首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
背景:选择适当的表面处理方法,选用适宜的黏结剂种类,可以有效地提高临床氧化锆修复体的黏结效果。 目的:研究氧化锆表面不同处理方法和黏结剂种类对Upcera氧化锆陶瓷之间剪切强度的影响。 方法:将72个试件采用600#砂纸打磨抛光分为6组,分别选择240#砂纸打磨粗化、喷砂、硅烷化3种表面处理方法,电镜观察处理前后的表面形貌。黏结剂选择Panavia F树脂水门汀和Fuji CEM树脂加强型玻璃离子水门汀,加压黏结固定24 h后,万能实验机测定剪切强度数值,进行析因方差分析。 结果与结论:喷砂组剪切强度高于240#砂纸打磨组和硅烷化组(P < 0.05)。树脂水门汀的剪切强度显著高于树脂加强型玻璃离子水门汀(P < 0.05)。喷砂后试件表面形貌最为粗糙,240#砂纸打磨和硅烷化对表面形貌的改变较小。提示喷砂是提高树脂水门汀和树脂加强型玻璃离子水门汀与氧化锆陶瓷剪切强度的有效方法,而砂纸打磨和硅烷化并不能显著提高剪切强度。对于临床黏结条件差的修复体,树脂水门汀可提供更高的黏结强度。  相似文献   

2.
The purpose of this in vitro study was to compare the shear bond strengths of resin, glass-ionomer, and ceramic-based core materials to all ceramic discs. Five core materials (Core max, Sankin; Clearfil AP-X, Kuraray; Empress Cosmo, Ivoclar-Vivadent; Photocore, Kuraray; Dyract Extra, Dentsply) were prepared as discs 10 mm in diameter and 2 mm in height according to the manufacturer's instructions. Ten disc specimens per group were prepared, and dentin served as the control. All resin specimens were embedded in autopolymerizing acrylic resin, with one surface facing up. All ceramic discs (IPS Empress I, Ivoclar-Vivadent) 3 mm in diameter and 2 mm in height were prepared and bonded to core specimens with a dual-curing luting resin cement (Variolink II, Vivadent). Specimens were stored in distilled water at 37 degrees C. Shear bond strength of each sample was measured after 24 h using a universal testing machine at a crosshead speed of 0.5 mm/min. The data were analyzed with one-way analysis of variance and Tukey HSD tests (alpha = 0.05). Shear bond strength varied significantly depending on the core material used (p < 0.05). Clearfil AP-X and Photocore showed the highest shear bond strength value while Empress Cosmo provided the lowest (p < 0.05). There were no statistically significant differences among Clearfil AP-X, Photocore, and Core-Max (p > 0.05). And also there were no statistically significant differences between Dyract Extra and the control group (p > 0.05). In vitro shear bond strengths of ceramic discs bonded to resin-based core materials showed higher bond strength values than ceramic-based core material.  相似文献   

3.
The present investigation focuses on the surface modification, via gas-phase fluorination process, of yttria- stabilized zirconia (YSZ) to increase its wettability and chemical bonding directly to acrylate-based resin cements. YSZ plates and cylinders, as-received and roughened, were pretreated in a fluorine containing plasma and bonded with a commercially available resin cement for simple shear bond adhesion testing. No organo-silane coupling agent was used to enhance bonding between the two substrates. Shear bond tests revealed that bond strength increased with fluorination time. Furthermore, the pretreated, as received (nonroughened) specimen group displayed relatively high bond strengths suggesting surface reactivity and direct chemical bonding with the resin cement. X-ray photoelectron spectroscopy analysis revealed the surface conversion layer to be a mixture of phases; zirconium oxyfluoride, zirconium fluoride, and yttrium fluoride. It is hypothesized that these fluoride and oxyfluoride phases have the potential to increase surface hydroxylation, enabling direct covalent bonding between YSZ and resin cement. It is believed that this surface treatment has broad reaching impact when using high-strength ceramics in a multitude of bioapplications.  相似文献   

