclusion  Silymarin inhibits the metabolism of losartan to E-3174, with the magnitude of the interaction differing in individuals with different CYP2C9 genotypes.  相似文献   

5.
The aim of the present study was to further investigate a previously identified metabolic interaction between losartan and paclitaxel, which is one of the marker substrates of CYP2C8, by using human liver microsomes (HLMs) from donors with different CYP2C8 and CYP2C9 genotypes. Although CYP2C8 and CYP2C9 exhibit genetic linkage, previous studies have yet to determine whether losartan or its active metabolite, EXP‐3174 which is specifically generated by CYP2C9, is responsible for CYP2C8 inhibition. Concentrations of 6α‐hydroxypaclitaxel and EXP‐3174 were measured by high‐performance liquid chromatography after incubations with paclitaxel, losartan or EXP‐3174 in HLMs from seven donors with different CYP2C8 and CYP2C9 genotypes. The half maximal inhibitory concentration (IC50) values were not fully dependent on CYP2C8 genotypes. Although the degree of inhibition was small, losartan significantly inhibited the production of 6α‐hydroxypaclitaxel at a concentration of 1 μmol/L in only HL20 with the CYP2C8*3/*3 genotype. HLMs with either CYP2C9*2/*2 or CYP2C9*1/*3 exhibited a lower losartan intrinsic clearance (Vmax/Km) than other HLMs including those with CYP2C9*1/*1 and CYP2C9*1/*2. Significant inhibition of 6α‐hydroxypaclitaxel formation by EXP‐3174 could only be found at levels that were 50 times higher (100 μmol/L) than the maximum concentration generated in the inhibition study using losartan. These results suggest that the metabolic interaction between losartan and paclitaxel is dependent on losartan itself rather than its metabolite and that the CYP2C8 inhibition by losartan is not affected by the CYP2C9 genotype. Further study is needed to define the effect of CYP2C8 genotypes on losartan–paclitaxel interaction.  相似文献   

6.
HMG-CoA reductase inhibitors (statins) have a potential to interact with substrates of the drug-metabolizing enzyme cytochrome P450 2C9 (CYP2C9). This may lead to concentration-dependent toxicity such as skeletal muscle side effects. Atorvastatin, a widely used statin, is presently inadequately investigated in vivo with regard to effects on CYP2C9 activity in human beings. The aim of this study was to determine the effect of atorvastatin on the activity of CYP2C9 in a group of Turkish hypercholesterolaemic patients. We prospectively investigated the atorvastatin effect on CYP2C9 activity in a sample of Turkish hypercholesterolaemia patients (11 women, 7 men) who commenced atorvastatin (10 mg/day). Losartan was used as a probe drug to determine CYP2C9 metabolic activity. A single 25-mg oral dose of losartan was given to the patients before, on the first day and after the fourth week of the atorvastatin treatment. Urinary concentrations of losartan and its metabolite, E3174, were measured by high-pressure liquid chromatography (HPLC). Urinary losartan/E3174 ratios were used as an index of CYP2C9 activity. As the baseline enzyme activity may influence the extent of drug-drug interactions, the CYP2C9*2 and 2C9*3 alleles were identified by using PCR-RFLP. In the patients with the CYP2C9*1*1 genotype (n = 12), atorvastatin treatment did not cause a significant change in losartan/E3174 ratios (medians; 95% CI) neither after the first day (0.73; 0.34-1.61) nor at the fourth week (0.71; 0.36-1.77) of the treatment as compared with the baseline activity (0.92; 0.57-1.74, p = 0.38). Similarly, no significant change in the baseline CYP2C9 activity (0.91; 0.30-1.60) was observed in patients with the CYP2C9*1*2 genotype as compared with those of the first day (1.08; 0.08-2.72) and fourth week (0.64; 0.0-3.82) of the atorvastatin treatment (n = 4, p = 0.86). These observations in a hypercholesterolaemic patient sample suggest that atorvastatin does not have a significant effect on enzymes encoded by the CYP2C9*1*1 and CYP2C9*1*2 genotypes when co-administered with a CYP2C9 substrate, losartan.  相似文献   

