首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the effectiveness of Ambersorb, a carbonaceous resin, in reducing bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediments collected from the field. In laboratory studies, sediment pore-water concentrations of eight unsubstituted PAHs were significantly decreased after resin addition. Reduced PAH concentrations in oligochaete tissues from a laboratory bioaccumulation test, along with increased survival/reproduction and reduced photo-enhanced toxicity and sediment avoidance, also resulted from sediment treatment with Ambersorb. Resin amendment also decreased pore-water PAH concentrations in field deployed sediments but did not improve benthic invertebrate colonization. Prediction of partitioning of PAHs between solid and aqueous phases in the test sediments was complicated by the presence of coal and soot. However, accurate predictions of bioavailability were achieved based on pore-water chemistry. Overall, these studies show that the addition of high affinity sorbents effectively reduces pore-water PAH concentrations and bioavailability and suggests that sorbent addition may serve as an option for in situ remediation of some contaminated sediments.  相似文献   

2.
Portmán Bay, southeast Spain, contains the most seriously metal-contaminated sediments of the Mediterranean Sea. From 1958 to 1991, approximately 50 million tons of mine tailings were dumped into the bay, completely filling up the bay and dispersing over an extensive area of the continental platform and continental slope. The objective of our study was to characterize the nature and extent of metal contamination and the responses of natural communities to it and to assess the toxicity of the sediment deposits 10 years after mining had ceased. We studied the physical and chemical characteristics of the sediments and toxicity (of the porewater and sediment–water interface) using two sea urchin species (Arbacia lixula and Paracentrotus lividus). Metal bioavailability and patterns of macroinvertebrate community composition along the contamination gradient were also studied. Univariate and multivariate analyses showed positive correlation between the sediment metal concentrations associated to the all biological effects (sea urchins toxicity tests and benthic indices). The effects of sediment contamination on the benthic community structure are visible among sampling stations.  相似文献   

3.
We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as part of an ongoing ecological risk assessment to determine remedial actions for contaminated sediments in Lake Roosevelt.  相似文献   

4.
Total and hexavalent chromium [Cr(VI)] were measured in sediment and sediment porewater in the lower Hackensack River (NJ) to assess the relationship between sediment geochemistry and chromium speciation, which in turn controls the mobility, bioavailability, and toxicity of chromium. Between 2003 and 2005, >100 surface (0 to 15 cm) sediment samples were tested for total chromium and Cr(VI), acid-volatile sulfides (AVS), ferrous iron (Fe(II)), divalent manganese (Mn(II)), ammonia, and organic carbon. Sediment porewater samples were collected by centrifugation or using in situ samplers colocated with the collection of sediments. In whole sediments, total chromium and Cr(VI) concentrations ranged from 5 to 9190 mg/kg dry weight (dw) and from <0.47 to 31 mg/kg dw, respectively. Sediment porewater concentrations ranged from <10 to 83 μg/l for total chromium; Cr(VI) was not detected in sediment porewater (n = 78). Concentrations of AVS (ranging between <10.6 to 4178 mg/kg) and other geochemistry measurements indicated anoxic, reducing conditions in the majority of sediment samples. In polychaetes (Nereis virens) and clams (Macoma nasuta) exposed in the laboratory for 28 days to sediments contained between 135 and 1780 mg/kg dw total chromium, concentrations in whole tissues after 24-hour depuration ranged between 1.2 and 14.8 mg/kg wet weight (ww; median 1.6 mg/kg ww) total chromium. In whole tissues of indigenous polychaetes collected from the sediment, tissue concentrations of total chromium ranged between 1.0 and 37.5 mg/kg ww (median = 2.1 mg/kg ww). Chromium concentrations in whole tissues of animals exposed in the field or in the laboratory showed no relationship with total chromium or Cr(VI) concentrations in the sediment. There were no statistical differences among animals exposed to sediments from site and reference locations. The results of this study are consistent with sediment studies conducted elsewhere indicating low chromium bioavailability in sediment under reducing conditions. This study also highlights the importance of sediment geochemistry and in situ porewater measurements to understand the ecological significance of chromium in sediment and the potential for human health and ecological exposures.  相似文献   

