首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: The purpose of this study was to compare the surface hardness of a hybrid composite resin polymerized with different curing lights. METHODS AND MATERIALS: Two 3.0 mm thick composite resin discs were polymerized in a prepared natural tooth mold using: (1) a conventional quartz-tungsten halogen light (QTH- Spectrum 800); (2) a high-intensity halogen light, Elipar Trilight (TL)-standard/exponential mode; (3) a high-intensity halogen light, Elipar Highlight (HL)-standard/soft-start mode; (4) a light-emitting diode, Elipar Freelight (LED); and (5) a plasma-arc curing light, Virtuoso (PAC). Exposure times were 40 seconds for the halogen and LED lights, and three and five seconds for the PAC light. Following polymerization, the Knoop hardness was measured at the bottom and the top surfaces of the discs. RESULTS: Significant differences were found between top and bottom Knoop Hardness number (KHN) values for all lights. The hardness of the top and bottom surfaces of both specimens cured by the PAC light was significantly lower than the other lights. No significant hardness differences were observed between the remaining curing units at the top of the 2.0 mm specimens. Significant differences were found between the LED and two modes of HL on the bottom surfaces. For the 3.0 mm thick samples, while significant differences were noted between LED and TL standard mode and between the two TL curing modes on the top, significant differences were only observed between QTH and the standard modes of TL and HL at the bottom.  相似文献   

2.
This study compared the effectiveness of cure of two LED (light-emitting diodes) lights (Elipar FreeLight [FL], 3M-ESPE and GC e-Light [EL], GC) to conventional (Max [MX] (control), Dentsply-Caulk), high intensity (Elipar TriLight [TL], 3M-ESPE) and very high intensity (Astralis 10 [AS], Ivoclar Vivadent) halogen lights at varying cavity depths. Ten light curing regimens were investigated. They include: FL1-400 mW/cm2 [40 seconds], FL2-0-400 mW/cm2 [12 seconds] --> 400 mW/cm2 [28 seconds], EL1-750 mW/cm2 [10 pulses x 2 seconds], EL2-350 mW/cm2 [40 seconds], EL3-600 mW/cm2 [20 seconds], EL4-0-600 mW/cm2 [20 seconds] --> 600 mW/cm2 [20 seconds], TL1-800 mW/cm2 [40 seconds], TL2-100-800 mW/cm2 [15 seconds] --> 800 mW/cm2 [25 seconds], AS1-1200 mW/cm2 [10 seconds], MX-400 mW/cm2 [40 seconds]. The effectiveness of cure of the different modes was determined by measuring the top and bottom surface hardness (KHN) of 2-mm, 3-mm and 4-mm thick composite (Z100, [3M-ESPE]) specimens using a digital microhardness tester (n = 5, load = 500 g; dwell time = 15 seconds). Results were analyzed using ANOVA/Scheffe's post-hoc test and Independent Samples t-Test (p < 0.05). For all lights, effectiveness of cure was found to decrease with increased cavity depths. The mean hardness ratio for all curing lights at a depth of 2 mm was found to be greater than 0.80 (the accepted minimum standard). At 3 mm, all halogen lights produced a hardness ratio greater than 0.80 but some LED light regimens did not; and at a depth of 4 mm, the mean hardness ratio observed with all curing lights was less than 0.80. Significant differences in top and bottom KHN values were observed among different curing regimens for the same light and between LED and halogen lights. While curing with most modes of EL resulted in significantly lower top and bottom KHN values than the control (MX) at all depths, the standard mode of FL resulted in significantly higher top and bottom KHN at a depth of 3 mm and 4 mm. The depth of composite cure with LED LCUs was, therefore, product and mode dependent.  相似文献   

