首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescent carbocyanine dye 1,1'-dioctadecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was used in fixed tissue to comprehensively analyze the connections of the olfactory bulbs and the different regions of the ventral (V) area of the telencephalic lobes (subpallium) of the rainbow trout. With this goal, DiI was applied to the different telencephalic nuclei and zones, as well as to the olfactory nerve, the olfactory bulb, the retina, and to several structures in the diencephalon and brainstem of juvenile trout. The olfactory bulbs maintain reciprocal connections with several regions of the telencephalon [ventral nucleus of V (Vv), supracommissural nucleus (Vs), posterior zone of D (Dp), preoptic nucleus], and also project to the diencephalon (posterior tuberal nucleus, posterior hypothalamic lobe). Vv receives afferents from Vs, the dorsal nucleus of V (Vd), the preoptic nucleus, and from several nuclei in the diencephalon and brainstem (suprachiasmatic nucleus, anterior and lateral tuberal nuclei, preglomerular complex, tertiary gustatory nucleus, posterior tubercle, inferior hypothalamic lobes, thalamus, torus semicircularis, secondary gustatory nucleus, locus coeruleus, superior raphe nucleus, central gray, and reticular formation), and projects to dorsal (pallial) regions and most of the nuclei afferent to Vv. The dorsal nucleus of V (Vd) and Vs mainly project to the dorsal area. In an accompanying article (Folgueira et al., 2004), we present the results of application of DiI to dorsal (pallial) telencephalic regions, as well as of several experiments of tracer application to extratelencephalic regions. The results presented here, together with those of the accompanying article, reveal a complex connectional pattern of the rainbow trout ventral telencephalon, most of these connections having not been described previously in salmonids.  相似文献   

2.
Ascending pathways to the telencephalon from the secondary gustatory nucleus (SGN), preglomerular tertiary gustatory nucleus (pTGN), and medial preglomerular nucleus (PGm) were examined by tract-tracing experiments in goldfish Carassius auratus. Tracer injections to the SGN suggest the presence of direct ascending pathways to the supracommissural and the dorsal parts of the ventral telencephalic area, and the medial part of the dorsal telencephalic area (Dm), restricted to its ventral region. The SGN experiments also suggest projections to the pTGN and PGm, and several neuronal types in the primary gustatory centers were newly found to give rise to ascending fibers to the SGN. Injections to the pTGN suggest reciprocal connections of the nucleus with the dorsal region of the Dm (dDm). Injections to the PGm resulted in labeled cells in the dorsal part of the SGN, the secondary general visceral nucleus, and the posterior part of the dorsal telencephalic area, suggesting that this preglomerular nucleus receives gustatory, general visceral, and olfactory inputs. Fibers labeled from the PGm terminated in the central part of the dorsal telencephalic area and the dDm; the latter region contained many labeled somata. The terminal zone of PGm fibers in the dDm is located laterally adjacent to that from the pTGN. Injection experiments to the pTGN and PGm also suggest connections of these nuclei with the inferior lobar nuclei and torus lateralis. Based on the results of the present as well as recent studies, an updated map is provided that shows by and large distinct sensory representation within the goldfish dorsal telencephalic area.  相似文献   

3.
In this study and the accompanying article (Folgueira et al., 2004a), the fluorescent carbocyanine dye 1,1'-dioctadecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was used in fixed tissue to comprehensively analyze the connections of the different regions of the telencephalic lobes and the preoptic region of the rainbow trout. Here, we analyze the connections of the dorsal area (D; pallium) of the telencephalon, and the preoptic region, as well as the telencephalic connections of several structures in the diencephalon and brainstem of juvenile trout. The dorsal plus dorsolateral pallial zone of D (Dd+Dl-d) receives afferents from contralateral Dd+Dl-d, the ventral area of the telencephalon, preoptic nucleus, suprachiasmatic nucleus, medial thalamus, preglomerular complex, anterior and lateral tuberal nuclei, posterior tuberal nucleus, posterior hypothalamic lobe, superior raphe nucleus, and the rhombencephalic central gray and reticular formation, and projects to the central zone of D (Dc), medial thalamus, and some caudomedial hypothalamic regions. The medial zone of D (Dm) maintains reciprocal connections with the preglomerular complex and also receives afferents from the preoptic nucleus, suprachiasmatic nucleus, anterior tuberal nucleus, preglomerular tertiary gustatory nucleus, posterior tubercle, superior raphe nucleus, locus coeruleus, and the rhombencephalic central gray, and reticular formation. Dc receives fibers mainly from Dd+Dl-d, preoptic nucleus, preglomerular complex, and torus semicircularis and projects to several extratelencephalic centers, including the paracommissural nucleus, optic tectum, torus semicircularis, thalamus, preglomerular complex, posterior tubercle nuclei, and inferior hypothalamic lobes. The posterior zone of D (Dp) is mainly connected with the olfactory bulbs, the ventral and supracommissural nuclei of the ventral area (subpallium), the preoptic nucleus, and the preglomerular complex and projects to wide hypothalamic and posterior tubercular regions. The preoptic nucleus projects to the olfactory bulb, to most regions of the telencephalic lobes, and to several diencephalic and brainstem structures. These results reveal complex and specialized connectional patterns in the rainbow trout dorsal telencephalon and preoptic region. Most of these connections have not been described previously in salmonids. These connections indicate that the salmonid telencephalon is involved in multisensorial processing and modulation of brain activity.  相似文献   

