首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytoskeletal abnormalities with accumulation of ubiquilated inclusions in the anterior horn cells are a pathological hallmark of both familial and sporadic amyotrophic lateral sclerosis (ALS) and of mouse models for ALS. Phosphorylated neurofilaments besides ubiquitin and dorfin have been identified as one of the major components of the abnormal intracellular perikaryal aggregates. As we recently found that p38 mitogen-activated protein kinase (p38MAPK) colocalized with phosphorylated neurofilaments in spinal motor neurons of SOD1 mutant mice, a model of familial ALS, we investigated whether this kinase also contributed to the inclusions found in ALS patients and SOD1 mutant mice. Intense immunoreactivity for activated p38MAPK was observed in degenerating motor neurons and reactive astrocytes in ALS cases. The intracellular immunostaining for activated p38MAPK appeared in some neurons as filamentous skein-like and ball-like inclusions, with an immunohistochemical pattern identical to that of ubiquitin. Intracellular p38MAPK-positive aggregates containing ubiquitin and neurofilaments were also found in the spinal motor neurons of SOD1 mutant mice. Our observations indicate that activation of p38MAPK might contribute significantly to the pathology of motor neurons in ALS.  相似文献   

2.
3.
We examined the Golgi apparatus (GA) of motor neurons of patients with ALS and in mice models of ALS by immunohistological method using antiserum against MG160 and against components of the trans‐Golgi network (TGN46). The GA of half of the remaining spinal cord motor neurons of patients with sporadic ALS showed fragmentation, where the GA were dispersed or fragmented into numerous small, isolated elements. The GA of Betz cells in sporadic ALS were fragmented similar to that of anterior horn cells, and the GA of spinal cord motor neurons of those with familial ALS and of those with ALS with basophilic inclusions were fragmented or diminished. The GA in the majority of the motor neurons contained Bunina bodies, basophilic inclusions and superoxide dismutase 1 (SOD1)‐positive aggregates were fragmented. The motor neurons in transgenic mice expressing G93A mutation of the SOD1 gene showed the fragmentation of the GA months before the onset of paralysis. These findings suggest that the fragmentation of GA may be related to the neuronal degeneration in patients with ALS.  相似文献   

4.
5.
Amyotrophic lateral sclerosis (ALS) is the most common fatal motor neuron disease. It has been generally accepted that the proapoptotic property of the familial ALS (FALS)-linked mutant SOD1 genes plays an important role in the pathogenesis of some FALS cases. We found here that expression of N19S-SOD1, a novel SOD1 mutant originally found in a sporadic ALS patient, induces lower grade death in NSC34 cells than FALS-linked mutant SOD1. In agreement, intracytoplasmic aggregate formation and SOD1 polymerization are less prominently induced by ectopic expression of N19S-SOD1 than FALS-linked mutant SOD1. We further found that additional cell stresses, such as inhibition of proteasomal activity or up-regulation of intracellular oxidative stress, enhance N19S-SOD1-induced aggregate formation and polymerization of N19S-SOD1. Such analysis of the intracellular polymerization and the ubiquitination of N19S-SOD1 have further suggested that it is recognized as a misfolded protein, like FALS-linked mutant SOD1, whereas wild-type SOD1 is not. Altogether, it is speculated that the N19S mutation of SOD1 in cooperation with associated cell stresses contributes to the onset of ALS as a risk factor.  相似文献   

