首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimated continuous cardiac output (esCCO), a noninvasive technique for continuously measuring cardiac output (CO), is based on modified pulse wave transit time, which in turn is determined by pulse oximetry and electrocardiography. However, its trending ability has never been evaluated in patients undergoing non-cardiac surgery. Therefore, this study examined esCCO’s ability to detect the exact changes in CO, compared with currently available arterial waveform analysis methods, in patients undergoing kidney transplantation. CO was measured using an esCCO system and arterial pressure-based CO (APCO), and compared with a corresponding intermittent bolus thermodilution CO (ICO) method. Percentage error and statistical methods, including concordance analysis and polar plot analysis, were used to analyze results from 15 adult patients. The difference in the CO values between esCCO and ICO was ?0.39 ± 1.15 L min?1 (percentage error, 35.6 %). And corrected precision for repeated measures was 1.16 L min?1 (percentage error for repeated measures, 36.0 %). A concordance analysis showed that the concordance rate was 93.1 %. The mean angular bias was ?1.8° and the radial limits of agreement were ±37.6°. The difference between the APCO and ICO CO values was 0.04 ± 1.37 L min?1 (percentage error, 42.4 %). And corrected precision for repeated measures was 1.37 L min?1 (percentage error for repeated measures, 42.5 %). The concordance rate was 89.7 %, with a mean angular bias of ?3.3° and radial limits of agreement of ±42.2°. This study demonstrated that the trending ability of the esCCO system is not clinically acceptable, as judged by polar plots analysis; however, its trending ability is clinically acceptable based on a concordance analysis, and is comparable with currently available arterial waveform analysis methods.  相似文献   

2.
To evaluate the accuracy of estimated continuous cardiac output (esCCO) based on pulse wave transit time in comparison with cardiac output (CO) assessed by transpulmonary thermodilution (TPTD) in off-pump coronary artery bypass grafting (OPCAB). We calibrated the esCCO system with non-invasive (Part 1) and invasive (Part 2) blood pressure and compared with TPTD measurements. We performed parallel measurements of CO with both techniques and assessed the accuracy and precision of individual CO values and agreement of trends of changes perioperatively (Part 1) and postoperatively (Part 2). A Bland–Altman analysis revealed a bias between non-invasive esCCO and TPTD of 0.9 L/min and limits of agreement of ±2.8 L/min. Intraoperative bias was 1.2 L/min with limits of agreement of ±2.9 L/min and percentage error (PE) of 64 %. Postoperatively, bias was 0.4 L/min, limits of agreement of ±2.3 L/min and PE of 41 %. A Bland–Altman analysis of invasive esCCO and TPTD after OPCAB found bias of 0.3 L/min with limits of agreement of ±2.1 L/min and PE of 40 %. A 4-quadrant plot analysis of non-invasive esCCO versus TPTD revealed overall, intraoperative and postoperative concordance rate of 76, 65, and 89 %, respectively. The analysis of trending ability of invasive esCCO after OPCAB revealed concordance rate of 73 %. During OPCAB, esCCO demonstrated poor accuracy, precision and trending ability compared to TPTD. Postoperatively, non-invasive esCCO showed better agreement with TPTD. However, invasive calibration of esCCO did not improve the accuracy and precision and the trending ability of method.  相似文献   

3.
In a previous study a new capnodynamic method for estimation of effective pulmonary blood flow (COEPBF) presented a good trending ability but a poor agreement with a reference cardiac output (CO) measurement at high levels of PEEP. In this study we aimed at evaluating the agreement and trending ability of a modified COEPBF algorithm that uses expiratory instead of inspiratory holds during CO and ventilatory manipulations. COEPBF was evaluated in a porcine model at different PEEP levels, tidal volumes and CO manipulations (N = 8). An ultrasonic flow probe placed around the pulmonary trunk was used for CO measurement. We tested the COEPBF algorithm using a modified breathing pattern that introduces cyclic end-expiratory time pauses. The subsequent changes in mean alveolar fraction of carbon dioxide were integrated into a capnodynamic equation and effective pulmonary blood flow, i.e. non-shunted CO, was calculated continuously breath by breath. The overall agreement between COEPBF and the reference method during all interventions was good with bias (limits of agreement) 0.05 (?1.1 to 1.2) L/min and percentage error of 36 %. The overall trending ability as assessed by the four-quadrant and the polar plot methodology was high with a concordance rate of 93 and 94 % respectively. The mean polar angle was 0.4 (95 % CI ?3.7 to 4.5)°. A ventilatory pattern recurrently introducing end-expiratory pauses maintains a good agreement between COEPBF and the reference CO method while preserving its trending ability during CO and ventilatory alterations.  相似文献   