5.
Few studies have been conducted examining the distribution of different-sized particles in sediment and its potential impact on bioavailability of sediment-associated contaminants. In the current study, three sediments composed of different particle sizes, i.e., fine (0–180 μm), combined (0–500 μm), and coarse (180–500 μm), were used to evaluate the bioaccumulation potential and toxicokinetic rates of four hydrophobic organic contaminants (HOCs) including two polychlorinated biphenyls (PCB-101 and PCB-118), a metabolite of an organochlorine insecticide (p,p′-DDE), and a polybrominated diphenyl ether (BDE-47) to the benthic oligochaete Lumbriculus variegatus. Two chemical approaches, Tenax extraction and matrix-solid phase microextraction (SPME), were also used to measure bioavailability of the sediment-associated HOCs. The uptake and elimination rates of HOCs by L. variegatus from coarse sediment were greater than those from fine sediment, although the biota–sediment accumulation factors (BSAFs) were not significantly different among sediments with different particle sizes. The freely dissolved HOC concentrations measured by matrix-SPME were greater in coarse sediment, however, no difference was found in uptake and desorption rates for the matrix-SPME and Tenax extraction measurements. Although BSAFs in L. variegatus were the same among sediments, kinetic rates of HOCs for organisms and freely dissolved HOC concentrations were lower in fine sediment, suggesting that sediment ingestion may also play a role in organism uptake, especially for HOCs in fine sediment.  相似文献   

6.
Could reduced eutrophication be a potential environmental threat because of increased mobility and bioavailability of trace metals? This question was addressed by oxygenating intact sediment cores, varying in redox potential and salinity, in a test system containing the amphipod Monoporeia affinis. Results show a low mobility of metals during oxygenation, and despite high concentrations of metals in sediments, only Pb showed a notable degree of bioaccumulation. Cadmium was bioaccumulated particularly in freshwater sediment, and body burden of Cd was related to salinity, porewater, and sediment concentrations. Despite high sediment and porewater concentrations of Cu and Zn, no relationship was recorded to body burden. For three of four tested metals, Cd, Pb, and Zn, metals in sediment were more important for body burdens in amphipods as compared to metals in porewater. Food, rather than interstitial water, therefore seems to be the main route of metal contaminants to these amphipods. Furthermore, this observed low release of metals from sediments and low body burden significance of porewater metals indicate that ameliorated oxygen conditions in contaminated sediments may be regarded as a minor environmental threat for one of the most important Baltic benthic organisms.  相似文献   

7.
Two models, a sigmapolycyclic aromatic hydrocarbon (PAH) model based on equilibrium partitioning theory and a logistic-regression model, were developed and evaluated to predict sediment-associated PAH toxicity to Hyalella azteca. A sigmaPAH model was applied to freshwater sediments. This study is the first attempt to use a sigmaPAH model based on water-only, median lethal concentration (LC50) toxic unit (TU) values for sediment-associated PAH mixtures and its application to freshwater sediments. To predict the toxicity (i.e., mortality) from contaminated sediments to H. azteca, an interstitial water TU, calculated as the ambient interstitial water concentration divided by the water-only LC50 in which the interstitial water concentrations were predicted by equilibrium partitioning theory, was used. Assuming additive toxicity for PAH, the sum of TUs was calculated to predict the total toxicity of PAH mixtures in sediments. The sigmaPAH model was developed from 10- and 14-d H. azteca water-only LC50 values. To obtain estimates of LC50 values for a wide range of PAHs, a quantitative structure-activity relationship (QSAR) model (log LC50 - log Kow) with a constant slope was derived using the time-variable LC50 values for four PAH congeners. The logistic-regression model was derived to assess the concentration-response relationship for field sediments, which showed that 1.3 (0.6-3.9) TU were required for a 50% probability that a sediment was toxic. The logistic-regression model reflects both the effects of co-occurring contaminants (i.e., nonmeasured PAH and unknown pollutants) and the overestimation of exposure to sediment-associated PAH. An apparent site-specific bioavailability limitation of sediment-associated PAH was found for a site contaminated by creosote. At this site, no toxic samples were less than 3.9 TU. Finally, the predictability of the sigmaPAH model can be affected by species-specific responses (Hyalella vs Rhepoxynius); chemical specific (PAH vs DDT in H. azteca) biases, which are not incorporated in the equilibrium partitioning model; and the uncertainty from site-specific effects (creosote vs other sources of PAH contamination) on the bioavailability of sediment-associated PAH mixtures.  相似文献   