6.
Phosphorylated Smad2/3 (pSmad2/3), the central mediators of transforming growth factor (TGF)-beta signaling, were recently identified in tau-positive inclusions in certain neurodegenerative disorders. To clarify whether the localization of pSmad2/3 is altered in amyotrophic lateral sclerosis (ALS), we immunohistochemically examined spinal cords from sporadic ALS (SALS), from familial ALS (FALS) patients with the A4V mutation in their Cu/Zn superoxide dismutase (SOD1) gene, and from G93A mutant SOD1 transgenic (mSOD1 Tg) mice. In control spinal cords, pSmad2/3 immunoreactivity was observed exclusively in neuronal and glial nuclei. In SALS and FALS patients the nuclei showed increased immunoreactivity for pSmad2/3. Noticeably, round hyaline inclusions (RHIs) and skein-like inclusions of SALS patients were immunoreactive for pSmad2/3. Double immunofluorescence staining for pSmad2/3 and transactive response-DNA-binding protein (TDP)-43 revealed co-localization of these proteins within RHIs. In contrast, Bunina bodies in SALS and Lewy body-like hyaline inclusions (LBHIs) in FALS were devoid of labeling for pSmad2/3. Similarly, in the mSOD1 Tg mice pSmad2/3 immunoreactivity was increased in the nuclei, while LBHIs were not labeled. These findings suggest increased TGF-beta-Smad signaling in SALS, FALS, and mSOD1 Tg mice, as well as impaired TGF-beta signal transduction in RHI-bearing neurons of SALS patients, presumably at the step of pSmad2/3 translocation into the nucleus. The pathomechanisms, including the process of inclusion development, appears to be different between SALS and mSOD1-related FALS or Tg mice.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that involves mainly the motor neuron system. Five to 10 percent of the ALS cases are familial; most others are sporadic. Several mutations in the superoxide dismutase-1 (SOD1) gene have recently been shown to be associated with about 20% of familial ALS patients. The reduced enzyme activity of many mutant SOD1 points to the possibility that a loss-of-function effect of the mutant enzyme is responsible for the pathogenesis of the disease. However, this conflicts with the autosomal dominant inheritance of SOD1 mutation-associated ALS and the normal SOD1 activity in homozygous patients in a SOD1-linked ALS family. Current biochemical investigations have provided evidence that mutant SOD1 may catalyze the peroxynitrite-mediated nitration of protein tyrosine residues, release copper and zinc ions, facilitate apoptosis of neurons and have enhanced peroxidase activity. Immunocytochemical studies demonstrated the presence of intense SOD1 immunoreactivity in Lewy body-like inclusions, which are characteristic features of a certain form of familial ALS with posterior column involvement, in the lower motor neurons of patients in ALS families with different SOD1 mutations. More recently, strains of transgenic mice expressing mutant SOD1 have been established. These mice clinicopathologically develop a motor neuron disease mimicking human ALS with the exception of pronounced intraneuronal vacuolar degeneration. The overexpression of wild-type SOD1 in mice has failed to give rise to the disease. Only one transgene for mutant SOD1 is enough to cause motor neuron degeneration and the severity of clinical course correlates with the transgene copy number. These observations in SOD1-linked familial ALS and its transgenic mouse model suggest a novel neurotoxic function of mutant SOD1.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by progressive motor neuron degeneration and leads to death within a few years of diagnosis. One of the pathogenic mechanisms of ALS is proposed to be a dysfunction in the protein quality‐control machinery. Dorfin has been identified as a ubiquitin ligase (E3) that recognizes and ubiquitinates mutant SOD1 proteins, thereby accelerating their degradation and reducing their cellular toxicity. We examined the effects of human Dorfin overexpression in G93A mutant SOD1 transgenic mice, a mouse model of familial ALS. In addition to causing a decrease in the amount of mutant SOD1 protein in the spinal cord, Dorfin overexpression ameliorated neurological phenotypes and motor neuron degeneration. Our results indicate that Dorfin overexpression or the activation or induction of E3 may be a therapeutic avenue for mutant SOD1‐associated ALS. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Mutations in copper–zinc superoxide dismutase gene (SOD1) have been linked to some familial cases of ALS. We report here that rats that express a human SOD1 transgene with two different ALS‐associated mutations (G93A and H46R) develop striking motor neuron degeneration and paralysis. By comparing the two transgenic rats with different SOD1 mutations, we demonstrate that the time course in these rats was similar to human SOD1‐mediated familial ALS. As in the human disease and transgenic ALS mice, pathological analysis shows selective loss of motor neurons in the spinal cords of these transgenic rats. In addition, typical neuronal Lewy body‐like hyaline inclusions as well as astrocytic hyaline inclusions identical to those in human familial ALS are observed in the spinal cords. The larger size of this rat model as compared with the ALS mice will facilitate studies involving manipulations of spinal fluid (implantation of intrathecal catheters for chronic therapeutic studies; CSF sampling) and spinal cord (e.g., direct administration of viral‐ and cell‐mediated therapies).  相似文献   