4.
The purpose of this study was to investigate the influences of contaminations and cleaning methods on bonding to dental zirconia ceramic. After saliva immersion and using silicone disclosing agent, airborne-particle abraded ceramic specimens were cleaned with isopropanol (AL), acetone (AC), 37% phosphoric acid (PA), additional airborne-particle abrasion (AA), or only with water rinsing (SS). Airborne-particle abraded specimens without contaminations (CL) were used as control group. For chemical analysis specimens of all groups were examined with X-ray photoelectron spectroscopy (XPS). Plexiglas tubes filled with composite resin were bonded to ceramic specimens using a phosphate-monomer containing composite luting resin. After 3-day water storage, tensile bond strengths (TBS) were tested. XPS analysis of group SS showed the presence of saliva and silicone (Si) contamination on the surface. The ratios of carbon/zirconium and oxygen/zirconium for groups PA and AA were comparable to those ratios obtained for group CL, indicating the removal of the organic saliva contamination. Airborne-particle abrasion and acetone completely removed Si contamination from ceramic surfaces. Isopropanol had little cleaning effect on the two contaminants. TBS (median +/- standard deviation) in MPa of the groups SS (11.6 +/- 3.1), AL (10.0 +/- 2.9), and AC (13.0 +/- 2.8) were statistically lower than those of groups PA (33.6 +/- 5.5), AA (40.1 +/- 3.6), and CL (47.0 +/- 8.1) (p < 0.001), while no differences were found in TBS between groups AA and CL (p > 0.5). Contamination significantly reduced bond strengths to zirconia ceramic. Airborne-particle abrasion was the most effective cleaning method.  相似文献   

5.
Adhesive bonding between resin and titanium is useful for resin-bonded prostheses. The purpose of this study was to investigate the efficacy of an etchant, consisting of ammonium hydrogen fluoride (AHF) and phosphoric acid (PA), in titanium bonding. Cast specimens of commercially pure titanium were air-abraded with alumina and etched for 30 s, after which a primer (ALP) was applied. An acrylic rod was bonded to the specimen with one of the two luting agents being examined (Super-Bond QUICK and Panavia F2.0). Shear bond strengths were determined following 10,000 thermocycles. When Panavia F2.0 was applied, neither the etchant nor the ALP primer showed significant effect on bond strength. The postthermocycling bond strength of Super-Bond QUICK was significantly improved with the use of an etchant and ALP primer. Although microscopic observation revealed that considerable numbers of submicron pits were created on the specimens etched using AHF with PA, no significant difference in bond strength was detected in the application of AHF, with or without PA. The present findings suggested that the improved bonding durability was due to the micromechanical retention between the resin and the microscopically roughened titanium surface.  相似文献   

6.
背景:研究已证实硅烷偶联剂和喷砂等表面处理方式,以及增加氧化锆陶瓷表面的微裂纹可提高氧化锆陶瓷与树脂黏结剂间的黏结强度,但有关多次反复烧结是否会对氧化锆陶瓷黏结剪切强度产生影响尚缺少相关研究。 目的:测试饰瓷温度烧结对牙科氧化锆陶瓷与树脂黏结剂黏结剪切强度的影响。 方法:从40片氧化锆瓷片随机选择20片,分成 5组,按照常规烧结程序分别烧结0(对照组),2,4,6,8次,热处理起始温度为500 ℃,最终温度1 000 ℃,升温速率55 ℃/min,抽真空时间7 min。每次烧结最终温度恒定不变。将各组分别用树脂黏结剂与剩余未烧结的陶瓷片对位黏结,用万能材料试验机测黏结界面的剪切强度;使用扫描电镜观察剪切后的试件断面形貌。 结果与结论:烧结4,6,8次组试件剪切强度高于对照组(P < 0.05);烧结2次组试件剪切强度稍高于对照组,但差异无显著性意义(P > 0.05);烧结8次组试件剪切强度高于烧结4,6次组(P < 0.05)。未烧结氧化锆陶瓷表面未见裂纹;经过2次烧结后表面可见细微裂纹;经过4次烧结后表面可见裂纹增多;经过6次烧结后表面已经开始有明显变化,裂纹增多并伴有细微空隙产生,少量黏结剂残留;经过8次烧结后表面可见裂纹与空隙明显增多并有黏结剂残留。表明经过4,6,8次烧结后的氧化锆陶瓷对树脂黏结剂有较好的黏结剪切强度,烧结8次后的黏结剪切强度最强。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