8.
The present study describes the development of a 42-d chronic sublethal sediment toxicity test using the estuarine amphipod Melita plumulosa (Zeilder). This test was shown to predict the toxicity of metal-contaminated sediments previously found to adversely affect benthic community structure. Metals initially were tested individually by spiking reference sediment under conditions that ensured low metal concentrations in pore waters. Fertility was the most sensitive sublethal endpoint for copper- and zinc-spiked sediments, whereas cadmium-spiked sediments were not toxic to M. plumulosa, despite their high bioaccumulation of cadmium. The 42-d chronic sediment test was reproducible; however, variation between reference sediments collected from the same field location over time or from different locations did affect the reproduction of M. plumulosa. Sensitivity of M. plumulosa to metal-spiked sediments suggested that the interim sediment-quality guidelines (ISQGs) were too conservative. However, toxicity testing of sediments collected from field sites known to affect community assemblages significantly (p < 0.001) reduced the fertility of M. plumulosa, reflecting benthic community survey results and supporting the ISQGs. Bioaccumulation of cadmium and copper by M. plumulosa was elevated following chronic exposure to both laboratory and field-contaminated sediments; however, zinc bioaccumulation could be measured only in M. plumulosa exposed to field-contaminated sediments.  相似文献   

9.
The sorption of polycyclic aromatic hydrocarbons (PAHs) to soot carbon in marine sediments has been hypothesized to reduce PAH bioavailability. This hypothesis was tested for eight species of marine benthic invertebrates (four polychaete worms, Clymenella torquata, Nereis virens, Cirriformia grandis, and Pectinaria gouldii, and four bivalve mollusks, Macoma balthica, Mulinia lateralis, Yoldia limatula, and Mya arenaria) that span a wide range of feeding behavior, ability to metabolize PAHs, and gut chemistry. Organisms were exposed for 20 d to two PAH-spiked sediments, one with soot and one without soot. The soot treatment generally resulted in lower bioaccumulation than the no soot treatment, though the differences between treatments were not significant for all species. All but one species accumulated significant PAH concentrations in their tissues from the soot treatment, indicating that soot-bound PAH cannot be dismissed as unavailable to infaunal benthic biota. Bioaccumulation factors were correlated negatively to both the organisms' ability to metabolize PAHs and the gut fluid contact angle, supporting the hypotheses that high PAH metabolism results in lower bioaccumulation factors and bioavailability of PAHs may be limited partially by PAH solubilization in the gut lumen. The variability in bioaccumulation due to the soot treatment was much less than the variability between species and between PAH analytes. Comparatively low bioaccumulation was observed in Nereis virens, a species commonly used in bioaccumulation tests. These results suggest that more effort is needed in understanding the salient characteristics of species present in a threatened environment, rather than focusing solely on the sediment geochemistry (e.g., soot and organic carbon content) and contaminant characteristics when predicting ecological risk of PAH-contaminated sediments.  相似文献   