4.
The measurement of cardiac output (CO) may be useful to improve the assessment of hemodynamics during simulated scenarios. The purpose of this study was to evaluate the feasibility of introducing an uncalibrated pulse contour device (MostCare, Vytech, Vygon, Padova, Italy) into the simulation environment. MostCare device was plugged to a clinical monitor and connected to the METI human patient simulator (HPS) to obtain a continuous arterial waveform analysis and CO calculation. In six different simulated clinical scenarios (baseline, ventricular failure, vasoplegic shock, hypertensive crisis, hypovolemic shock and aortic stenosis), the HPS-CO and the MostCare-CO were simultaneously recorded. The level of concordance between the two methods was assessed by the Bland and Altman analysis. 150-paired CO values were obtained. The HPS-CO values ranged from 2.3 to 6.6 L min?1 and the MostCare-CO values from 2.8 to 6.4 L min?1. The mean difference between HPS-CO and MostCare-CO was ??0.3 L min?1 and the limits of agreement were ??1.5 and 0.9 L min?1. The percentage of error was 23%. A good correlation between HPS-CO and MostCare-CO was observed in each scenario of the study (r?=?0.88). Although MostCare-CO tended to underestimate the CO over the study period, good agreements were found between the two methods. Therefore, a pulse contour device can be integrated into the simulation environment, offering the opportunity to create new simulated clinical settings.  相似文献   

5.
Non-invasive respiratory variations in arterial pulse pressure using infrared-plethysmography (PPVCNAP) are able to predict fluid responsiveness in mechanically ventilated patients. However, they cannot be continuously monitored. The present study evaluated a new algorithm allowing continuous measurements of PPVCNAP (PPVCNAPauto) (CNSystem, Graz, Austria). Thirty-five patients undergoing vascular surgery were studied after induction of general anaesthesia. Stroke volume was measured using the VigileoTM/FloTracTM. Invasive pulse pressure variations were manually calculated using an arterial line (PPVART) and PPVCNAPauto was continuously displayed. PPVART and PPVCNAPauto were simultaneously recorded before and after volume expansion (500 ml hydroxyethylstarch). Subjects were defined as responders if stroke volume increased by ≥15 %. Twenty-one patients were responders. Before volume expansion, PPVART and PPVCNAPauto exhibited a bias of 0.1 % and limits of agreement from ?7.9 % to 7.9 %. After volume expansion, PPVART and PPVCNAPauto exhibited a bias of ?0.4 % and limits of agreement from ?5.3 % to 4.5 %. A 14 % baseline PPVART threshold discriminated responders with a sensitivity of 86 % (95 % CI 64–97 %) and a specificity of 100 % (95 % CI 77–100 %). Area under the receiver operating characteristic (ROC) curve for PPVART was 0.93 (95 % CI 0.79–0.99). A 15 % baseline PPVCNAPauto threshold discriminated responders with a sensitivity of 76% (95 % CI 53–92 %) and a specificity of 93 % (95 % CI 66–99 %). Area under the ROC curves for PPVCNAPauto was 0.91 (95 % CI 0.76–0.98), which was not different from that for PPVART. When compared with PPVART, PPVCNAPauto performs satisfactorily in assessing fluid responsiveness in hemodynamically stable surgical patients.  相似文献   

6.

Introduction

Calibrated arterial pulse contour analysis has become an established method for the continuous monitoring of cardiac output (PCCO). However, data on its validity in hemodynamically instable patients beyond the setting of cardiac surgery are scarce. We performed the present study to assess the validity and precision of PCCO-measurements using the PiCCO™-device compared to transpulmonary thermodilution derived cardiac output (TPCO) as the reference technique in neurosurgical patients requiring high-dose vasopressor-therapy.