3.
The purpose of this study was to compare the thermal emission and curing efficiency of LED (LEDemetron 1, SDS/Kerr) and QTH (VIP, BISCO) curing lights at maximum output and similar power, power density and energy density using the same light guide. Also, another LED curing light (Allegro, Den-Mat) and the QTH light at reduced power density were tested for comparison. Increase in temperature from the tips of the light guides was measured at 0 and 5 mm in air (23 degrees C) using a temperature probe (Fluke Corp). Pulpal temperature increase was measured using a digital thermometer (Omega Co) and a K-type thermocouple placed on the central pulpal roof of human molars with a Class I occlusal preparation. Measurements were made over 90 seconds with an initial light activation of 40 seconds. To test curing efficiency, resin composites (Z100, A110, 3M/ESPE) were placed in a 2-mm deep and 8-mm wide plastic mold and cured with the LED and QTH curing lights at 1- and 5-mm curing distances. Knoop Hardness Numbers (KHN) were determiped on the top and bottom surfaces (Leco). Bottom hardness values were expressed as a percentage of maximum top hardness. No significant differences were found in maximum thermal emission or KHN ratios between the LED (LEDemetron 1) and the QTH (VIP) at maximum output and similar energy densities (ANOVA/Tukey's; alpha=0.05).  相似文献   

4.
This study compared the effectiveness of cure of two LED (light-emitting diodes) lights (Elipar FreeLight [FL], 3M-ESPE; GC e-Light [EL], GC) to conventional (Max [MX], Dentsply-Caulk [control]), high intensity (Elipar TriLight [TL], 3M-ESPE) and very high intensity (Astralis 10 [AS], Ivoclar Vivadent) halogen lights. The 10 light-curing regimens investigated were: FL1 400 mW/cm2 [40 seconds], FL2 0-400 mW/cm2 [12 seconds] --> 400 mW/cm2 [28 seconds], EL1 750 mW/cm2 [10 pulses x 2 seconds], EL2 350 mW/cm2 [40 seconds], EL3 600 mW/cm2 [20 seconds], EL4 0-600 mW/cm2 [20 seconds] --> 600 mW/cm2 [20 seconds], TL1 800 mW/cm2 [40 seconds], TL2 100-800 mW/cm2 [15 seconds] --> 800 mW/cm2 [25 seconds], AS1 1200 mW/cm2 [10 seconds], MX 400 mW/cm2 [40 seconds]. Effectiveness of cure with the different modes was determined by measuring the top and bottom surface hardness (KHN) of 2-mm thick composite (Z100, [3M-ESPE]) specimens using a digital microhardness tester (n=5, load=500 g; dwell time=15 seconds). Results were analyzed using one-way ANOVA/Scheffe's post-hoc test and Independent Samples t-test (p<0.05). At the top surface, the mean KHN observed with LED lights ranged from 55.42 +/- 1.47 to 68.54 +/- 1.46, while that of halogen lights was 62.64 +/- 1.87 to 73.14 +/- 0.97. At the bottom surface, the mean KHN observed with LED and halogen lights ranged from 46.90 +/- 1.73 to 66.46 +/- 1.18 and 62.26 +/- 1.93 to 70.50 +/- 0.87, respectively. Significant differences in top and bottom KHN values were observed between different curing regimens for the same light, and between LED and halogen lights. Although curing with most modes of EL resulted in significantly lower top and bottom KHN values than the control, no significant difference was observed for the different modes of FL. Hence, the effectiveness of composite cure with LED LCUs is product dependent.  相似文献   

5.
Composite resin is a widely-used direct tooth coloured restorative material. Photoactivation of the polymerisation reaction can be achieved by visible blue light from a range of light sources, including halogen lamps, metal halide lamps, plasma arc lamps, and Light Emitting Diode (LED) lights. Concerns have been raised that curing lights may induce a temperature rise that could be detrimental to the vitality of the dental pulp during the act of photoactivation. The present study examined heat changes associated with standardised class V restorations on the buccal surface of extracted premolar teeth, using a curing time of 40 seconds. The independent effects of type of light source, resin shade, and remaining tooth thickness were assessed using a matrix experimental design. When a conventional halogen lamp, a metal halide lamp and two different LED lights were compared, it was found that both LED lamps elicited minimal thermal changes at the level of the dental pulp, whereas the halogen lamp induced greater changes, and the metal halide lamp caused the greatest thermal insult of all the light sources. These thermal changes were influenced by resin shade, with different patterns for LED versus halogen or halide sources. Thermal stress reduced as the remaining thickness of tooth structure between the pulp and the cavity floor increased. From these results, it is concluded that LED lights produce the least thermal insult during photopolymerisation of composite resins.  相似文献   