7.
Bioinert zirconia surfaces exhibit a low chemical bonding potential to resin-based luting agents. The aim was to hydroxylate dental zirconia surfaces and to examine tensile bond strength using commercial luting agents. The measured bond strength was compared with established mechanical conditioning techniques. Five acidic and one alkaline hydroxylation pretreatments were applied and compared with air abrasion and tribochemical silica coating. For the chemical characterization of hydroxyl groups and hydroxyl value, zirconia powders were used, chemically modified, and analyzed using Fourier-transformed infrared spectroscopy and a titrimetric method according to the ISO 4629 standard. All acidic pretreatment procedures exhibited increased hydroxyl values. The highest values were recorded after treatment with phosphoric acid or Piranha solution. Tensile bond strength was examined in a universal testing machine using the commercial dual-cure luting agents Multilink (Ivoclar, Liechtenstein) and Panavia F2.0 (Kuraray, Japan). Surface hydroxylation with Piranha solution in combination with the luting agent Multilink led to a bond strength of 12.47 +/- 3.25 MPa. Tribochemical silica-coated/silanized zirconia surfaces with Multilink produced the highest bond strength of 19.33 +/- 3.65 MPa. Using the luting agent Panavia F2.0, statistically homogenous values for the untreated (11.60 +/- 1.68 MPa) and for the hydroxylated surface (12.46 +/- 3,81 MPa) were measured. Bioinert zirconia surfaces were successfully hydroxylated in terms of tensile bond strength. Resin bonding with Multilink can be strongly increased by acidic treatment with Piranha solution. Bonding with Panavia F2.0 is not affected by hydroxylation, which is likely due to the incorporation of specific functional monomers.  相似文献   

8.
The objectives of the study were to describe a novel method for producing zirconium dioxide specimens with a cementation surface that allows adhesive cementation techniques, to describe the surface structure and to evaluate the bond strength. Forty-eight pairs of specimens were fabricated and adhesively luted together. Three different surfaces were tested: impaction-modified surfaces created by using glass granules (G), impaction-modified surfaces created by using polymer granules (P) and a nonmodified control surface (C). Two bonding systems were used, Variolink(?)II (VA) or Panavia?F 2.0 (PA). During the different fabrication steps, the surfaces were examined under light microscope and analyzed with an optical interferometer. All groups were thermocycled and subjected to shear bond strength test. The groups with modified cementation surfaces showed significantly higher shear bond strength: 34.9 MPa (VA-G), 30.9 MPa (VA-P), 29.6 MPa (PA-P), and 26.1 MPa (PA-G) compared with the relevant control group: 20.5 MPa (VA-C) and 17.8 MPa (PA-C). The groups with surface modification showed a rougher surface structure and significantly fewer fractures between the cement and the zirconium dioxide surfaces compared to the control groups where all failures were adhesive. Impaction modification with an impaction medium pressed into the cementation surface of zirconium dioxide-based reconstructions can be used in combination with an additive production technique to increase bond strength. Both modification techniques described in the study result in a rougher surface structure and higher shear bond strength compared to the control groups.  相似文献   

9.
背景:氧化锆陶瓷因具有良好的理化性能和生物相容性在口腔修复重建领域被广泛应用,但如何对氧化锆陶瓷表面进行改性,以提高修复体与牙体组织的粘接强度成为目前临床工作中的难点。 目的:综述口腔氧化锆陶瓷的粘接方法。 方法:应用计算机检索PubMed 数据库,检索关键词为“zirconia, silane coupling agent, resin cement, bonding”。 结果与结论:通过化学摩擦硅涂层系统结合新型混合非功能性硅烷偶联剂对氧化锆瓷进行表面处理,利用小粒径(50 µm)的含硅颗粒氧化铝粉末对氧化锆进行喷砂,形成含硅粒子的粗糙覆盖表层,此系统可降低传统喷砂对瓷边缘薄弱部位的损伤,提高修复体边缘密合度;新型混合非功能性硅烷偶联剂与陶瓷表面可形成稳定且高强度的硅氧烷键,其水解稳定性远高于传统的硅烷偶联剂,利用硅氧烷在界面处与聚合物交联形成的互穿网络体系,可更有效地将树脂共价接枝到硅烷表面,有效提高氧化锆陶瓷与树脂的粘接强度,为修复体提供足够的固位力,提高临床修复成功率。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