Methods

A total of 20 patients (16 females and 4 males) were included in this prospective observational clinical trial. All of them suffered from subarachnoid hemorrhage (Hunt&Hess grade I-V) due to rupture of a cerebral arterial aneurysm and underwent high-dose vasopressor therapy for the prevention/treatment of delayed cerebral ischemia (DCI). Simultaneous CO measurements by bolus TPCO and PCCO were obtained at baseline as well as 2 h, 6 h, 12 h, 24 h, 48 h and 72 h after inclusion.

Results

PCCO- and TPCO-measurements were obtained at baseline as well as 2 h, 6 h, 12 h, 24 h, 48 h and 72 h after inclusion. Patients received vasoactive support with (mean ± standard deviation, SD) 0.57 ± 0.49 μg · kg-1 · min-1 norepinephrine resulting in a mean arterial pressure of 103 ± 13 mmHg and a systemic vascular resistance of 943 ± 248 dyn · s · cm-5. 136 CO-data pairs were analyzed. TPCO ranged from 5.2 to 14.3 l · min-1 (mean ± SD 8.5 ± 2.0 l · min-1) and PCCO ranged from 5.0 to 14.4 l · min-1 (mean ± SD 8.6 ± 2.0 l · min-1). Bias and limits of agreement (1.96 SD of the bias) were −0.03 ± 0.82 l · min-1 and 1.62 l · min-1, resulting in an overall percentage error of 18.8%. The precision of PCCO-measurements was 17.8%. Insufficient trending ability was indicated by concordance rates of 74% (exclusion zone of 15% (1.29 l · min-1)) and 67% (without exclusion zone), as well as by polar plot analysis.

Conclusions

In neurosurgical patients requiring extensive vasoactive support, CO values obtained by calibrated PCCO showed clinically and statistically acceptable agreement with TPCO-measurements, but the results from concordance and polar plot analysis indicate an unreliable trending ability.  相似文献   

7.
Septic shock is a serious medical condition. With increased concerns about invasive techniques, a number of non-invasive and semi-invasive devices measuring cardiac output (CO) have become commercially available. The aim of the present study was to determine the accuracy, precision and trending abilities of the FloTrac and the continuous pulmonary artery catheter thermodilution technique determining CO in septic shock patients. Consecutive septic shock patients were included in two centres and CO was measured every 4 h up to 48 h by FloTrac (APCO) and by pulmonary artery catheter (PAC) using the continuous (CCO) and intermittent (ICO) technique. Forty-seven septic shock patients with 326 matched sets of APCO, CCO and ICO data were available for analysis. Bland and Altman analysis revealed a mean bias ±2 SD of 0.0 ± 2.14 L min?1 for APCO–ICO (%error = 34.5 %) and 0.23 ± 2.55 L min?1 for CCO–ICO (%error = 40.4 %). Trend analysis showed a concordance of 85 and 81 % for APCO and CCO, respectively. In contrast to CCO, APCO was influenced by systemic vascular resistance and by mean arterial pressure. In septic shock patients, APCO measurements assessed by FloTrac but also the established CCO measurements using the PAC did not meet the currently accepted statistical criteria indicating acceptable clinical performance.  相似文献   

8.
The aim of this prospective study was to evaluate the usefulness of stroke volume variation (SVV) derived from NICOM® to predict fluid responsiveness in the prone position. Forty adult patients undergoing spinal surgery in the prone position were included in this study. We measured SVV from NICOM® (SVVNICOM) and FloTrac?/Vigileo? systems (SVVVigileo), and pulse pressure variation (PPV) using automatic (PPVauto) and manual (PPVmanual) calculations at four time points including supine and prone positions, and before and after fluid loading of 6 ml kg?1 colloid solution. Fluid responsiveness was defined as an increase in the cardiac index from Vigileo? of ≥12 %. There were 19 responders and 21 non-responders. Prone positioning induced a significant decrease in SVVNICOM, SVVVigileo, PPVauto, and PPVmanual. However, all of these parameters successfully predicted fluid responsiveness in the prone position with area under the receiver-operator characteristic curves for SVVNICOM, SVVVigileo, PPVauto, and PPVmanual of 0.78 [95 % confidence interval (CI) 0.62–0.90, P = 0.0001], 0.79 (95 % CI 0.63–0.90, P = 0.0001), 0.76 (95 % CI 0.6–0.88, P = 0.0006), and 0.84 (95 % CI 0.69–0.94, P < 0.0001), respectively. The optimal cut-off values were 12 % for SVVNICOM, SVVVigileo, and PPVauto, and 10 % for PPVmanual. SVV from NICOM® successfully predicts fluid responsiveness during surgery in the prone position. This totally non-invasive technique for assessing individual functional intravenous volume status would be useful in a wide range of surgeries performed in the prone position.  相似文献   