4.
The preglomerular complex of trout consists of the anterior (aPGN) and medial (mPGN) preglomerular nuclei and the corpus mamillare (CM). In order to improve knowledge on this complex, we applied a lipophilic neuronal tracer (DiI) to the three nuclei. These nuclei received afferents from the medial part of the dorsal telencephalic area (Dm), the ventral part of the ventral telencephalic area (Vv), the preoptic nucleus, the periventricular layer of the rostral optic tectum and the central posterior thalamic nucleus. The aPGN also received numerous toral projections and, sent efferents to the anterior tuberal nucleus. In addition, both the aPGN and the mPGN nuclei gave rise to efferents to the dorsal region of the dorsal telencephalic area (Dd), whereas the medial preglomerular nucleus and the CM sent fibers to the torus lateralis and the diffuse nucleus, as confirmed by reciprocal labeling. A small mPGN/CM subgroup projected to the optic tectum. These results suggest close functional inter-relationship between the trout preglomerular complex and two telencephalic regions (Dm and Vv). In addition, all nuclei of the complex receive preoptic, tectal and dorsal thalamic afferents, whereas the aPGN and mPGN are related with acoustic-lateral ascending pathways, and the mPGN and CM with the central region of the dorsal telencephalic area and visceral/gustatory pathways.  相似文献   

5.
The distribution of cholinergic neurons and fibers was studied in the brain and rostral spinal cord of the brown trout and rainbow trout by using an antiserum against the enzyme choline acetyltransferase (ChAT). Cholinergic neurons were observed in the ventral telencephalon, preoptic region, habenula, thalamus, hypothalamus, magnocellular superficial pretectal nucleus, optic tectum, isthmus, cranial nerve motor nuclei, and spinal cord. In addition, new cholinergic groups were detected in the vascular organ of the lamina terminalis, the parvocellular and magnocellular parts of the preoptic nucleus, the anterior tuberal nucleus, and a mesencephalic tegmental nucleus. The presence of ChAT in the magnocellular neurosecretory system of trout suggests that acetylcholine is involved in control of hormone release by neurosecretory terminals. In order to characterize the several cholinergic nuclei observed in the isthmus of trout, their projections were studied by application of 1,1;-dioctadecyl-3,3,3;, 3;-tetramethylindocarbocyanine perchlorate (DiI) to selected structures of the brain. The secondary gustatory nucleus projected mainly to the lateral hypothalamic lobes, whereas the nucleus isthmi projected to the optic tectum and parvocellular superficial pretectal nucleus, as previously described in other teleost groups. In addition, other isthmic cholinergic nuclei of trout may be homologs of the mesopontine system of mammals. We conclude that the cholinergic systems of teleosts show many primitive features that have been preserved during evolution, together with characteristics exclusive to the group.  相似文献   