10.
This study investigated the relationship between the irradiance transmitted through ceramic and the bond strength of a resin cement to dentin. After application of an adhesive system, elastomer molds with cylindrical orifices (1.2 mm in diameter) were placed onto bovine dentin surfaces and filled with a photoactivated luting agent (Enforce; Dentsply Caulk). Light-activation was performed through a 0.6-mm-thick ceramic disc using different intensities: 250, 400, 550, 700, or 850 mW/cm(2). Control specimens were irradiated without ceramic (1050 mW/cm(2)). The radiant exposure was kept at 30 J/cm(2). Light spectral distribution was analyzed with a spectrometer. Microshear test was conducted and modes of failure were classified under SEM. Bond strength data were analyzed with ANOVA and Student-Newman-Keuls' test (alpha < or = 0.05), and failure scores with the Kruskal-Wallis test (alpha < or = 0.05). A linear regression model assessed the relationship between irradiance and bond strength. Groups light-cured at 250 and 400 mW/cm(2) presented lower bond strengths than groups activated at 850 and 1050 mW/cm(2). The linear regression showed that a decrease in light irradiance predicts a decrease in bond strength (r(2) = 0.955; p = 0.004). A predominance of mixed failures was observed. No significant alteration in the spectral wavelengths was observed. Despite the constant energy dose, the bond strength was dependent upon the irradiance level.  相似文献   

11.
文题释义:氧化钇稳定四方相氧化锆多晶陶瓷:是以氧化钇为稳定剂、四方相为主要物相的氧化锆陶瓷,其具有较高的抗弯强度(900-1 200 MPa)和断裂韧性(9-10 MPa·m1/2)。由于这些优异的机械性能,氧化钇稳定四方相氧化锆多晶陶瓷成为口腔冠桥修复中应用最广泛的陶瓷之一。 相变增韧机制:为氧化锆增韧的一种方法。稳定剂使四方相氧化锆在室温下可以处于亚稳态,但是在应力作用下亚稳态的四方相氧化锆易转化为单斜相氧化锆,同时伴有3%-5%的体积膨胀,这个过程能弥合微裂纹且消耗断裂能,提高氧化锆陶瓷的韧性。 背景:任何表面处理都应在不损害原有氧化钇稳定四方相氧化锆多晶陶瓷强度的前提下提高其粘接强度。目前缺乏上釉技术对氧化钇稳定四方相氧化锆多晶陶瓷粘接强度影响的资料,并且其对氧化钇稳定四方相氧化锆多晶陶瓷力学性能的影响尚不明确。 目的:评估上釉技术对氧化钇稳定四方相氧化锆多晶陶瓷力学行为及其与树脂水门汀粘接强度的影响。 方法:制作氧化钇稳定四方相氧化锆多晶陶瓷试件并随机分为4组:A组,表面不做任何处理;B组,110 μm氧化铝颗粒喷砂;C组,上釉+氢氟酸酸蚀;D组,上釉+氢氟酸酸蚀+硅烷化。检测每组试件的表面显微形貌、粗糙度、晶相结构、元素组成、剪切粘接强度和弯曲强度,并观察剪切粘接强度测试后所有断面的断裂模式。 结果与结论:①经表面处理后的试件粗糙度明显增大,降序排列依次为C组(0.62±0.01) μm、D组(0.55±0.02) μm、B组(0.11±0.02) μm、A组(0.05±0.01) μm,5组间粗糙度比较差异有显著性意义(P < 0.05);②B组试件表面含有2.2%单斜相氧化锆,而其他组含量均为零;③除锆和氧2种元素外,B组还含有铝元素6.49%,C和D组分别含有硅元素18.67%和25.78%;④A、B、C、D组的剪切粘接强度分别为(3.11±0.40),(4.23±0.45),(6.62±0.60),(10.46±0.83) MPa,组间两两比较差异均有显著性意义(P < 0.05);⑤A、B、C和D组的三点弯曲强度分别为(961.07±75.53),(1 234.73±114.09),(1 024.28±120.51),(1 036.09±80.10) MPa,其中A、C和D组两两比较差异无显著性意义(P > 0.05),B组与A、C、D组比较差异有显著性意义(P < 0.05);⑥结果表明,上釉技术未明显提升氧化钇稳定四方相氧化锆多晶陶瓷的弯曲强度,但上釉后经氢氟酸蚀刻并硅烷化处理可显著增强氧化钇稳定四方相氧化锆多晶陶瓷与树脂水门汀之间的粘接强度。 ORCID: 0000-0002-8066-2498(徐小敏) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