9.
Low fresh gas flows (FGFs) decrease the use of anesthetic gases, but increase CO2 absorbent usage. CO2 absorbent usage remains poorly quantified. The goal of this study is to determine canister life of 8 commercially available CO2 absorbent prepacks with the Zeus®. Pre-packed CO2 canisters of 8 different brands were tested in vitro: Amsorb Plus, Spherasorb, LoFloSorb, LithoLyme, SpiraLith, SpheraSorb, Drägersorb 800+, Drägersorb Free, and CO2ntrol. CO2 (160 mL min??1) flowed into the tip of a 2 L breathing bag that was ventilated with a tidal volume of 500 mL, a respiratory rate of 10/min, and an I:E ratio of 1:1 using the controlled mechanical ventilation mode of the Zeus® (Dräger, Lubeck, Germany). In part I, canister life of 5 canisters each of 2 different lots of each brand was determined with a 350 mL min??1 FGF. Canister life is the time it takes for the inspired CO2 concentration (FICO2) to rise to 0.5%. In part II, canister life was measured accross a FGF range of 0.25 to 4 L min??1 for Drägersorb 800+ (2 lots) and SpiraLith (1 lot). In part III, the calculated canister life per 100 g fresh granule content of the different brands was compared between the Zeus and (previously published data for) the Aisys. In vitro canister life of prefilled CO2 absorber canisters differed between brands, and depended on the amount of CO2 absorbent and chemical composition. Canister life expressed as FCU0.5 (the fraction of the canister used per hour) was proportional to FGF over 0.2–2 L min?1 range only, but was non-linear with higher FGF: FCU0.5 was larger than expected with FGF?>?2 L min?1, and even with FGF?>?minute ventilation FCU0.5 did not become zero, indicating some CO2 was being absorbed. Canister life on a per weight basis of the same brand is higher with the Zeus than the Aisys. Canister life of prefilled CO2 absorber canisters differs between brands. The FCU0.5–FGF relationship is not linear across the entire FGF range. Canister life of prepacks of the same brand for the Zeus and Aisys differs, the exact etiology of which is probably multifactorial, and may include differences in the absolute amount of absorbent and different rebreathing characteristics of the machines.  相似文献   

10.
The CNAP technology (CNSystems Medizintechnik AG, Graz, Austria) allows continuous noninvasive arterial pressure waveform recording based on the volume clamp method and estimation of cardiac output (CO) by pulse contour analysis. We compared CNAP-derived CO measurements (CNCO) with intermittent invasive CO measurements (pulmonary artery catheter; PAC-CO) in postoperative cardiothoracic surgery patients. In 51 intensive care unit patients after cardiothoracic surgery, we measured PAC-CO (criterion standard) and CNCO at three different time points. We conducted two separate comparative analyses: (1) CNCO auto-calibrated to biometric patient data (CNCObio) versus PAC-CO and (2) CNCO calibrated to the first simultaneously measured PAC-CO value (CNCOcal) versus PAC-CO. The agreement between the two methods was statistically assessed by Bland–Altman analysis and the percentage error. In a subgroup of patients, a passive leg raising maneuver was performed for clinical indications and we present the changes in PAC-CO and CNCO in four-quadrant plots (exclusion zone 0.5 L/min) in order to evaluate the trending ability of CNCO. The mean difference between CNCObio and PAC-CO was +0.5 L/min (standard deviation?±?1.3 L/min; 95% limits of agreement ?1.9 to +3.0 L/min). The percentage error was 49%. The concordance rate was 100%. For CNCOcal, the mean difference was ?0.3 L/min (±0.5 L/min; ?1.2 to +0.7 L/min) with a percentage error of 19%. In this clinical study in cardiothoracic surgery patients, CNCOcal showed good agreement when compared with PAC-CO. For CNCObio, we observed a higher percentage error and good trending ability (concordance rate 100%).  相似文献   