7.
目的 探讨黄豆苷元对不同基因型健康受试者氯沙坦药代动力学的影响.方法 筛选中国男性健康受试者18名(CYP2C9*1/*1、CYP2C9*1/*3、CYP2C9*1/*13基因型各6名).执行双周期、自身前后对照方案,第一阶段随机分为对照组和试验组,受试者分别口服黄豆苷元片或安慰剂15 d,第15天两组受试者均口服氯沙...  相似文献   

8.
In the present study, we aimed to investigate the influence of CYP2C9*2 genetic polymorphism on pharmacokinetics of losartan and its active metabolite E-3174 on the background of CYP3A4 wild genotype in healthy Chinese Hui subjects. Blood samples were collected from subjects for CYP2C9 and CYP3A4 genotyping using a polymerase chain reaction-restriction fragmentlength polymorphism (PCR-RFLP) assay. A pharmacokinetic study was then carried out in two groups with CYP2C9*1/*1 (n = 8) andCYP2C9*1/*2 (n = 6) genotypes at the same time, and all the 14 subjects were CYP3A4 wildgenotype. Plasma levels of losartan and E-3174 were determined by high-performance liquid chromatography-fluorescence (HPLC-FLD) method before and after a single oral dose of 50-mg dose of losartan in tablet form. The pharmacokinetic parameters were calculated by DAS 2.0 software and analyzed by SPSS 16.0 software. Pharmacokinetic parameters, including area under the curve from 0 h to the last measured point 24 h (AUC0–24), area under the curve from 0 h to infinite time (AUC0–∞), peak plasma concentration (Cmax), time to reach Cmax (tmax), oral clearance (CL), oral volume of distribution (Vd) and elimination half-life (t1/2), were determined. Compared with the CYP2C9*1/*2 group, the AUC0–24, AUC0–∞ and Cmax of E-3174 in CYP2C9*1/*1 group of Hui subjects were respectively 1.36, 1.32 and 1.64 times more, and the statistic differences were significant (P<0.05). The CYP2C9*2 mutant allele played an important role in the pharmacokinetics of losartan after oral administration, and itmight decrease the generationof E-3174. However, large-sample clinical trials are required to validate whether the dose adjustment according to CYP2C9 genotype is necessary.  相似文献   

9.
Cytochrome P4502E1 (CYP2E1) gene shows genetic polymorphisms that vary markedly in frequency among different ethnic and racial groups. We studied the genotype distributions and allele frequencies of three CYP2E1 polymorphisms: CYP2E1*5B (RsaI/PstI RFLP, C-1053T/G-1293C SNP, rs2031920 /rs3813867), CYP2E1*6 (DraI RFLP, T7632A SNP, rs6413432), and CYP2E1*7B (DdeI RFLP, G-71T SNP, rs6413420) by PCR/RFLP technique in a sample of 206 healthy subjects representing Turkish population. CYP2E1*5B polymorphism analysis yielded the genotype distribution as 96.12% for *1A/*1A (c1/c1), and 3.88% for *1A/*5B (c1/c2). The genotype frequencies for CYP2E1*6 polymorphism were found as 83.98% for *1A/*1A (T/T), 15.53% for *1A/*6 (T/A) and 0.49% for *6/*6 (A/A). For CYP2E1*7B (G-71T) polymorphism, the genotype frequencies were determined to be 86.89% for *1A/*1A (G/G), 12.62% for *1A/*7B (G/T) and 0.49% for *7B/*7B (T/T). Accordingly, the allele frequencies for *5B, *6 and *7B were 1.94, 8.25, and 6.80%, respectively. The genotype distributions of CYP2E1*5B and *6 in Turkish population were similar to those in other Caucasian populations, while differed significantly from East Asian populations. Recently, a novel and functionally important CYP2E1*7B polymorphism was identified in the promoter region. There have been few studies and limited data on CYP2E1*7B polymorphism frequency in the world and, so far, no information has been available for Turkish population. The genotype frequencies of CYP2E1*7B in Turkish population were found to be similar to those of other Caucasian populations. Population studies like this could be useful in assessing the susceptibility of different populations to chemical-induced diseases, including several types of cancer. An account of this work has been presented at the 31st Federation of European Biochemical Societies (FEBS) Congress, in Istanbul, Turkey, on June 24–29, 2006.  相似文献   