10.
Fragmentation of the Golgi apparatus (GA) of motor neurons was first described in sporadic amyotrophic lateral sclerosis (ALS) and later confirmed in transgenic mice expressing the G93A mutation of the gene encoding the enzyme Cu,Zn superoxide dismutase (SOD1(G93A)) found in some cases of familial ALS. In these transgenic mice, however, the fragmentation of the neuronal GA was associated with cytoplasmic and mitochondrial vacuoles not seen in ALS. The present new series of transgenic mice expressing 14-17 trans gene copies of SOD1(G93A), compared to 25 copies in the mice we studied previously, showed consistent fragmentation of the GA of spinal cord motor neurons, axonal swellings, Lewy-like body inclusions in neurons and glia, but none of the cytoplasmic or mitochondrial vacuoles originally reported. Thus, this animal model recapitulates the clinical and most neuropathological findings of sporadic ALS. Neurofilaments (NF) accumulate in axons and, less often, in neuronal perikarya in most cases of sporadic ALS and they have been implicated in its pathogenesis. In order to investigate whether fragmentation of the neuronal GA also occurs in association with accumulation of perikaryal NFs, we studied the organelle in transgenic mice expressing the heavy subunit of human neurofilaments (NF-H) which developed a motor neuronopathy resembling ALS. The neuronal GA of mice expressing NF-H, however, was intact despite massive accumulation of NFs in both perikarya and axons of motor neurons. In contrast, in transgenic mice expressing SOD1(G93A), the GA was fragmented despite the absence of accumulation of perikaryal NFs. These findings suggest that, in transgenic mice with neuronopathies caused by the expression of mutant SOD1(G93A) or the human NF-H, the GA and the perikaryal NFs are independently involved in the pathogenesis. The evidence suggests that the GA plays a central role in the pathogenesis of the vast majority of sporadic ALS and in FALS with SOD1 mutations.  相似文献   

11.
For the vast majority of cases of amyotrophic lateral sclerosis (ALS) the etiology remains unknown. After the discovery of missense mutations in the gene coding for the Cu/Zn superoxide dismutase 1 (SOD1) in subsets of familial ALS, several transgenic mouse lines have been generated with various forms of SOD1 mutants overexpressed at different levels. Studies with these mice yielded complex results with multiple targets of damage in disease including mitochondria, proteasomes, and secretory pathways. Many unexpected discoveries were made. For instance, the toxicity of mutant SOD1 seems unrelated to copper-mediated catalysis but rather to formation of misfolded SOD1 species and aggregates. Transgenic studies revealed a potential role of wtSOD1 in exacerbating mutant SOD1-mediated disease. Another key finding came from chimeric mouse studies and from Cre-lox mediated gene deletion experiments which have highlighted the importance of non-neuronal cells in the disease progression. Involvement of cytoskeletal components in ALS pathogenesis is supported by several mouse models of motor neuron disease with neurofilament abnormalities and with genetic defects in microtubule-based transport. Recently, the generation of new animal models of ALS has been made possible with the discovery of ALS-linked mutations in other genes encoding for alsin, dynactin, senataxin, VAPB, TDP-43 and FUS. Following the discovery of mutations in the TARDBP gene linked to ALS, there have been some reports of transgenic mice with high level overexpression of WT or mutant forms of TDP-43 under strong gene promoters. However, these TDP-43 transgenic mice do not exhibit all pathological features the human ALS disease. Here, we will describe these new TDP-43 transgenic mice and discuss their validity as animal models of human ALS.  相似文献   

12.
Impaired axonal transport of the fast or slow component has been reported in patients with sporadic amyotrophic lateral sclerosis (ALS), animal models for ALS, and familial ALS-linked mutant Cu/Zn superoxide dismutase (SOD1) transgenic mice. However, little is known about the impairment of axonal transport in mutant SOD1 transgenic mice. This is the first electron microscopic investigation of the axon hillock (AH) and the initial segment (IS) of anterior horn cells in the spinal cord of transgenic mice expressing the G93A mutant human SOD1, and it was launched with a view toward examining whether the axonal transport is impaired in this region. Six transgenic mice were killed at ages ranging from the presymptomatic to symptomatic stages. Six age-matched non-transgenic wild-type mice served as controls. In the non-transgenic mice, 91 AH and IS were observed, but those with increased neurofilaments or mitochondria were rarely found. In the transgenic mice, 95 AH and IS directly emanating from normal-looking large anterior horn cells were seen. AH and IS with increased neurofilaments or, to a lesser extent, increased mitochondria, and round-shaped mitochondria in particular, were more frequently observed, even at the early presymptomatic stage, than in the controls, and the frequency increased with time through the presymptomatic stages. On the other hand, the somata of large motor neurons directly connected with the axons did not exhibit any abnormal accumulation of neurofilaments or mitochondria. These findings suggest that both the slow axonal transport of neurofilaments and the fast axonal transport of mitochondria are impaired in AH and IS before the onset of disease in this animal model.  相似文献   