11.
Cardiac output measurement has a long history in haemodynamic management and many devices are now available with varying levels of accuracy. The purpose of the study was to compare the agreement and trending abilities of cardiac output, as measured by transpulmonary thermodilution and calibrated pulse contour analysis, using the VolumeView? system, continuous thermodilution via a pulmonary artery catheter, and uncalibrated pulse contour analysis, using FloTrac? with pulmonary artery bolus thermodilution. Twenty patients undergoing off-pump coronary artery bypass surgery using a pulmonary artery catheter and the VolumeView? and FloTrac? systems were included in this subgroup analysis of the cardiovascular anaesthesia registry at a single tertiary centre. During surgery, cardiac output was assessed after the induction of anaesthesia, after sternotomy, during the harvesting of grafts, during revascularization of the anterior and posterior/lateral wall, after protamine infusion, and after sternal fixation. In total, 145 sets of measurements were evaluated using Bland–Altman with % error calculation, correlation, concordance, and polar plot analyses. The percentage error (bias, limits of agreement) was 12.6 % (?0.12, ?0.64 to 0.41 L/min), 26.7 % (?0.38, ?1.50 to 0.74 L/min), 29.3 % (?0.08, ?1.32 to 1.15 L/min), and 33.8 % (?0.05, ?1.47 to 1.37 L/min) for transpulmonary thermodilution, pulmonary artery continuous thermodilution, calibrated, and uncalibrated pulse contour analysis, respectively, compared with pulmonary artery bolus thermodilution. All pairs of measurements showed significant correlations (p < 0.001), whereas only transpulmonary thermodilution revealed trending ability (concordance rate of 95.1 %, angular bias of 1.33°, and radial limits of agreement of 28.71°) compared with pulmonary artery bolus thermodilution. Transpulmonary thermodilution using the VolumeView? system provides reliable data on cardiac output measurement and tracking the changes thereof when compared with pulmonary artery bolus thermodilution in patients with preserved cardiac function during off-pump coronary artery bypass surgery. Trial registration NCT01713192 (ClinicalTrials.gov).  相似文献   

12.
Obstructive sleep apnoea (OSA) is caused by an obstruction of the upper airway. Sufficientsensitivity to CO2 in the respiratory centre is known to be a critical factor for adequatetone in the upper airway muscles. The hypothesis of this study is, therefore, that the ventilatoryresponse to CO2 is reduced in patients with OSA. Twenty-six patients who sufferedfrom snoring, 19 snoring patients with obstructive hypopnoea (OH) and 33 snoring patients withobstructive apnoea (OA), were studied. The control group consisted of 25 subjects from a randomsample with no history of snoring or daytime sleepiness. Tests of the hyperoxic and hypoxicventilatory response to CO2 were performed, as well as static and dynamic spirometry.Subjects in the OA group displayed a higher hyperoxic (EE/FetCO 2hy=12·6 l min?1/%) and hypoxic (EE/FetCO 2ho=15·7 l min?1/%) ventilatory responseto CO2 than patients with obstructive hypopnoea(EE/FetCO2hy=8middot;6 l min?1/%; EE/FetCO 2ho=15·2 l min?1/%), snorers(EE/FetCO 2hy=8·4 l min?1/%;EE/FetCO 2ho=12·7 l min?1/%) and non-snorers(EE /FetCO 2hy=7·6 l min?1/%;EE/FetCO ho=9·6 l min?1/%). Multiple regression analysis revealsthat neck circumference, apnoea index, oxygen desaturation index, PCO 2 and sex (male gender) are correlated with EE/FetCO 2hy (R2=0·43).Multiple regression analysis also reveals that ERV (expiratory reserve volume) and sex (malegender) are correlated with EE/FetCO 2ho ((R2=0·21). Arguing against thehypothesis, patients with OSA displayed an increased hyperoxic and hypoxic ventilatory responseto CO2 . Nocturnal apnoea frequency and the obesity factor in OSA may havecontributed to these results.  相似文献   