6.
Sturgeons belong to an ancient group of the extant actinopterygian fishes. Accordingly, the study of their brain connections is important to understand brain evolution in the line leading to teleosts. We examined the topography and connections of the various telencephalic regions of the Siberian sturgeon (Acipenser baeri). The telencephalic regions were characterized on the basis of acetylcholinesterase histochemistry and calbindin-D28k and calretinin immunohistochemistry. The telencephalic connections were investigated by using the fluorescent dye DiI (1,1'-dioctadecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate) in fixed brains. Application of DiI to different areas of the pallial (dorsal) regions of the telencephalic lobes showed that they have mostly intratelencephalic connections. A posterior pallial region is characterized by its similar hodology to that of the posterior zone of the teleosts dorsal telencephalon and those described in other ancient groups. Extratelencephalic connections of the pallium are scarce, although a few afferent and efferent connections with the diencephalon, mesencephalon, and rostral rhombencephalon were observed. DiI application to subpallial regions showed both intratelencephalic connections and connections with different brain regions. Afferents to the subpallium originate from the olfactory bulbs, preoptic area, thalamus, posterior tuberculum, hypothalamus, secondary gustatory nucleus, and raphe nuclei. Some of these connections are quite similar to those described for other vertebrates.  相似文献   

7.
We have studied the connections of the nucleus subglomerulosus of the trout posterior tubercle. Main afferents to the nucleus subglomerulosus come from the dorsal telencephalon and the visceral (gustatory) secondary nucleus, while it projects to the optic tectum. In the light of the connections observed, the nucleus subglomerulosus of trout (and probably in other teleosts) appears to be involved in the modulation of sensory-motor tectal processing by olfactory and visceral information.  相似文献   

8.
Forebrain connections of the gustatory system in ictalurid catfishes   总被引:2,自引:0,他引:2  
Horseradish peroxidase tracing and extracellular electrophysiological recording techniques were employed to delineate prosencephalic connections of the gustatory system in ictalurid catfishes. The isthmic secondary gustatory nucleus projects rostrally to several areas of the ventral diencephalon including the nucleus lobobulbaris and the nucleus lateralis thalami. Injections of HRP in the vicinity of the nucleus lobobulbaris reveal an ascending projection to the telencephalon terminating in the area dorsalis pars medialis (Dm) and the medial region of area dorsalis pars centralis (Dc). Conversely, injections of HRP into the gustatory region of area dorsalis pars medialis label small neurons in the nucleus lobobulbaris. Gustatory neurons in the telencephalon send descending projections via the medial and lateral forebrain bundles to several nuclei in the anterior and ventroposterior diencephalon. The nucleus lateralis thalami, a diencephalic nucleus, receives ascending gustatory projections from the secondary gustatory nucleus but does not project to the telencephalon. Neurons in both the nucleus lateralis thalami and the telencephalic gustatory target exhibit multiple extraoral and oral receptive fields and complex responses to chemical (taste) and tactile stimulation.  相似文献   

9.
Central fiber connections of the gustatory system were examined in a percomorph fish Oreochromis (Tilapia) niloticus by means of the horseradish peroxidase (HRP), biocytin, and carbocyanine dye tracing methods. The primary gustatory areas in tilapia are the facial, glossopharyngeal, and vagal lobes of the medulla. The secondary gustatory nucleus (SGN) is a dumb-bell-shaped structure located in the isthmic region. In the SGN, there are two or three layers of neurons lining the ventromedial periphery of the nucleus and a molecular layer constituting of the major part of the nucleus. The SGN receives bilateral projections from the facial lobes and ipsilateral projections from the glossopharyngeal and vagal lobes. Ascending fibers originating from the SGN form the ipsilateral tertiary gustatory tract. A major part of the tract courses rostrally and terminates ipsilaterally in several diencephalic nuclei: the preglomerular tertiary gustatory nucleus (pTGN), the posterior thalamic nucleus, the nucleus diffusus lobi inferioris, the nucleus centralis of inferior lobe, and the nucleus recessus lateralis. The remaining small fiber bundle enters the medial and lateral forebrain bundles and terminates directly in two telencephalic regions; the area ventralis pars intermedia (Vi) and the area dorsalis pars posterior (Dp). Ascending fibers from the pTGN pass through the lateral forebrain bundle and terminate ipsilaterally in the dorsal region of area dorsalis pars medialis (dDm) of the telencephalon. Following biocytin injections into the dDm, small, round cells were labeled in the pTGN. After biocytin injections into the Vi and Dp of the telencephalon, retrogradely labeled cells were found in the ipsilateral SGN. The results show that the ascending fiber connections of the central gustatory system in the percomorph teleost tilapia are essentially similar to those of mammals. That is, the pathway from the primary gustatory areas (facial, glossopharyngeal, and vagal lobes) through the SGN and pTGN to the dDm in tilapia corresponds with the mammalian gustatory pathway from the solitary nucleus through the pontine taste areas (nucleus parabrachialis) and the thalamic relay nucleus (ventral posteromedial nucleus) to gustatory neocortices. In addition, the pathway from the primary gustatory areas through the SGN to the Vi and Dp in tilapia corresponds with the pathway from the solitary nucleus through the pontine taste areas to the amygdala in mammals. J. Comp. Neurol. 392:209–226, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
In a companion paper, the nuclear organization of the diencephalon of the channel catfish, Ictalurus punctatus, was described and compared to that of other teleosts. The present paper describes the connections of the diencephalon with the retina, optic tectum, corpus of the cerebellum and telencephalon. The principal tracer employed is the indocarbocyanine dye DiI which diffuses along neuronal membranes in fixed tissues. Almost all of the nuclei that were recognized as distinct in the companion study are found to also exhibit distinct sets of connections. Most of these connections have not been described previously in catfishes or other teleosts. When combined with connectional data from the existing literature, the results of the present study allow one to recognize a great number of distinct pathways through the diencephalon of channel catfish, including several visual, auditory, gustatory, electrosensory and mechanosensory pathways to the telencephalon. Almost all of the species differences in diencephalic organization noted in the companion study can be accounted for by changes in one of the major sensory pathways. In contrast, the multimodal and integrative areas of the diencephalon appear to be relatively conservative. A comparison between the diencephalon of teleosts and that of other vertebrates suggests that the dorsal thalamus, the ventral thalamus and the posterior tuberculum are homologous, at least in part, to the dorsal thalamus, the zona incerta and the subthalamic nucleus of mammals, respectively. All three areas project to the telencephalon in both mammals and teleosts. In most vertebrates, however, the dorsal thalamus provides the dominant input to the telencephalon, whereas in teleosts the main telencephalic input derives instead from the posterior tuberculum.  相似文献   