12.
OBJECTIVE: This study examines the shear bond strength of visible light-curing composite resin (VCR) to aged glass fiber-reinforced composite (FRC) substrate with multi-phase polymer matrix. METHODS: Linear polymethyl methacrylate and dimethacrylate monomer preimpregnated unidirectional glass fiber reinforcement was used as an adhesion substrate for low-viscosity diacrylate veneering composite resin and restorative composite resin. A total of 60 test specimens were divided into three groups according to the brand and the use of an intermediate monomer resin (IMR). The used IMRs were either BisGMA-HEMA-resin, BisGMA-TEGDMA resin or the controls were left without the IMR treatment. Dry- and water-stored FRC-substrates were used for adhering the VCR with or without the IMR. The shear bond strength of the VCR to the substrate was measured for dry and thermocycled specimens and the results were analyzed with multi-variate ANOVA. RESULTS: The highest mean shear bond strength (23.9 +/- 4.8 MPa) was achieved with FRC/BisGMA-HEMA/VCR combination when the FRC substrate was water stored and the test specimen was thermocycled. FRC/BisGMA-TEGDMA/VCR combination resulted in 15.7 +/- 6.0 MPa with the water-stored FRC substrate and after thermocycling of the test specimens. The lowest shear bond strength (1.0 +/- 0.5 MPa) was obtained with FRC/VCR combination with water-stored substrate and after thermocycling of the test specimens. Significant differences were found between the mean values of three groups according to the use of IMR (p<0.001). The storage conditions of the FRC substrate were related to brand of the IMR or the composite (p<0.001). High mean values of the shear bond strength after thermocycling fatigue were related to the type of IMR (p<0.001). SIGNIFICANCE: The results suggest that the IMRs used in this study greatly influence the mean shear bond strength values when the test specimens are thermocycled.  相似文献   

13.
The purpose of this study was to investigate the effect of dentin primers containing microperoxidase (MP-11) with 2-hydroxyethyl methacrylate (HEMA) on the bond strength between a tri-n-butylborane-initiated self-polymerizing resin and dentin. Bovine dentin surfaces were etched with 10 wt % phosphoric acid, primed, and then bonded with stainless steel rods. Tensile bond strength after 24 h of storage in water was significantly influenced by both MP-11 and HEMA. Groups with no MP-11 showed the lowest values. Without HEMA, the bond strengths of groups using 0.01, 0.1, and 1.0 micromol/g MP-11 were statistically identical, and also greater than that of the no MP-11 control. In the presence of HEMA, the bond strength was significantly enhanced with an increasing concentration of MP-11. The highest bond strength of 29.0 MPa was obtained with aqueous HEMA primer, containing 1.0 micromol/g MP-11. Microscopic observation showed the formation of a hybrid layer at the bonded interface. Polymerization of the resin was significantly accelerated with the MP-11 primer. In conclusion, MP-11 has a potential for adhesive bonding promoter between the resin and the demineralized dentin surface.  相似文献   

14.
AIM: To compare regional bond strength in different thirds of the root canal, among glass fiber-reinforced (FRC) endodontic posts luted with different cements, using the push-out test. MATERIAL AND METHODS: Sixty extracted human anterior teeth were endodontically treated with gutta-percha and AH Plus sealer. The crown portion was removed, and a dowel space was prepared. Prepared teeth were randomly assigned to one of six groups (n = 10) for luting glass FRC Postec posts, with one of the six cement systems (Ketac Cem Aplicap, Relyx Unicem Aplicap, Variolink II/Excite DCS, Panavia F/ED Primer, C&B cement/All-Bond 2, and Multilink/Multilink Primer A/B), using an alignment technique. Specimens were embedded in resin, and each root was sectioned into six 1-mm thick serial slices. A push-out test was performed to measure regional bond strengths and to identify the type of failure. RESULTS: The highest bond strength values were found in the cervical third and the lowest in the apical third. Highest values were obtained using Variolink II, Panavia F, and Multilink resin cements followed by C&B resin cement and Relyx Unicem ionomer resin cement; Ketac-cem ionomer cement showed the lowest value. CONCLUSION: Highest bond strength values were obtained in the cervical third and with resin cements.  相似文献   