13.
The Finometer measures haemodynamic parameters including cardiac output (CO) using non‐invasive volume‐clamp techniques. The aim of this study was to determine the accuracy of the Finometer in hyperdynamic cirrhotic patients using an invasive indicator dilution technique as control. CO was measured in twenty‐three patients referred for invasive measurements of the hepatic venous pressure gradient on suspicion of cirrhosis. Invasive measurements of CO were performed using indicator dilution technique (COI) and simultaneous measurements of CO were recorded with the Finometer (COF). In six patients, measurements of CO were performed with invasive technique and the Finometer both before and after β‐blockade using 80 mg of propranolol and the changes in CO (ΔCOI and ΔCOF respectively) were calculated to evaluate the Finometers ability to detect relative changes in CO. Mean COI was 6·1 ± 1·6 [3·9;9·7] l min?1 (mean ± SD [range]) compared to mean COF of 7·2 ± 2·3 [3·1;11·9] l min?1. There was a mean difference between COF and COI of 1·0 ± 1·8 [?2·1;4·0] l min?1 and 95% confidence interval of [0·2;1·8], P<0·001. In patients with measurements before and after β‐blockade, mean ΔCOI was 1·6 ± 1·4 [?0·1;3·3] l min?1 compared to mean ΔCOF of 1·9 ± 1·3 [0·4;3·8] l min?1. Mean difference between ΔCOF and ΔCOI was 0·3 ± 0·3 [?0·2;0·7] l min?1 with a 95% confidence interval of [?0·1;0·6], P = 0·11. Compared with invasive measurements, the Finometer can be used to measure changes in CO, whereas absolute measurements are associated with higher variation in patients with cirrhosis. The Finometer seems useful for repeated determinations such as in studies of effect of pharmacotherapy.  相似文献   

14.
The capnodynamic method is a minimally invasive method continuously calculating effective pulmonary blood flow (COEPBF), equivalent to cardiac output when intra pulmonary shunt flow is low. The capnodynamic equation joined with a ventilator pattern containing cyclic reoccurring expiratory holds, provides breath to breath hemodynamic monitoring in the anesthetized patient. Its performance however, might be affected by changes in the mixed venous content of carbon dioxide (CvCO2). The aim of the current study was to evaluate COEPBF during rapid measurable changes in mixed venous carbon dioxide partial pressure (PvCO2) following ischemia–reperfusion and during sustained hypercapnia in a porcine model. Sixteen pigs were submitted to either ischemia–reperfusion (n?=?8) after the release of an aortic balloon inflated during 30 min or to prolonged hypercapnia (n?=?8) induced by adding an instrumental dead space. Reference cardiac output (CO) was measured by an ultrasonic flow probe placed around the pulmonary artery trunk (COTS). Hemodynamic measurements were obtained at baseline, end of ischemia and during the first 5 min of reperfusion as well as during prolonged hypercapnia at high and low CO states. Ischemia–reperfusion resulted in large changes in PvCO2, hemodynamics and lactate. Bias (limits of agreement) was 0.7 (?0.4 to 1.8) L/min with a mean error of 28% at baseline. COEPBF was impaired during reperfusion but agreement was restored within 5 min. During prolonged hypercapnia, agreement remained good during changes in CO. The mean polar angle was ?4.19° (?8.8° to 0.42°). Capnodynamic COEPBF is affected but recovers rapidly after transient large changes in PvCO2 and preserves good agreement and trending ability during states of prolonged hypercapnia at different levels of CO.  相似文献   