11.
We studied the connections and catecholaminergic organization of the subpallium in the zebrafish, in particular to demonstrate the origin of the ascending dopaminergic system of teleosts, by using the tracers DiI or biocytin in combination with tyrosine hydroxylase (TH) immunohistochemistry. Retrogradely labeled cells were found in the olfactory bulb, the area dorsalis telencephali, the preoptic region, the dorsal and ventral thalamus, the posterior tubercle, the preglomerular region, and the medulla oblongata. Moreover, the zebrafish subpallium has strong reciprocal connections with the tuberal hypothalamus. Double-labeled cells (for TH and tracer) were identified in two locations of the rostral posterior tubercle: small round neurons in its periventricular nucleus and large pear-shaped cells adjacent to it. These double-labeled cells of the posterior tubercle presumably represent the teleostean dopaminergic system ascending to the striatum.  相似文献   

12.
Local field potentials evoked either by auditory or by mechanosensory (water displacement) lateral line stimuli were recorded in sensory subregions of the telencephalic nucleus dorsalis pars medialis (Dm) in the weakly electric fish Gnathonemus petersii. The neural tracer Neurobiotin was injected into these two physiologically defined subregions. A reciprocal connection between the two subregions of Dm, as well as cell bodies and terminals in other telencephalic regions, whose distribution was somewhat different for the two injection types, were found. The course of labeled fibers outside the telencephalon was similar after injections in both Dm regions. Fibers were seen running through the lateral forebrain bundle (lfb) to the ventral surface area of the brain within the diencephalic preglomerular region (PGv). Within a narrow streak along the ventral side of the brain densely arranged cell bodies were labeled. The locations of labeled cells within PGv were indistinguishable after tracer was injected into either acoustical or lateral line areas of Dm. Only after injection into the mechanosensory Dm region labeled cell bodies were found in the anterior preglomerular nucleus (PGa), in addition. When crystals of the fluorescent tracer DiI were inserted in the ventral part of PGv, a path of labeled fibers similar to that after telencephalic injections was found. Labeled terminals, but no cell bodies, were located both in the acoustical and in the mechanosensory regions of Dm as well as in several other telencephalic areas. Even though sensory regions in Dm that process acoustical and mechanical stimuli are segregated and unimodal, they both receive input from neurons of PGv. The specificity of the mechanosensory region of Dm might originate from the additional input from PGa and from other endbrain areas.  相似文献   