10.
The genetically polymorphic CYP2C9 metabolizes many non-steroidal anti-inflammatory agents, including naproxen. This study examined the effects of a CYP2C9 genetic polymorphism on the pharmacokinetics of naproxen in Korean subjects. Twenty healthy male subjects carrying a CYP2C9*1/*1 (n=14) or CYP2C9*1/*3 (n=6) polymorphism were enrolled. After a single-dose of 275 mg naproxen Na, blood samples were collected at various times over a 72 h period and the plasma naproxen concentration was measured. The plasma concentration of naproxen was determined by HPLC analysis with UV detection, and the pharmacokinetic parameters were calculated. The mean plasma concentration-time profiles of naproxen in the CYP2C9*1/*3 and CYP2C9*1/*1 individuals were similar. There were no significant differences in the pharmacokinetics of naproxen between CYP2C9*1/*1 and CYP2C9*1/*3 genotypes. The AUC0-∞ (p = 0.759) and oral clearance (p = 0.823) of naproxen were also similar in individuals with CYP2C9*1/*3 and CYP2C9*1/*1. Overall, a genetic polymorphism of CYP2C9 does not significantly affect the pharmacokinetics of naproxen. Therefore, naproxen does not require a dose adjustment for individuals with the CYP2C9*1/*3 genotype.  相似文献   

11.
Objective In vitro studies with human liver microsomes have suggested that the oxidative conversion of mexiletine (MX) to its metabolites is catalyzed by CYP2D6 and is significantly impaired in microsomes with the CYP2D6*10/*10 genotype. Therefore, we examined the influence of the CYP2D6*10 allele on MX pharmacokinetics in Japanese subjects.Methods Subjects with CYP2D6*1/*1 (group*1/*1; n=5), CYP2D6*10/*10 (group*10/*10; n=6) and CYP2D6*5/*10 (group*5/*10; n=4) genotypes received a single 200-mg dose of MX. Plasma and urinary levels of MX and its metabolites (p-hydroxymexiletine (PHM), hydroxymethylmexiletine (HMM) and N-hydroxymexiletine (NHM)) were determined by means of high-performance liquid chromatography.Results Mean area under the concentration–time curve (AUC) and t1/2 of MX were significantly (P<0.05) higher in the CYP2D6*10/*5 group (AUC 11.23±3.05 µg·h/ml; t1/2 15.5±3.2 h) than in the CYP2D6*1/*1 (AUC 5.53±1.01 µg·h/ml; t1/2 8.1±1.6 h) and CYP2D6*10/*10 (AUC 7.32±2.36 µg·h/ml; t1/2 10.8±2.8 h) groups, but there was no significant difference between the CYP2D6*1/*1 and CYP2D6*10/*10 groups. The maximum plasma concentration of MX was not significantly different among the three groups. The values of urinary excretion of PHM and HMM in the CYP2D6*1/*1 group were significantly (P<0.05) higher than those in the CYP2D6*10/*10 and CYP2D6*5/*10 groups, but there was no significant difference in that of NHM among the three groups. Clearance of MX in the CYP2D6*5/*10 subjects was comparable to that in the poor metabolizers described previously.Conclusion The present findings demonstrated that carriers of the CYP2D6*10 allele showed a decreased clearance of MX. Subjects with CYP2D6*5/*10 showed significantly (P<0.05) increased plasma levels of MX, and homozygotes for CYP2D6*10 also showed an increase, although to a lesser extent. Thus, the CYP2D6*10 allele plays an important role in MX pharmacokinetics.  相似文献   