15.
We assessed the effect of re-calibration time on cardiac output estimation and trending performance in a retrospective analysis of an intensive care unit patient population using error grid analyses. Paired thermodilution and arterial blood pressure waveform measurements (N = 2141) from 222 patient records were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. Pulse contour analysis was performed by implementing a previously reported algorithm at calibration times of 1, 2, 8 and 24 h. Cardiac output estimation agreement was assessed using Bland–Altman and error grid analyses. Trending was assessed by concordance and a 4-Quadrant error grid analysis. Error between pulse contour and thermodilution increased with longer calibration times. Limits of agreement were ?1.85 to 1.66 L/min for 1 h maximum calibration time compared to ?2.70 to 2.41 L/min for 24 h. Error grid analysis resulted in 74.2 % of points bounded by 20 % error limits of thermodilution measurements for 1 h calibration time compared to 65 % for 24 h. 4-Quadrant error grid analysis showed <75 % of changes in pulse contour estimates to be within ±80 % of the change in the thermodilution measurement at any calibration time. Shorter calibration times improved the agreement of cardiac output pulse contour estimates with thermodilution. Use of minimally invasive pulse contour methods in intensive care monitoring could benefit from prospective studies evaluating calibration protocols. The applied pulse contour analysis method and thermodilution showed poor agreement to monitor changes in cardiac output.  相似文献   

16.
The arterial pulse contour method called Modelflow 2·1 calculates stroke volume continuously, beat to beat, from the non-invasive blood pressure signal measured by Finapres or Portapres. Portapres is the portable version of Finapres. The purpose of this study was to compare cardiac output (CO) calculated using Modelflow 2·1 (COmf) with CO obtained by the CO2 rebreathing method (COre) during steady state at moderate exercise levels. Twelve subjects visited the laboratory twice and performed submaximal exercise on a bicycle ergometer at 20%, 40% and 60% of their individual peak power output (POpeak). The averaged correlation between COmf and COre gives an r-value of 0·69, whereas the slope and intercept of the regression line were 1·06 and 1·65 respectively. The averaged difference between COmf and COre was 2·27 ± 3·9 l min–1 (mean ± standard deviation). However, the test–retest difference between COmf and COre was 2·5 ± 3·1 and 0·5 ± 1·3 l min–1 respectively. These results suggest that Modelflow 2·1 is not an accurate method for estimating CO from non-invasive blood pressure data collected by Portapres during exercise at up to 60% of the individual POpeak corresponding with daily life activity.  相似文献   

17.
The objective of this study was to evaluate the reliability and accuracy of electrical cardiometry (EC) for the noninvasive determination of cardiac output (CO) in obese children and adolescents. We compared these results with those obtained by transthoracic echocardiography. Sixty-four participants underwent simultaneous measurement of CO. Cardiac output was measured by EC using the ICON® device. Simultaneously CO was determined by using transthoracic Doppler echocardiography from parasternal long-axis and apical view. The median age was 12.52 years (range 7.9–17.6 years) and 36 (56 %) were female. A strongly significant correlation was found between the COEC and COEcho measurements (p < 0.0001, r = 0.91). Significant correlations were also found between CO and age (r = 0.37, p = 0.002), weight (r = 0.57, p < 0.0001), height (0.60, p < 0.0001) and BMI (r = 0.42, p = 0.001). The mean difference between the two methods (COEC ? COEcho) was 0.015 l min?1. According to the Bland and Altman method, the upper and lower limits of agreement, defined as mean difference ±2 SD, were +1.21 and ?0.91 l min?1, respectively. Compared to the transthoracic Doppler echocardiography, Electrical Cardiometry provides accurate and reliable CO measurements in obese children and adolescents.  相似文献   

18.
Induction of general anesthesia frequently induces arterial hypotension, which is often treated with a vasopressor, such as phenylephrine. As a pure α-agonist, phenylephrine is conventionally considered to solely induce arterial vasoconstriction and thus increase cardiac afterload but not cardiac preload. In specific circumstances, however, phenylephrine may also contribute to an increase in venous return and thus cardiac output (CO). The aim of this study is to describe the initial time course of the effects of phenylephrine on various hemodynamic variables and to evaluate the ability of advanced hemodynamic monitoring to quantify these changes through different hemodynamic variables. In 24 patients, after induction of anesthesia, during the period before surgical stimulus, phenylephrine 2 µg kg?1 was administered when the MAP dropped below 80% of the awake state baseline value for >?3 min. The mean arterial blood pressure (MAP), heart rate (HR), end-tidal CO2 (EtCO2), central venous pressure (CVP), stroke volume (SV), CO, pulse pressure variation (PPV), stroke volume variation (SVV) and systemic vascular resistance (SVR) were recorded continuously. The values at the moment before administration of phenylephrine and 5(T5) and 10(T10) min thereafter were compared. After phenylephrine, the mean(SD) MAP, SV, CO, CVP and EtCO2 increased by 34(13) mmHg, 11(9) mL, 1.02(0.74) L min?1, 3(2.6) mmHg and 4.0(1.6) mmHg at T5 respectively, while both dynamic preload variables decreased: PPV dropped from 20% at baseline to 9% at T5 and to 13% at T10 and SVV from 19 to 11 and 14%, respectively. Initially, the increase in MAP was perfectly aligned with the increase in SVR, until 150 s after the initial increase in MAP, when both curves started to dissociate. The dissociation of the evolution of MAP and SVR, together with the changes in PPV, CVP, EtCO2 and CO indicate that in patients with anesthesia-induced hypotension, phenylephrine increases the CO by virtue of an increase in cardiac preload.  相似文献   