13.
OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a common, fatal motor neuron disorder with no effective treatment. Approximately 10% of cases are familial ALS (FALS), and the most common genetic abnormality is superoxide dismutase-1 (SOD1) mutations. Most ALS research in the past decade has focused on the neurotoxicity of mutant SOD1, and this knowledge has directed therapeutic strategies. We recently identified TDP-43 as the major pathological protein in sporadic ALS. In this study, we investigated TDP-43 in a larger series of ALS cases (n = 111), including familial cases with and without SOD1 mutations. METHODS: Ubiquitin and TDP-43 immunohistochemistry was performed on postmortem tissue from sporadic ALS (n = 59), ALS with SOD1 mutations (n = 15), SOD-1-negative FALS (n = 11), and ALS with dementia (n = 26). Biochemical analysis was performed on representative cases from each group. RESULTS: All cases of sporadic ALS, ALS with dementia, and SOD1-negative FALS had neuronal and glial inclusions that were immunoreactive for both ubiquitin and TDP-43. Cases with SOD1 mutations had ubiquitin-positive neuronal inclusions; however, no cases were immunoreactive for TDP-43. Biochemical analysis of postmortem tissue from sporadic ALS and SOD1-negative FALS demonstrated pathological forms of TDP-43 that were absent in cases with SOD1 mutations. INTERPRETATION: These findings implicate pathological TDP-43 in the pathogenesis of sporadic ALS. In contrast, the absence of pathological TDP-43 in cases with SOD1 mutations implies that motor neuron degeneration in these cases may result from a different mechanism, and that cases with SOD1 mutations may not be the familial counterpart of sporadic ALS.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a conformational disease in which misfolding and aggregation of proteins such as SOD1 (familial ALS) and TDP-43 (sporadic ALS) are central features. The conformations adopted by such proteins within motor neurons in affected patients are not well known. We have developed a novel conformation-specific antibody (USOD) targeted against SOD1 residues 42–48 that specifically recognizes SOD1 in which the beta barrel is unfolded. Use of this antibody, in conjunction with the previously described SEDI antibody that recognizes the SOD1 dimer interface, allows a detailed investigation of the in vivo conformation of SOD1 at the residue-specific level. USOD and SEDI immunohistochemistry of spinal cord sections from ALS cases resulting from SOD1 mutations (A4V and ΔG27/P28) shows that inclusions within remaining motor neurons contain SOD1 with both an unfolded beta barrel and a disrupted dimer interface. Misfolded SOD1 can also be immunoprecipitated from spinal cord extracts of these cases using USOD. However, in ten cases of sporadic ALS, misfolded SOD1 is not detected by either immunohistochemistry or immunoprecipitation. Using the amyloid-specific dyes, Congo Red and Thioflavin S, we find that SOD1-positive inclusions in familial ALS, as well as TDP-43- and ubiquitin-positive inclusions in sporadic ALS, contain non-amyloid protein deposits. We conclude that SOD1 misfolding is not a feature of sporadic ALS, and that both SOD1-ALS and sporadic ALS, rather than being amyloid diseases, are conformational diseases that involve amorphous aggregation of misfolded protein. This knowledge will provide new insights into subcellular events that cause misfolding, aggregation and toxicity.  相似文献   