6.
Purpose: This study evaluated the curing efficiency of light-emitting diode (LED) and halogen [quartz tungsten halogens (QTH)] lights through ceramic by determining the surface microhardness of a highly filled resin cement.
Materials and Methods: Resin cement specimens (Variolink Ultra; with and without catalyst) (5-mm diameter, 1-mm thick) were condensed in a Teflon mold. They were irradiated through a ceramic disc (IPS Empress 2, diameter 5 mm, thickness 2 mm) by high-power light-curing units as follows: (1) QTH for 40 seconds (continuous), (2) LED for 20 seconds, and (3) LED for 40 seconds (5-second ramp mode). The specimens in control groups were cured under a Mylar strip. Vickers microhardness was measured on the top and bottom surfaces by a microhardness tester. Data were analyzed using analysis of variance (ANOVA) and a post hoc Bonferroni test at a significance level of p < 0.05.
Results: The mean microhardness values of the top and bottom surfaces for the dual-cured cement polymerized beneath the ceramic by QTH or LED (40 seconds) were significantly higher than that of light-cured cement ( p < 0.05). The top and bottom surface microhardness of dual-cured cement polymerized beneath the ceramic did not show a statistically significant difference between the LED and QTH for 40 seconds ( p > 0.05).
Conclusions: The efficiency of high-power LED light in polymerization of the resin cement used in this study was comparable to the high-power QTH light only with a longer exposure time. A reduced curing time of 20 seconds with high-power LED light for photopolymerizing the dual-cured resin cement under ceramic restorations with a minimum 2-mm thickness is not recommended.  相似文献   

7.
Despite good clinical acceptance, photoinitiating systems based on camphorquinone and amines raise concerns in terms of yellowing, aging, toxicity, or degradation in low pH conditions. This study aimed to prove whether CQ could be successfully replaced by alternative initiators in adhesive systems. Further, the efficiency of a prototype dual-wavelength LED (= Light Emitting Diode) curing unit was analyzed. In two commercial adhesive systems, CQ was completely replaced by Lucirin TPO. The commercial adhesives and their experimental counterparts were evaluated after curing for 10 seconds and 20 seconds with two dual-wavelength LED units and one regular LED unit, by applying the curing unit on the adhesive surface at two distances of 0 mm and 5 mm. Degree of cure and mechanical properties (Vickers hardness and modulus of elasticity) were assessed after 24-hour storage in distilled water at 37 degrees C. Experimental data showed that the CQ-amine system could be completely replaced by Lucirin TPO when dual-wavelength LED unit was used for photoactivation.  相似文献   

8.
This study compared the cure and pulp-cell cytotoxicity of composites polymerized with light-emitting diode (LED) and halogen-based light curing units. A mini-filled resin composite (Tetric Ceram, Vivadent), two LED (E-light [EL], GC and Freelight [FL], 3M-ESPE), a conventional halogen (Max [MX], Dentsply) and a high-intensity halogen light (Astralis 10 [AS], Vivadent) were evaluated. Cure associated with the different lights was determined by measuring the top and bottom surface hardness (KHN; n = 5) of 2-mm thick specimens using a digital microhardness tester (load = 500 gf; dwell time = 15 seconds). Pulp-cell cytotoxicity was assessed using a direct contact method involving incisor tooth slices dissected from 28-day old Wistar rats maintained in Dulbecco's Modified Eagle's Medium (DMEM) and 1% agarose. The bottom surfaces of the cured composite specimens (7-mm diameter and 2-mm deep) were placed in contact with the openings of each tooth slice. After incubation in 5% CO2 atmosphere at 37 degrees C for 48 hours, the tooth slices were fixed, demineralized and processed for histological examination. Pulp fibroblasts and odontoblasts were counted histomorphometrically at 400x magnification within a 1500 microm2 area using a computerized micro-imaging system. Eighteen readings were obtained for each curing light. Data was subjected to ANOVA/Scheffe's test and Pearson's correlation at significance level 0.05 and 0.01, respectively. At the top surfaces, the cure with AS was significantly greater than the other curing lights, with MX and FL being significantly greater than EL. At the bottom surfaces, MX, AS and FL had significantly better cure than EL. Specimens cured with MX were less cytotoxic than those polymerized with other curing lights. Specimens cured with AS and EL were significantly less cytotoxic than FL. Composite cure and cytotoxicity associated with LED lights is device dependent. Composite cure was not correlated to pulp-cell cytotoxicity. The response of pulpal fibroblasts to unreacted/leached components of composites differs somewhat from odontoblasts.  相似文献   