19.
A capnodynamic calculation of effective pulmonary blood flow includes a lung volume factor (ELV) that has to be estimated to solve the mathematical equation. In previous studies ELV correlated to reference methods for functional residual capacity (FRC). The aim was to evaluate the stability of ELV during significant manipulations of cardiac output (CO) and assess the agreement for absolute values and trending capacity during PEEP changes at different lung conditions. Ten pigs were included. Alterations of alveolar carbon dioxide were induced by cyclic reoccurring inspiratory holds. The Sulphur hexafluoride technique for FRC measurements was used as reference. Cardiac output was altered by preload reduction and inotropic stimulation at PEEP 5 and 12 cmH2O both in normal lung conditions and after repeated lung lavages. ELV at baseline PEEP 5 was [mean (SD)], 810 (163) mL and decreased to 400 (42) mL after lavage. ELV was not significantly affected by CO alterations within the same PEEP level. In relation to FRC the overall bias (limits of agreement) was ?35 (?271 to 201) mL, and percentage error 36 %. A small difference between ELV and FRC was seen at PEEP 5 cmH2O before lavage and at PEEP 12 cmH2O after lavage. ELV trending capability between PEEP steps, showed a concordance rate of 100 %. ELV was closely related to FRC and remained stable during significant changes in CO. The trending capability was excellent both before and after surfactant depletion.  相似文献   

20.
The FloTrac system is a system for cardiac output (CO) measurement that is less invasive than the pulmonary artery catheter (PAC). The purposes of this study were to (1) compare the level of agreement and trending abilities of CO values measured using the fourth version of the FloTrac system (CCO-FloTrac) and PAC-originated continuous thermodilution (CCO-PAC) and (2) analyze the inadequate CO-discriminating ability of the FloTrac system before and after cardiopulmonary bypass (CPB). Fifty patients were included. After exclusion, 32 patients undergoing cardiac surgery with CPB were analyzed. All patients were monitored with a PAC and radial artery catheter connected to the FloTrac system. CO was assessed at 10 timing points during the surgery. In the Bland–Altman analysis, the percentage errors (bias, the limits of agreement) of the CCO-FloTrac were 61.82% (0.16, ??2.15 to 2.47 L min) and 51.80% (0.48, ??1.97 to 2.94 L min) before and after CPB, respectively, compared with CCO-PAC. The concordance rates in the four-quadrant plot were 64.10 and 62.16% and the angular concordance rates (angular mean bias, the radial limits of agreement) in the polar-plot analysis were 30.00% (17.62°, ??70.69° to 105.93°) and 38.63% (??10.04°, ??96.73° to 76.30°) before and after CPB, respectively. The area under the receiver operating characteristic curve for CCO-FloTrac was 0.56, 0.52, 0.52, and 0.72 for all, ≥?±?5, ≥?±?10, and ≥?±?15% CO changes (ΔCO) of CCO-PAC before CPB, respectively, and 0.59, 0.55, 0.49, and 0.46 for all, ≥?±?5, ≥?±?10, and ≥?±?15% ΔCO of CCO-PAC after CPB, respectively. When CO <?4 L/min was considered inadequate, the Cohen κ coefficient was 0.355 and 0.373 before and after CPB, respectively. The accuracy, trending ability, and inadequate CO-discriminating ability of the fourth version of the FloTrac system in CO monitoring are not statistically acceptable in cardiac surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号