13.
Fiber connections of the posterior thalamic nucleus were studied in goldfish. Tracer injections into the rostral part of posterior thalamic nucleus labeled somata and terminals in the medial subnucleus of commissural nucleus of Cajal, secondary general visceral nucleus, a nucleus tentatively identified as the preglomerular general visceral nucleus, torus lateralis, inferior lobar nuclei, preoptic area, dorsal region of medial part of dorsal telencephalic area, and supracommissural part of ventral telencephalic area. Labeled terminals were observed in the lateral subnucleus of commissural nucleus of Cajal; primary gustatory centers, in particular the vagal lobe; and lateral valvular nucleus. Other occasional connections were also observed in a number of structures. The results of tracer injections to the brainstem general visceral and gustatory structures suggested reciprocal connections with the caudal part of posterior thalamic nucleus. These findings suggest that the posterior thalamic nucleus is primarily a general visceral/gustatory structure, serving as a forebrain integration center of visceral information. Descending fibers to the vagal lobe presumably represent a major channel through which the forebrain regulates pharyngeal feeding behavior.  相似文献   

14.
Biotinylated dextran amine and fluorescent carbocyanine dye (DiI) were used to examine connections of the lateral (Dl) and medial (Dm) divisions of the goldfish pallium. Besides numerous intrinsic telencephalic connections to Dl and Dm, major ascending projections to these pallial divisions arise in the preglomerular complex of the posterior tuberculum, rather than in the dorsal thalamus. The rostral subnucleus of the lateral preglomerular nucleus receives auditory input via the medial pretoral nucleus, lateral line input via the ventrolateral toral nucleus, and visual input via the optic tectum, and it projects to both Dl and Dm. The anterior preglomerular nucleus and caudal subnucleus of the lateral preglomerular nucleus receive auditory input via the central toral nucleus and project to Dm. This pallial division also receives chemosensory information via the medial preglomerular nucleus. The central posterior (CP) nucleus, which receives both auditory and visual inputs, also projects to Dm and is the only dorsal thalamic nucleus projecting to the pallium. Thus, both Dl and Dm clearly receive multisensory inputs. Major projections of CP and projections of all other dorsal thalamic nuclei are to the subpallium, however. Descending projections of Dl are primarily to the preoptic area and the caudal hypothalamus, whereas descending projections of Dm are more extensive and particularly heavy to the anterior tuber and nucleus diffusus of the hypothalamus. The topography and connections of Dl are remarkably similar to those of the hippocampus of tetrapods, whereas the topography and connections of Dm are similar to those of the amygdala.  相似文献   

15.
Local field potentials evoked either by auditory or by mechanosensory (water displacement) lateral line stimuli were recorded in sensory subregions of the telencephalic nucleus dorsalis pars medialis (Dm) in the weakly electric fish Gnathonemus petersii. The neural tracer Neurobiotin was injected into these two physiologically defined subregions. A reciprocal connection between the two subregions of Dm, as well as cell bodies and terminals in other telencephalic regions, whose distribution was somewhat different for the two injection types, were found. The course of labeled fibers outside the telencephalon was similar after injections in both Dm regions. Fibers were seen running through the lateral forebrain bundle (lfb) to the ventral surface area of the brain within the diencephalic preglomerular region (PGv). Within a narrow streak along the ventral side of the brain densely arranged cell bodies were labeled. The locations of labeled cells within PGv were indistinguishable after tracer was injected into either acoustical or lateral line areas of Dm. Only after injection into the mechanosensory Dm region labeled cell bodies were found in the anterior preglomerular nucleus (PGa), in addition. When crystals of the fluorescent tracer DiI were inserted in the ventral part of PGv, a path of labeled fibers similar to that after telencephalic injections was found. Labeled terminals, but no cell bodies, were located both in the acoustical and in the mechanosensory regions of Dm as well as in several other telencephalic areas. Even though sensory regions in Dm that process acoustical and mechanical stimuli are segregated and unimodal, they both receive input from neurons of PGv. The specificity of the mechanosensory region of Dm might originate from the additional input from PGa and from other endbrain areas.  相似文献   