15.
背景:氧化锆陶瓷的强度和韧性均优于传统的长石瓷和氧化铝陶瓷,其双层瓷结构的弯曲强度与核心瓷/饰面瓷厚度比相关。 目的:分析不同核心瓷与饰面瓷厚度比对氧化锆双层瓷结构强度及断裂方式的影响。 方法:将完全烧结的氧化锆块切割成0.5,0.8,1.0,1.2,1.5,2.0 mm 6种不同厚度的氧化锆瓷片,除2.0 mm厚度组(对照组)外,用自制磨具在0.5,0.8,1.0,1.2,1.5 mm厚度的氧化锆瓷片上堆塑饰面瓷,使得核心瓷与饰面瓷的厚度比分别为1∶3,2∶3,1∶1,3∶2,3∶1。 结果与结论:随着核心瓷与饰面瓷厚度比的增加,氧化锆双层瓷结构强度也随之增强。除核心瓷与饰面瓷厚度比2∶3组与1∶1组、3∶2组与3∶1组间差异无显著性意义外(P > 0.05),其余组间差异均有显著性意义(P < 0.05)。核心瓷与饰面瓷厚度比为1∶3、2∶3组均出现分层,断裂碎片在3片以上,而其他4组样本未出现分层,断裂碎片多为2片。表明核心瓷/饰面瓷厚度比可显著影响氧化锆双层瓷的结构强度。  相似文献   

16.
This study examined the effect of different acidic treatments and the role of a phosphate monomer in a silane coupling agent on the durability of the dual-cure resin cement/silicon oxide bond. Ceramic blocks (Vita Celay Blanks) were cut into multiple 3 mm-thick slices and polished using 600 grit SiC paper. Two pairs were left untreated [controls (CTRL)], two pairs were treated with 40% phosphoric acid and rinsed with water for 30 s (PA), and another two pairs treated with 20% hydrofluoric acid followed by 30 s water rinsing (HF). Half the specimens were silanated with Tokuso Ceramics Primer (TCP) (Tokuyama) and the other half with TCP formulated without phosphate monomer (TCP-NoPM). All the pairs were bonded with Bistite II dual-cure resin cement (Tokuyama) and light cured. After 24 h water storage at 37 degrees C, 0.7 mm-thick slabs were serially sectioned. Immediately, after 6 months and after 1 year of water storage, two slabs were randomly selected from each subgroup, and sliced into beams (6 x 0.7 x 0.7 mm) for the microtensile bond strength (muTBS) test. The muTBS data were statistically analyzed using multiple Wilcoxon Signed Rank tests (p < 0.05). Failure modes were determined using a confocal laser-scanning microscope. Ceramic surface morphology after the different acidic treatments was examined using an SEM. After 1 day, in the case of silane treatment with TCP, there were no significant differences in muTBS between the control and acid-treated groups (p > 0.05), whereas with TCP-NoPM, the muTBS of the control was significantly lower than the acid-treated groups (p < 0.05). All the TCP and acid-treated TCP-NoPM groups exhibited significant reductions in muTBS after 6 months (p < 0.05). After 1 year, the muTBS of the acid-treated TCP groups were not significantly different from the control TCP group (p > 0.05). There was also no significant difference between the HF-treated TCP and TCP-NoPM groups (p > 0.05) after 1 year, all exhibiting greater than 10 MPa tensile bond strength. It is suggested that acidic pretreatment of the ceramic surface does not improve the durability of the dual-cure resin cement/silicon oxide ceramic bond when an acidic phosphate monomer is present as an activator in a ceramic primer.  相似文献   