10.
The study underscores the use of equilibrium partitioning (EqP) to determine bioavailability and the narcosis theory to estimate toxicity of PAHs to benthic invertebrates. Eight PAHs (anthracene, azuleno(2,1-b)thiophene, benz(a)anthracene, carbazole, dibenzothiophene, benz(a)azulene, dibenzo(a,h)anthracene and phenanthrene) were identified with phenanthrene and carbazole recording the highest (6.29 μg/g) and least (0.06 μg/g) concentrations at both seasons. Based on EqP and Narcosis model, the sum of PAHs toxic unit (∑TU), at both sites is ≪1, suggesting no likelihood of PAHs toxicity to benthic invertebrates. The study suggests continuous PAH monitoring especially with aquatic species due to their transfer to human via food chain.  相似文献   

11.
In situ remediation of contaminated sediments using carbonaceous materials   总被引:1,自引:0,他引:1  
Carbonaceous materials (CM), such as activated carbons or biochars, have been shown to significantly reduce porewater concentrations and risks by binding hydrophobic organic compounds (HOCs) present in aquatic sediments. In the present study, the authors review the current state-of-the-art use of CM as an extensive method for sediment remediation, covering both technical and ecological angles. The review addresses how factors such as CM type, particle size and dosage, sediment characteristics, and properties of contaminants affect the effectiveness of CM amendment to immobilize HOCs in aquatic sediments. The authors also review the extent to which CM may reduce bioaccumulation and toxicity of HOCs and whether CM itself has negative effects on benthic species and communities. The review is based on literature and datasets from laboratory as well as field trials with CM amendments. The presence of phases such as natural black carbon, oil, or organic matter in the sediment reduces the effectiveness of CM amendments. Carbonaceous material additions appear to improve the habitat quality for benthic organisms by reducing bioavailable HOC concentrations and toxicity in sediment. The negative effects of CM itself on benthic species, if any, have been shown to be mild. The beneficial effects of reducing toxicity at low CM concentrations most probably outweigh the mild negative effects observed at higher CM concentrations.  相似文献   

12.
Hydrophobic organic contaminants (HOCs) enter the marine environment through several means, including industrial, urban, and agricultural runoff, and accumulate in sediments. Methods for measurement of sediment toxicity include porewater tests using sea urchin (Arbacia punctulata) fertilization and embryological development assessments. Previous studies investigating sediments from Boston Harbor determined that significant binding of contaminants to organic matter led to insufficient evidence of the bioavailability of HOCs in porewater toxicity tests. It was hypothesized that excessive biomass in testing systems prevents a critical body residue of HOCs from forming, thus curbing toxic effects. In this study, the effect of biomass on the toxicity of phenanthrene (a polycyclic aromatic hydrocarbon) and lindane (an organochlorine pesticide) were assessed individually and combined in a mixture. The fertilization toxicity test for phenanthrene and mixture solutions containing both compounds revealed less biomass in the test vial caused higher toxicity levels, the fact of which was enhanced with increased hydrophobicity. The 50% inhibition concentration (IC50) of phenanthrene to sea urchin fertilization success in test vials with 50 eggs/mL (lowest biomass concentration tested) was 3.72 μmol/L, but in vials with 100 to 400 eggs/mL, the IC50 was >4.12 μmol/L. Toxicity of several concentrations of the phenanthrene and lindane mixture to sea urchin fertilization success and embryological development was significantly higher at lower biomasses (50 and 100 eggs or embryos/mL) than with biomasses ≥200 eggs or embryos/mL. The results suggest that when testing environmental samples that may contain HOCs, lowering the biomass can help better estimate sediment toxicity using porewater tests.  相似文献   