12.
Allele and genotype frequency of CYP2C9 in Tamilnadu population   总被引:2,自引:0,他引:2  
Objectives To identify the frequency of CYP2C9*1, *2 and *3 alleles and the genotype of CYP2C9 gene in the Tamilian population.Methods The study was conducted on 135 unrelated healthy human volunteers. DNA was extracted from the peripheral leukocytes samples and was analyzed using the polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) protocol. The PCR products were digested with AvaII, KpnI or NsiI restriction enzymes. The digested products were separated using 8% polyacrylamide gel and stained by ethidium bromide. Genotyping of the subjects was done based on DNA fragment size.Results The frequencies of CYP2C9*1, *2 and *3 alleles in the Tamilian population were 0.907, 0.026 and 0.067, respectively. The distribution of CYP2C9*1/*1, *1/*2, *1/*3 and *2/*3 genotypes were 0.823, 0.044, 0.126 and 0.007, respectively.Conclusion CYP2C9*3 is the most frequent mutant allele found in the Tamilian population. The distribution of this mutant allele in the Tamilian population was found to be lesser than in Caucasians but higher than in Chinese.  相似文献   

13.
Celecoxib, a selective cyclooxygenase (COX)-2 inhibitor, is used for the treatment of rheumatoid arthritis and osteoarthritis. The predominant hepatic metabolism of celecoxib to celecoxib carboxylic acid (CCA) is mediated mainly by CYP2C9. We investigated the effects of the major CYP2C9 genetic variants in Asian populations, CYP2C9*3 and CYP2C9*13, on the pharmacokinetics of celecoxib and its carboxylic acid metabolite in healthy Korean subjects. A single 200-mg oral dose of celecoxib was given to 52 Korean subjects with different CYP2C9 genotypes: CYP2C9EM (n = 26; CYP2C9*1/*1), CYP2C9IM (n = 24; CYP2C9*1/*3 and *1/*13), and CYP2C9PM (n = 2; CYP2C9*3/*3). Celecoxib and CCA concentrations in plasma samples collected up to 48 or 96 h after drug intake were determined by HPLC–MS/MS. The mean area under the plasma concentration–time curve (AUC0–∞) of celecoxib was increased 1.63-fold (P < 0.001), and the apparent oral clearance (CL/F) of celecoxib was decreased by 39.6% in the CYP2C9IM genotype group compared with that of CYP2C9EM (P < 0.001). The overall pharmacokinetic parameters for celecoxib in CYP2C9*1/*13 subjects were similar to those in CYP2C9*1/*3 subjects. Two subjects with CYP2C9PM genotype both showed markedly higher AUC0–∞, prolonged half-life, and lower CL/F for celecoxib than did subjects with CYP2C9EM and IM genotypes. CYP2C9*3 and CYP2C9*13 variant alleles significantly affected the plasma concentration of celecoxib.  相似文献   

14.
The aim of this study was to develop an optimal gastroretentive drug delivery system (GRDDS) for administering Losartan. Additionally, the influence of optimized GRDDS on the bioavailability of Losartan and the formation extent of active metabolite E3174 by CYP2C9 polymorphism was investigated. Swellable and floatable GRDDS tablets combining hydroxyethyl cellulose (HEC), sodium carboxymethyl cellulose (NaCMC), and sodium bicarbonate were prepared at various compression pressures for evaluating swelling characteristics and floating capacity. Then Losartan was incorporated into optimized formulations for in vitro and in vivo characterizations. An appropriate ratio of HEC to NaCMC, addition of sodium bicarbonate, and compression at lower pressures resulted in the tablets floating over SGF for more than 16 h and swelling to 2 cm in diameter within 3 h. The release patterns of Losartan from these tablets were pH-dependent. Results of the clinical trials showed that the mean bioavailability from GRD-A (HEC 91.67%, sodium bicarbonate 3.33% and Losartan 8.33%) was approximately 164%, relative to the immediate-release product (Cozaar®). MRT and tmax values were greater and Cmax values were lower for the GRDDS tablets compared with Cozaar®. The lower bioavailability of Losartan in the CYP2C9*1/*1 subjects than CYP2C9*1/*3 subjects was found and could be due to the variety of enzymatic activity.  相似文献   