16.
The neuronal tracer DiI was applied to different brain centers of the rainbow trout in order to study the connections of pretectal nuclei. Our results showed that some pretectal nuclei receive a direct projection from the contralateral retina: the parvocellular superficial pretectal nucleus, the central pretectal nucleus, the intermediate pretectal nucleus and the ventral accessory optic nucleus. In turn, the central pretectal, the intermediate pretectal and the ventral accessory optic nuclei, together with the paracommissural nucleus, project to the cerebellum and the torus longitudinalis. The magnocellular superficial pretectal nucleus does not receive retinal projections, but receives ipsilateral projections from the optic tectum and the mesencephalic tegmentum. In turn, it projects to the ipsilateral oculomotor nucleus and lateral nucleus of the valvula. The posterior pretectal nucleus and the parvocellular superficial pretectal nucleus receive afferents from the ipsilateral nucleus isthmi. The posterior pretectal nucleus projects to the inferior hypothalamic lobe. Our results reveal a conspicuous projection from the ipsilateral parvocellular superficial pretectal nucleus to the contralateral one and also to the contralateral posterior prectectal nucleus, not reported in previous experimental studies of teleosts. Pretectal centers appear to integrate visual/optic-related centers mainly with the hypothalamus and the cerebellum. The organization of the trout pretectum was compared with the pretectal organization patterns proposed in various teleosts.  相似文献   

17.
The solitary nuclear complex (NST) consists of a number of subdivisions that differ in their cytoarchitectonic features as well as in the amounts of inputs they receive from lingual afferent axons. In this study horseradish peroxidase (HRP) was injected into the parabrachial nucleus (PBN) of the hamster to determine which of these subdivisions contain cells that project to the pons. In the rostral, gustatory division of the NST, the rostral central subdivision contains the greatest number of labelled pontine-projection neurons. The rostral lateral subdivision contains moderate numbers of labelled cells; progressively fewer labelled cells are in the ventral, medial, and dorsal subdivisions. In the caudal, general viscerosensory division of the NST, the caudal central subdivision contains the majority of labelled cells, although fewer than its rostral counterpart. Progressively fewer cells are labelled in the medial, laminar, ventrolateral, and lateral subdivisions; none in the dorsolateral subdivision. Small horseradish peroxidase injections into the pons revealed that cells of the rostral central and rostral lateral subdivisions of the NST project to the medial subdivision of the PBN, predominantly to caudal and ventral parts of the subdivision. Cells of the caudal central and medial subdivisions of the NST project to the central lateral subdivision of the PBN, predominantly to intermediate and rostral-dorsal parts of the subdivision. Outside the NST, cells in the spinal trigeminal nucleus and parvicellular reticular formation were also labelled after PBN injections. Within the rostral central and rostral lateral (gustatory) subdivisions of the NST at least two types of neurons, distinguished on the basis of dendritic and cell body morphology, were labelled after HRP injections that included the medial PBN. Elongate cells have ovoid-fusiform somata and dendrites oriented in the mediolateral plane parallel to primary afferent axons entering from the solitary tract. Stellate cells have triangular or polygonal cell bodies and three to five dendrites oriented in all directions, although one or two often extend mediolaterally. These results indicate that cytoarchitectonic subdivisions of the NST are distinguished by their efferent ascending connections. For each subdivision within the rostral, gustatory NST there is a correlation between the density of lingual inputs it receives and the density of pontine-projection neurons it contains. Within the rostral central subdivision, which contains the densest lingual inputs and the largest collection of PBN-projection neurons, cell types previously identified in studies with the Golgi method were found to send their axons to the PBN. The presence of two types of pontine-projection cells in the rostral central subdivision provides a structural basis for parallel information processing in the ascending gustatory system. Projections to the PBN from regions outside the NST provide opportunities for convergence, at the level of the pons, between inputs arising from gustatory/general viscerosensory subdivisions of the NST and from trigeminal sensory nuclei and the reticular formation.  相似文献   