13.
The Australian benthic bivalve Tellina deltoidalis tolerates a wide range of sediment and water conditions, is easy to handle in the laboratory, and is a useful species for undertaking whole-sediment toxicity tests. The sensitivity of T. deltoidalis to metals was investigated in 10-day metal-spiked sediment exposures for Cd, Cu, Ni, Pb, and Zn and in water-only exposures for Cu and Zn. The survival of T. deltoidalis in 10-day exposures to metal-spiked sediments was 88–100% for Cd, Ni, Pb, and Zn concentrations of 75, 420, 1,000, and 4,000 mg/kg, respectively. The 4-day LC50s for dissolved Cu and Zn were 0.18 and 13 mg/L, respectively. The 8-day LC50 for Cu was 31 (24–34) μg/L. Cu and Zn concentrations in the tissues of T. deltoidalis increase linearly with increasing dissolved exposure concentration. In the Cu-spiked sediment and water exposures, the survival was negatively correlated with the Cu concentration in both the overlying water and in the tissues of T. deltoidalis. In contrast, particulate Cu concentrations were found to be a poor predictor of Cu bioaccumulation and toxicity for Cu-spiked sediments.  相似文献   

14.
Concern with the redistribution of contaminants associated with sediment in the upper Mississippi River (UMR) arose after the flood of 1993. This project is designed to evaluate the status of sediments in the UMR and is one article in a series designed to assess the extent of sediment contamination in navigational pools of the river. Companion articles evaluate sediment toxicity and benthic community composition in navigation pools of the river. The objectives of the present study were to: (1) to assess the bioaccumulation of sediment-associated contaminants in the UMR using laboratory exposures with the oligochaete Lumbriculus variegatus, and (2) to compare bioaccumulation in laboratory-exposed oligochaetes to field-collected oligochaetes. Sediment samples and native oligochaetes were collected from 23 navigational pools on the Upper Mississippi River and the Saint Croix River. Contaminant concentrations measured in the L. variegatus after 28-day exposures to sediment in the laboratory were compared to contaminant concentrations in field-collected oligochaetes from the 13 pools where these sediments were collected. Contaminant concentrations were relatively low in sediments and tissues from the pools evaluated. Only polycyclic aromatic hydrocarbons (PAHs) and total polychlorinated biphenyls (PCBs) were frequently measured above detection limits. The majority of the biota-sediment-accumulation factors (BSAFs) for PAHs were within a range of about 1.0 to 2.6, suggesting that the theoretical BSAF value of 1.7 could be used to predict these mean BSAFs with a reasonable degree of certainty. A positive correlation was observed between lipid-normalized concentrations of PAHs detected in laboratory-exposed and field-collected oligochaetes across all sampling locations. Rank correlations for concentrations of individual compounds between laboratory-exposed and field-collected oligochaetes were strongest for benzo(e)pyrene, perylene, benzo(b,k)fluoranthene, and pyrene. About 90% of the paired PAH concentrations in laboratory-exposed and field-collected oligochaetes were within a factor of three of one another indicating laboratory results could be extrapolated to the field with a reasonable degree of certainty. Received: 6 July 1997/Accepted: 3 January 1998  相似文献   

15.
Surface sediments collected from the Savannah River, located in the southeastern state of Georgia, USA, in June–July 1994 were analyzed for individual polycyclic aromatic hydrocarbons (PAHs). Three subdivisions of the river were identified for the study: upstream from, adjacent to, and downstream from the city of Savannah. There was high spatial variability in the total PAH (ΣPAH) concentrations that ranged from 29 to 5,375 ng/g with an average concentration of 1,216 ± 1,161 (SD). Of the three subdivisions, the highest ΣPAH concentrations were in the middle segment, which was adjacent to urban and industrial areas. To elucidate sources, molecular indices based on indices among phenanthrene versus anthracene and fluoranthene versus pyrene were used to determine pyrogenic and petrogenic sources, respectively. These indices have been used by other authors to differentiate sources. In most cases, PAHs in sediments nearest the city of Savannah were of high temperature and pyrogenic origin. These pyrogenic PAHs were highly associated with toxicity to benthic organisms. The two-ringed naphthalene and substituted naphthalenes, which are petroleum-related PAHs, were significantly higher in the lower section of the river relative to the subdivisions. This river segment receives inputs primarily from shipping and boating traffic. Perylene, which is indicative of nonanthropogenic terrestrial inputs of carbon, had the highest concentration among the individual PAHs measured. High perylene concentrations were found at stations located upstream and adjacent to forested terrain and where salinity level was low. To discriminate pattern differences and similarities of individual PAHs among samples, principal component analysis (PCA) was performed on the more hydrophobic and persistent nonalkylated PAHs. These differences and similarities were used to infer perylene origin. PCA was performed on 14 nonalkylated PAHs that was normalized to the sum of nonalkylated PAHs, using a correlation matrix. Generally, the PAHs were separated into group patterns according to chemical and physical properties associated with log K OW, except perylene. Perylene, a five-ringed PAH, was distinctly separated from the other five-ringed PAHs. The sources for perylene are likely from biogenic, terrestrial precursors. The collected data show that pyrogenic PAHs were highly associated with biological effects on benthic organisms, based on bioassay results. Perylene, a nonanthropogenic PAH, was found throughout the river and constituted a large percentage of total PAHs in the upper river. Received: 20 November 2001/Accepted: 3 May 2002  相似文献   