15.
Drug interactions have been reported between 5-fluorouracil and cytochrome P450 2C9 (CYP2C9) substrates, S-warfarin and phenytoin. This study was performed to determine the influence of 5-fluorouracil on cytochrome P450 2C9 (CYP2C9) activity in colorectal cancer patients (n=17) receiving 5-fluorouracil. Losartan was used as a marker to assess CYP2C9 activity. Losartan and its CYP2C9 dependent metabolite, E-3174, were determined in urine. The ratios of urinary losartan/E-3174 before and after the 5-fluorouracil treatment were compared for each patient. Genotyping was performed to detect the CYP2C9*2 and CYP2C9*3. At the end of the first cycle of 5-fluorouracil, losartan/E-3174 ratio was increased by 28.0% compared to the pre-treatment values (P=0.15). In five patients recruited for phenotyping after three 5-fluorouracil cycles, the metabolic ratio was increased significantly by 5.3 times (P=0.03). The results suggest that in most patients 5-fluorouracil inhibited CYP2C9 activity. This inhibition was more pronounced when the total administered dose increased. This finding may help explain the mechanism of interaction between 5-fluorouracil and CYP2C9 substrates.  相似文献   

16.
Losartan is an angiotensin II receptor antagonist that is metabolized by CYP2C9 and CYP3A4 to a more potent antihypertensive metabolite, E3174. Interaction studies with inhibitors of CYP3A4 have not demonstrated significant changes in the pharmacokinetics of losartan or E3174. The authors assessed the steady-state pharmacokinetics of losartan and E3174 when administered alone and concomitantly with fluvastatin, a specific CYP2C9 inhibitor. A prospective, open-label, crossover study was conducted in 12 healthy volunteers with losartan alone and in combination with fluvastatin. The baseline phase was 7 days of losartan (50 mg QAM), and the inhibition phase was 14 total days of fluvastatin (40 mg QHS), with the final 7 days including losartan. The authors found that fluvastatin did not significantly change the steady-state AUC0-24 or half-life of losartan or E3174. Losartan apparent oral clearance was not affected by fluvastatin. Inhibition of losartan metabolism appears to require both CYP2C9 and CYP3A4 inhibition.  相似文献   

17.
Zafirlukast, a cysteinyl leukotriene receptor antagonist, is indicated for the treatment of patients with mild to moderate asthma. Zafirlukast is metabolized mainly by CYP3A4 and CYP2C9. We investigated the effects of the major CYP2C9 variant alleles in Asian populations, CYP2C9*3 and CYP2C9*13, on the pharmacokinetics of zafirlukast in healthy Korean subjects. A single 20-mg oral dose of zafirlukast was given to 23 Korean male subjects divided into two genotype groups according to CYP2C9 genotypes, CYP2C9EM (n = 11; CYP2C9*1/*1) and CYP2C9IM (n = 12; 9 and 3 carriers of CYP2C9*1/*3 and *1/*13, respectively). Zafirlukast concentrations were determined using a validated HPLC–MS/MS analytical method in plasma samples collected after the drug intake. Compared with the CYP2C9EM group, the Cmax and AUCinf of zafirlukast in the CYP2C9IM group were 1.44- and 1.70-fold higher, respectively (p < 0.01 and p < 0.0001). The CL/F of zafirlukast was 42.8 % lower in the CYP2C9IM group compared with the CYP2C9EM group (p < 0.001). Slightly higher Cmax and AUC, and lower CL/F of zafirlukast were observed in subjects with the CYP2C9*1/*13 genotype compared with the CYP2C9*1/*3 genotype subjects. CYP2C9*3 and CYP2C9*13 alleles significantly affected the plasma concentrations of zafirlukast.  相似文献   

18.
Objective: Losartan was given to subjects with known phenotypes of the polymorphic enzymes CYP2D6 and CYP2C19 to study any possible influence on the metabolism of the drug. Methods: Plasma concentrations of losartan and E-3174 were studied after oral intake of 50 mg losartan in 24 healthy, male, Swedish Caucasian subjects who were extensive or poor metabolizers (EM/PM) of debrisoquine [cytochrome P450 2D6 (CYP2D6)] or mephenytoin [cytochrome P450 2C19 (CYP2C19)]. Results: The areas under the curve (AUC) of losartan and E-3174 did not differ between poor and extensive metabolizers of debrisoquine or mephenytoin, respectively. Conclusion: About 14% of the antihypertensive drug losartan is metabolized to the active carboxylic acid metabolite E-3174, which contributes to the effect of losartan. The present study suggests that CYP2D6 and CYP2C19 are not involved to any major extent in the in vivo conversion of losartan to E-3174. Received: 21 April 1998 / Accepted in revised form: 16 December 1998  相似文献   