18.
The torus longitudinalis (TL) is a tectum-associated structure of actinopterygian fishes. The organization of the TL of rainbow trout was studied with Nissl staining, Golgi methods, immunocytochemistry with antibodies to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase (GAD), and the GABA(A) receptor subunits delta and beta2/beta 3, and with tract tracing methods. Two types of neuron were characterized: medium-sized GABAergic neurons and small GABA-negative granule cells. GABA(A) receptor subunit delta-like immunoreactivity delineated two different TL regions, ventrolateral and central. Small GABAergic cells were also observed in marginal and periventricular strata of the optic tectum. These results indicate the presence of local GABAergic inhibitory circuits in the TL system. For tract-tracing, a lipophilic dye (DiI) was applied to the TL and to presumed toropetal nuclei or toral targets. Toropetal neurons were observed in the optic tectum, in pretectal (central, intermediate, and paracommissural) nuclei, in the subvalvular nucleus, and associated with the pretectocerebellar tract. Torofugal fibers were numerous in the stratum marginale of the optic tectum. Toropetal pretectal nuclei also project to the cerebellum, and a few TL cells project to the cerebellar corpus. The pyramidal cells of the trout tectum were also studied by Golgi methods and local DiI labeling. The connections of trout TL revealed here were more similar to those recently reported in carp and holocentrids (Ito et al. [2003] J. Comp. Neurol. 457:202-211; Xue et al. [2003] J. Comp. Neurol. 462:194-212), than to those reported in earlier studies. However, important differences in organization of toropetal nuclei were noted between salmonids and these other teleosts.  相似文献   

19.
Telencephalic evolution in ray-finned fishes shows increasing complexity from polypteriform fishes through sturgeons to teleosts. Telencephalic organization in sturgeons is thus critical to our understanding of ray-finned fish evolution, but it is poorly understood, particularly as regards the roof or pallium. Two major hypotheses exist regarding the medial part of area dorsalis (Dm): that Dm is extended; and that Dm is restricted. The extent and topography of secondary olfactory projections to the pallium are critical in evaluating these hypotheses, but there is little agreement regarding these projections. Olfactory projections in the white sturgeon were therefore examined by using the carbocyanine probe DiI, biocytin, and biotinylated dextrin amine (BDA). Both DiI and BDA revealed primary olfactory projections to the olfactory bulb and primary extrabulbar projections widely in the telencephalon and to more restricted regions of the diencephalon. Myelinated secondary olfactory fibers caused DiI to be less effective in labeling secondary olfactory projections, which terminate in all subpallial nuclei and in the pallium: sparsely in the medial pallial division (Dm); heavily in the posterior pallial division (Dp); and more lightly in the lateral pallial division (Dl). In the diencephalon, substantial secondary olfactory projections were seen to the habenular nuclei, the rostral pole of the inferior lobe, and several nuclei of the posterior tubercle. All secondary olfactory projections were bilateral but heavier ipsilaterally. Bulbopetal neurons were located in both pallial and subpallial centers and were more numerous ipsilaterally. These results corroborate an earlier experimental study on the shovelnose sturgeon and indicate a restricted Dm in sturgeons.  相似文献   

20.
The primary gustatory sensory nuclei in catfish are grossly divisible into a vagal lobe and a facial lobe. In this study, the reflex connections of each gustatory lobe were determined with horseradish peroxidase (HRP) tracing methods. In addition, in order to determine the loci and morphology of the other brainstem cranial nerve nuclei, HRP was applied to the trigeminal, facial, glossopharyngeal, or vagus nerve. The sensory fibers of the facial nerve terminate in the facial lobe. The facial lobe projects bilaterally to the posterior thalamic nucleus, superior secondary gustatory nucleus, and medial reticular formation of the rostral medulla. The facial lobe has reciprocal connections with the n. lobobulbaris, medial reticular formation of the rostral medulla, descending trigeminal nucleus, medial and lateral funicular nuclei, and the vagal lobe, ipsilaterally; and with the facial lobe contralaterally. In addition, the facial lobe receives inputs from the raphe nuclei, from a pretectal nucleus, and from perilemniscal neurons located immediately adjacent to the ascending gustatory lemniscal tract at the level of the trigeminal motor nucleus. The gustatory fibers of the vagus nerve terminate in the vagal lobe, while the general visceral sensory fibers terminate in a distinct general visceral nucleus. The vagal lobe projects ipsilaterally to the superior secondary gustatory nucleus, lateral reticular formation, and n. ambiguus; and bilaterally to the commissural nucleus of Cajal. The vagal lobe has reciprocal connections with the ipsilateral lobobulbar nucleus and facial lobe. In addition, the vagal lobe receives input from neurons of the medullary reticular formation and perilemniscal neurons of the pontine tegmentum. In summary, the facial gustatory system has connections consonant with its role as an exteroceptive system which works in correlation with trigeminal and spinal afferent systems. In contrast, the vagal gustatory system has connections (e.g., with the n. ambiguus) more appropriate to a system involved in control of swallowing. These differences in central connectivity mirror the reports on behavioral dissociation of the facial and vagal gustatory systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号