16.
The bioaccumulation of the pesticides chlorpyrifos and atrazine to the benthic oligochaeta Lumbriculus variegatus from four diverse artificially contaminated lake sediments (OC 0.13–21.5%) was studied in the laboratory. The steady state of bioaccumulation was not reached within 10 d. Chlorpyrifos showed stronger bioaccumulation than the less lipophilic atrazine, the biota-sediment accumulation factors (BSAFs) being 6.2–99 for the former and 1.9–5.3 for the latter. While bioaccumulation factors (BAFs) dropped with increasing organic content of the sediments, the high level and considerable range of the obtained BSAFs indicate other sediment qualities, such as the age and characteristics of the organic material, having a strong effect on the bioavailability of these compounds. The slow and incomplete desorption of chlorpyrifos from the most inorganic sediment indicates also that this compound may be strongly bound to some type of inorganic material. Any specific influential sediment fraction or characteristic could not be identified.  相似文献   

17.
Between 1991 and 1992, comprehensive toxicological, chemical, and benthic community structure surveys were conducted at Jackfish Bay, Lake Superior, Ontario, to assess sediment quality below a bleached kraft mill effluent (BKME) outfall. In this report, we describe the spatial distribution and concentration of extractable organic chlorines (EOX) in sediments below the outfall in relation to effluent discharge patterns, sediment deposition, and bioaccumulation potential. Triplicate sediment samples were collected by Ekman grab from 29 and 44 stations in 1991 and 1992, respectively, and from 15 stations in three reference areas not exposed to the effluent. For each sample, organic carbon content, dry weight, and sediment-associated EOX were determined. In addition, sediment traps were used to determine sediment deposition along two tangents transecting the effluent plume and at a reference station located approximately 4,200 m from the outfall. The spatial distribution of sediment EOX consisted of two distinct concentration gradients, each linked to effluent discharge patterns from Blackbird Creek and dominant circulatory patterns in Jackfish Bay: a north–south gradient, extending along the west shore of Jackfish Bay, and a east–west gradient. Sediment EOX ranged from 7,000 mg/kg organic carbon (oc) (2,050 mg/kg dry solids (ds)) in depositional sediments of Moberley Bay to nondetectable at some stations in eastern and outer Jackfish Bay. Reference (background) concentrations ranged from nondetectable to 3,000 mg/kg oc (1–15 mg/kg ds). The attenuation of EOX was significantly correlated with the rate of sediment deposition (r2 = 0.57; p ≤ 0.001). Although the concentration of sediment EOX was strongly correlated with toxicity to some invertebrates (Sibley et al.[1997] Arch Environ Contam Toxicol 32:274–284), bioaccumulation factors were typically <2 based on analysis of oligochaete tissues. The results of this study demonstrate that the spatial distribution of sediment-associated contaminants adjacent to pulp mill effluent outfalls are determined primarily by hydrodynamic and depositional characteristics of the receiving waters and that EOX can be used to accurately delineate areas of contamination. Received: 7 May 1997/Accepted: 29 September 1997  相似文献   