19.
Objectives: Evidence exists to suggest that diclofenac is metabolised by CYP2C9. The present study was undertaken in order to evaluate the effect of the single CYP2C9*3 variant on drug metabolism using diclofenac as a probe drug. Methods: A single dose of diclofenac was administered orally to 12 healthy subjects in whom the genotype of CYP2C9 had been determined previously. The disposition kinetics of diclofenac were compared between homozygotes for the wild type (CYP2C9*1/*1, n=6) and heterozygotes for the Leu359 variant (CYP2C9*1/*3, n=6). Results: For diclofenac, the following kinetic parameters were observed in the CYP2C9*1/*1 and CYP2C9*1/*3 subjects, respectively (mean ± SD): apparent oral clearance (ml/kg/h) 355.8 ± 56.9 and 484.4 ± 155.3; area under plasma concentration–time curve (μg h/ml) 2.7 ± 0.7 and 1.9 ± 0.6. The formation clearance of 4′-hydroxydiclofenac (ml/kg/h) was 63.6 ± 19.1 in the CYP2C9*1/*1 subjects compared with 75.9 ± 27.6 in the CYP2C9*1/*3 subjects. There were no significant differences in any of the kinetic parameters for either diclofenac disposition or formation clearance of 4′-hydroxydiclofenac between the two genotype groups. Conclusion: Since the disposition kinetics of diclofenac does not change in subjects with the single CYP2C9*3 mutant allele, it is suggested that the effects of CYP2C9 polymorphisms on the drug metabolism tend to be substrate specific. Received: 4 October 1999 / Accepted in revised form: 12 January 2000  相似文献   

20.
INTRODUCTION: The polymorphic cytochrome P450 enzyme 2C9 (CYP2C9) catalyses the metabolism of many drugs including S-warfarin, acenocoumarol, phenytoin, tolbutamide, losartan and most of the non-steroidal anti-inflammatory drugs. Diclofenac is metabolised to 4'-hydroxy (OH), the major diclofenac metabolite, 3'-OH and 3'-OH-4'-methoxy metabolites by CYP2C9. The aim of the present study was to clarify the impact of the CYP2C9 polymorphism on the metabolism of diclofenac both in vivo and in vitro. SUBJECTS, MATERIALS AND METHODS: Twenty healthy volunteers with different CYP2C9 genotypes [i.e. CYP2C9*1/ *1 (n = 6), *1/*2 (n = 3), *1,/*3 (n = 5), *2/*3 (n = 4), *21*2 (n = 1), *31*3 (n = 1)] received a single 50-mg oral dose of diclofenac. Plasma pharmacokinetics [peak plasma concentration (Cmax), half-life (t 1/2) and area under the plasma concentration-time curve (AUCtotal)] and urinary recovery of diclofenac and its metabolites were compared between the genotypes. Diclofenac 4'-hydroxylation was also analysed in vitro in 16 different samples of genotyped [i.e. CYP2C9*1/*1 (n = 7), *1/*2 (n=2), *1/*3 (n = 2), *2/*3 (n = 2), *2/*2 (n = 2), *31/*3 (n = 1)] human liver microsomes. RESULTS: Within each genotype group, a high variability was observed in kinetic parameters for diclofenac and 4'-OH-diclofenac (6- and 20-fold, respectively). No significant differences were found between the different genotypes either in vivo or in human liver microsomes. No correlation was found between the plasma AUC ratio of diclofenac/4'-OH-diclofenac and that of losartan/ E-3174, previously determined in the same subjects. CONCLUSION: No relationship was found between the CYP2C9 genotype and the 4'-hydroxylation of diclofenac either in vivo or in vitro. This, together with the lack of correlation between losartan oxidation and diclofenac hydroxylation in vivo raises the question about the usefulness of diclofenac as a CYP2C9 probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号