15.
The causes of motor neuron death in amyotrophic lateral sclerosis (ALS) are still unknown. Several lines of evidence suggest that mitochondrial dysfunction may be involved in the pathogenesis of ALS. Biochemical and morphological mitochondrial abnormalities have been demonstrated in postmortem spinal cords of ALS patients. Furthermore, in transgenic mice expressing mutant Cu,Zn-superoxide dismutase (SOD1), the antioxidant enzyme associated with familial ALS (FALS), mitochondrial abnormalities precede the disease onset, suggesting that mitochondrial dysfunction is causally involved in the pathogenesis of SOD1-FALS. Despite this evidence, it is not yet fully understood how mutant SOD1 damages mitochondria. Recent work has demonstrated that a portion of mutant SOD1 is localized in mitochondria, both in transgenic mice and in FALS patients, where it forms proteinaceous aggregates. These findings have opened new avenues of investigation addressing the hypothesis that mutant SOD1 may directly damage mitochondria. Major future challenges will be to better understand the mechanisms and the consequences of mitochondrial dysfunction in ALS. If mitochondrial dysfunction is convincingly involved in ALS pathogenesis, either as a primary cause or as contributing factor, it is likely to become a novel target for therapeutic intervention.  相似文献   

16.
The copper chaperone for superoxide dismutase (CCS) interacts with Cu/Zn-binding superoxide dismutase 1 (SOD1) specifically and delivers copper to SOD1. To determine the role of the CCS-SOD1 interaction in the pathogenesis of SOD1-mutated familial amyotrophic lateral sclerosis (FALS) patients, we produced an affinity-purified rabbit antibody against CCS and investigated the immunohistochemical localization of both CCS and SOD1 in neuronal Lewy body-like hyaline inclusions (LBHIs) in the spinal cords of two FALS patients with a two-base pair deletion at codon 126 in the SOD1 gene and three FALS patients with an Ala to Val substitution at codon 4. The LBHIs in anterior horn cells from the five FALS patients showed identical immunoreactivities for CCS: the reaction product deposits with the antibody against CCS were generally restricted to the periphery of the core and halo-type LBHIs. The localizations of the immunoreactivities for CCS and SOD1 were similar in the inclusions: both CCS and SOD1 colocalized in neuronal LBHIs in the five mutant SOD1-linked FALS patients. Our results suggest that the specific interaction and aggregation of CCS-SOD1 (probably CCS-mutant SOD1) in SOD1-mutated FALS patients may amplify the formation of inclusions and emphasize a more marked mutant SOD1-mediated toxicity.  相似文献   

17.
The combination of Ca(2+) influx during neurotransmission and low cytosolic Ca(2+) buffering contributes to the preferential vulnerability of motor neurons in amyotrophic lateral sclerosis (ALS). This study investigated the relationship among Ca(2+) accumulation in intracellular compartments, mitochondrial abnormalities, and protein aggregation in a model of familial ALS (fALS1). Human SOD1, wild type (SOD1(WT)) or with the ALS-causing mutation G93A (SOD1(G93A)), was expressed in motor neurons of dissociated murine spinal cord-dorsal root ganglia (DRG) cultures. Elevation of mitochondrial Ca(2+) ([Ca(2+)](m)), decreased mitochondrial membrane potential (Δψ) and rounding of mitochondria occurred early, followed by increased endoplasmic reticular Ca(2+) ([Ca(2+)](ER)), elevated cytosolic Ca(2+) ([Ca(2+)](c)), and subsequent appearance of SOD1(G93A) inclusions (a consequence of protein aggregation). [Ca(2+)](c) was elevated to a greater extent in neurons with inclusions than in those with diffusely distributed SOD1(G93A) and promoted aggregation of mutant protein, not vice versa: both [Ca(2+)](c) and the percentage of neurons with SOD1(G93A) inclusions were reduced by co-expressing the cytosolic Ca(2+)-buffering protein, calbindin D-28K; treatment with the heat shock protein inducer, geldanamycin, prevented inclusions but not the increase in [Ca(2+)](c), [Ca(2+)](m) or loss of Δψ, and inhibiting proteasome activity with epoxomicin, known to promote aggregation of disease-causing mutant proteins including SOD1(G93A), had no effect on Ca(2+) levels. Both expression of SOD1(G93A) and epoxomicin-induced inhibition of proteasome activity caused mitochondrial rounding, independent of Ca(2+) dysregulation and reduced Δψ. That geldanamycin prevented inclusions and mitochondrial rounding, but not Ca(2+) dysregulation or loss of Δψ indicates that chaperone-based therapies to prevent protein aggregation may require co-therapy to address these other underlying mechanisms of toxicity.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative syndrome with familial and sporadic forms. Most ALS-associated mutations are found in the superoxide dismutase 1 ( SOD1 ) gene. We conducted a study including 60 sporadic and 19 familial ALS patients, 206 reference patients with other neurological disorders and 40 age- and sex-matched healthy controls to test the hypothesis that cerebrospinal fluid (CSF) levels of neurofilament light (NF-L) protein, a marker of axonal degeneration, might provide diagnostic and prognostic information on the disease. All ALS patients were screened for SOD1 mutations. Ten of the familial and five of the sporadic cases carried SOD1 mutations. NF-L concentration [median (range)] was strongly elevated in ALS [2110 (255–10 800) ng/l] compared with reference patients and healthy controls [277 (<125–15 506) and 175 (<125–710) ng/l, respectively, P  < 0.001] and correlated inversely with disease duration (Spearman R  = −0.518, P  = 0.001). NF-L levels were lower in SOD1 mutation-associated ALS compared with SOD1 wild-type (wt) ALS ( P  = 0.03). In conclusion, CSF NF-L levels may provide both diagnostic and prognostic information, particularly in SOD1 wt ALS.  相似文献   