17.
This study investigates the in-depth polymerization of dual-cured resin cement (Enforce; Dentsply, shades A2, B1, and opaque). Cylindrical specimens are obtained by photo-activation through ceramic. Control samples are light-cured without using ceramic. Samples are tested after 15 min or 24 h. Knoop hardness readings are made at 100, 300, 500, and 700 microm depth. Hardness is generally dependent on the mode of activation and post-cure time. Shades A2 and B1 show higher hardness values than opaque resin. Hardness at 100 microm is higher than at 700 microm. A linear relationship between hardness and depth is observed.  相似文献   

18.
BACKGROUND: Nano-hydroxyapatite as a surface modification material that is bonded to the surface of the zirconia ceramics upon sintering at high temperature can improve bone-inducing activity and bone bonding strength of the zirconia ceramics. Moreover, the sintering temperature is crucial for performance and bonding of the composite. OBJECTIVE: To detect the shear strength of nano-hydroxyapatite ceramics coating bonded to zirconia ceramics at different sintering temperatures. METHODS: Nano-hydroxyapatite slurry was prepared using sol/gel technology. Thereafter, 20 zirconium green bodies were coated with nano-hydroxyapatite slurry and randomly divided into four groups. Then, the specimens were put into non-pressure sintering furnace and sintered at 1 300, 1 400, 1 500, and 1 550 ℃, respectively. At last, we measured the shear strength of all the specimens after sintering by universal testing machine, and analyze the type of fractures. RESULTS AND CONCLUSION: With the rising of sintering temperature, the shear strength of the specimens was gradually increased, and there were significant differences between the four groups [(4.04±1.19), (6.60±0.95), (16.51±1.93), (80.47±19.31) MPa, P < 0.05]. Within the scope of 1 550 ℃, the sintering temperature was positively relative to the shear strength of specimens. These findings indicate that in the certain temperature range, the higher the sintering temperature, the greater the shear strength of the bonding interface between zirconia and nano-hydroxyapatite. When the sintering temperature is 1 550℃, the shear strength of the bonding interface is the highest.   相似文献   

19.
合金与树脂的粘接强度及影响因素   总被引:1,自引:0,他引:1  
金属树脂修复体已广泛应用于口腔修复。金属和树脂之间有良好的结合力是保证贴面树脂在口腔内发挥正常功能的先决条件,即金属树脂界面需要有理想的结合,达到一定的强度。粘接强度主要包括剪切结合强度和抗张结合强度。多种因素可能影响二者结合强度,如合金、金属表面处理、金属表面调节剂、底胶、粘接剂,粘接系统和树脂等。本文就相关研究进展作一综述。  相似文献   

20.
Endodontic access cavities sometimes can be prepared through a permanent composite restoration. Between the appointments, temporary cements are used to seal access cavities and may have negative effect on bonding of further composite restoration. The purpose of this study was to compare shear bond strength of composite to composite which had been in contact with various temporary filling materials. Standard cavities were prepared on 160 acrylic resin blocks, obturated with composite resin (Clearfil AP-X, Kuraray, Japan) and randomly divided into eight groups (n = 20). Group 1 received no treatment. From group 2-8, composite surfaces were covered with the following cements temporarily: Zinc-oxide/calcium-sulphate (Cavit-G, ESPE, Germany), two different Zinc-Oxide-Eugenol materials (ZnOE, Cavex, Holland and IRM, Dentsply, USA), Zinc-phosphate cement (Adhesor, Spofa-Dental, Germany), Zinc-polycarboxylate cement (Adhesor-Carbofine, Spofa-Dental, Germany), Glass-Ionomer-Cement (Argion-Molar, Voco, Germany), or light curing temporary material (Clip, Voco, Germany). The cements were removed mechanically after 1 week storage in distilled water at 37 degrees C and composite surfaces were treated with a self-etch adhesive system (SE-Bond, Kuraray, Japan). Composite resin build-ups were created on composite surfaces. Shear bond strength values were measured using universal testing machine at crosshead speed of 1 mm/min. The data was calculated in MPa and statistically analyzed using one-way ANOVA and Tukey tests. Eugenol-containing cements significantly reduced shear bond strengths of composite to composite (p < 0.05), while the other temporary materials had no adverse effect on shear bond strength (p > 0.05). These findings suggested that temporary filling materials except eugenol-containing materials have no negative effect on composite repair bond strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号