18.
Sediment quality in the Los Angeles and Long Beach Harbor area of southern California, USA, was assessed from 1992 to 1997 as part of the California State Water Resources Control Board's Bay Protection and Toxic Cleanup Program and the National Oceanic and Atmospheric Administration's National Status and Trends Program. The assessment strategy relied on application of various components of the sediment quality triad, combined with bioaccumulation measures, in a weight-of-evidence approach to sediment quality investigations. Results of bulk-phase chemical measurements, solid-phase amphipod toxicity tests, pore-water toxicity tests with invertebrate embryos, benthic community analyses (presented as a relative benthic index), and bioaccumulation measures indicated that inner harbor areas of this system are polluted by high concentrations of a mixture of sediment-associated contaminants and that this pollution is highly correlated with toxicity in laboratory experiments and degradation of benthic community structure. While 29% of sediment samples from this system were toxic to amphipods (Rhepoxynius abronius or Eohaustorius estuarius), 79% were toxic to abalone embryos (Haliotis rufescens) exposed to 100% pore-water concentrations. Statistical analyses indicated that amphipod survival in laboratory toxicity tests was significantly correlated with the number of crustacean species and the total number of species measured in the benthos at these stations. Triad measures were incorporated into a decision matrix designed to classify stations based on degree of sediment pollution, toxicity, benthic community degradation, and, where applicable, tissue concentrations in laboratory-exposed bivalves and feral fish.  相似文献   

19.
The benthic macroinvertebrates Lumbriculus variegatus and Chironomus riparius were used in toxicity and bioaccumulation tests to determine the toxic concentrations and accumulation potential of sediment associated herbicides. The tested chemicals were ioxynil, bentazone, and pendimethalin. The bioaccumulation tests with L. variegatus were performed in four different sediments, each having different characteristics. Water-only LC50 tests were performed with both L. variegatus and C. riparius. A sublethal effect of model compounds in sediments was assessed by a C. riparius larvae growth-inhibition test. Of the model compounds, ioxynil appeared to be the most toxic, with LC50 values 1.79 and 2.79 mg L−1 for L. variegatus and C. riparius, respectively. The LC50 water concentrations for bentazone were 79.11 and 62.31 mg L−1 for L. variegatus and C. riparius, respectively. Similarly, ioxynil revealed the highest bioaccumulation potential in bioaccumulation tests. The most important characters affecting chemical fate in the sediment seemed to be the organic matter content and the particle size fraction. The sediments with low organic material and coarse particle size consistently showed high bioaccumulation potential and vice versa. In C. riparius growth tests bentazone had a statistically significant effect on larval growth at sediment concentrations of 1160 and 4650 mg kg−1 (P<0.05). It is noteworthy that standard deviations tend to be greater at high chemical concentrations, which addresses the fact that part of the individuals started to suffer. Ioxynil had an effect on the larval growth in other test sediment at the highest concentration (15.46 mg kg−1 dw), in which head capsule length correlated with larval weight, decreasing toward higher exposure concentrations. The current results show the importance of sediment organic matter as a binding site of xenobiotics.  相似文献   

20.
Sediment quality from Paranaguá Estuarine System (PES), a highly important port and ecological zone, was evaluated by assessing three lines of evidence: (1) sediment physical–chemical characteristics; (2) sediment toxicity (elutriates, sediment–water interface, and whole sediment); and (3) benthic community structure. Results revealed a gradient of increasing degradation of sediments (i.e. higher concentrations of trace metals, higher toxicity, and impoverishment of benthic community structure) towards inner PES. Data integration by principal component analysis (PCA) showed positive correlation between some contaminants (mainly As, Cr, Ni, and Pb) and toxicity in samples collected from stations located in upper estuary and one station placed away from contamination sources. Benthic community structure seems to be affected by both pollution and natural fine characteristics of the sediments, which reinforces the importance of a weight-of-evidence approach to evaluate sediments of PES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号