19.
Transgenic mice that express the G93A mutation of human Cu,Zn superoxide dismutase (SOD1(G93A)), found in familial amyotrophic lateral sclerosis (FALS), showed clinical symptoms and histopathological changes of sporadic ALS, including fragmentation of the neuronal Golgi apparatus (GA). The finding of fragmented neuronal GA in asymptomatic mice, months before the onset of paralysis, suggests that the GA is an early target of the pathological processes causing neuronal degeneration. Transgenic mice expressing human SOD1(G93A) have aggregates of mutant protein and ubiquitin in neuronal and glial cytoplasm; they appeared first in the neuropil and later in the perikarya of motor neurons, where they were adjacent to fragmented GA. The aggregates of SOD1(G93A) appeared in neuronal perikarya of asymptomatic mice containing fragmented GA. The numbers of neurons with deposits of SOD1(G93A) and fragmented GA progressively increased with age. Immuno-electron microscopy using colloidal gold showed labeling of ubiquitin and SOD1 over 13 nm thick cytoplasmic filaments. Spinal cord extracts showed a 20-fold increase of SOD1(G93A) in transgenic mice compared to the wild-type protein in controls. The results suggest a causal relationship between the aggregation of mutant SOD1 and ubiquitin, fragmentation of the Golgi apparatus of motor neurons and neurodegeneration.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. The cause of motor neuron degeneration remains largely unknown, and there is no potent treatment. Overexpression of various human mutant superoxide dismutase-1 (SOD1) genes in mice and rats recapitulates some of the clinical and pathological characteristics of sporadic and familial ALS. Glatiramer acetate (GA) is an approved drug for the treatment of multiple sclerosis and neuroprotective properties in some neurodegenerative conditions. A recent report suggested that GA immunization could delay disease progression in some, but not all, G93A SOD1 transgenic mouse models of amyotrophic lateral sclerosis (ALS). Moreover, it has been theorized that derivatives of GA could enhance immunogenicity and positively affect disease outcomes. The purpose of our study was to assess the neuroprotective efficacy of TV-5010, a high molecular weight GA, in three different SOD1 mutant mouse models. We used large numbers of two SOD1 transgenic mouse strains overexpressing the G93A mutation, B6SJL-TgN[SOD1-G93A]1Gur and B6.Cg-Tg(SOD1-G93A)1Gur/J, and the SOD1 mutant mouse overexpressing G37R (line 29). Regardless of the frequency of injections and the dose, treatment with TV-5010 was ineffective at altering either disease onset or survival in both SOD1 G93A mutants used and in the SOD1 G37R transgenic mice; in multiple studies, disease was accelerated. These studies suggest that, at a range of dosing regimens and carrier used, TV-5010 immunization was ineffective in delaying disease in multiple preclinical therapeutic models for ALS. The biological response in animals, and ultimate clinical translation, will ultimately be dependent on careful and appropriate dose, route and carrier paradigms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号