9.
This study compared 3 light-emitting diode curing lights (UltraLume 5, FreeLight 2, LEDemetron I) with a quartz-tungsten-halogen light (Optilux 401) to determine which was the better at photopolymerizing 5 resin composites. The composites were 2 mm thick and were irradiated for the manufacturers' recommended curing times at distances of 2 mm and 8 mm from the light guide. The Knoop hardness at each of 22 points over a 10-mm diameter footprint at the top and bottom of the composites was used to compare the lights. The 4 curing lights and irradiation distances did not have the same effect on all the composites (P < .001). It was concluded that overall the UltraLume 5 dual peak third generation LED curing light was able to polymerize these 5 resin composites as well as or better than the other curing lights.  相似文献   

10.
The aim of this study was to evaluate the degree of conversion (DC) of two lingual retainer adhesives, Transbond Lingual Retainer (TLR) and Light Cure Retainer (LCR), cured with a fast halogen light, a plasma arc light and a light-emitting diode (LED) at various curing times. A conventional halogen light served as the control.One hundred adhesive samples (five per group) were cured for 5, 10 or 15 seconds with an Optilux 501 (fast halogen light), for 3, 6 or 9 seconds with a Power Pac (plasma arc light), or for 10, 20 or 40 seconds with an Elipar Freelight (LED). Samples cured for 40 seconds with the conventional halogen lamp were used as the controls. Absorbance peaks were recorded using Fourier transform infrared (FT-IR) spectroscopy. DC values were calculated. Data were analysed using Kruskal-Wallis and Mann-Whitney U-tests.For the TLR, the highest DC values were achieved in 6 and 9 seconds with the plasma arc light. Curing with the fast halogen light for 15 seconds and with the LED for 40 seconds produced statistically similar DC values, but these were lower than those with the plasma arc light. All of these light exposures yielded a statistically significantly higher DC than 40 seconds of conventional halogen light curing. The highest DC value for the LCR was achieved in 15 seconds with the fast halogen light, then the plasma arc light curing for 6 seconds. These two combinations produced a statistically significantly higher DC when compared with the 40 seconds of conventional halogen light curing. The lowest DC for the LCR was achieved with 10 seconds of LED curing. The overall DC of the LCR was significantly higher than that of the TLR.The results suggest that a similar or higher DC than the control values could be achieved in 6-9 seconds by plasma arc curing, in 10-15 seconds by fast halogen curing or in 20 seconds by LED curing.  相似文献   

11.
ABSTRACT: Purpose: The purpose of this study was to compare the curing efficiency of three commercially available light‐emitting diode (LED)‐based curing lights with that of a quartz tungsten halogen (QTH) curing light by means of hardness testing. In addition, the power density (intensity) and spectral emission of each LED light was compared with the QTH curing light in both the 380‐to 520‐nm and the 450‐ to 500‐nm spectral ranges. Materials and Methods: A polytetrafluoroethylene mold 2 mm high and 8 mm in diameter was used to prepare five depth‐of‐cure test specimens for each combination of exposure duration, composite type (Silux Plus [microfill], Z‐100 [hybrid]), and curing light (ZAP Dual Curing? Light, LumaCure?, VersaLux?, Optilux 401?). After 24 hours, Knoop hardness measurements were made for each side of the specimen, means were calculated, and a bottom/top Knoop hardness (B/T KH) percentage was determined. A value of at least 80% was used to indicate satisfactory polymerization. A linear regression of B/T KH percentage versus exposure duration was performed, and the resulting equation was used to predict the exposure duration required to produce a B/T KH percentage of 80% for the test conditions. The power densities (power/unit area) of the LED curing lights and the QTH curing light (Optilux 401?) were measured 1 mm from the target using a laboratory‐grade, laser power meter in both the full visible light spectrum range (380–780 nm) and the spectral range (between 450 and 500 nm), using a combination of long‐ and short‐wave edge filters. Results: The emission spectra of the LED lights more closely mirrored the absorption spectrum of the commonly used photoinitiator camphorquinone. Specifically, 95% of the emission spectrum of the VersaLux, 87% of the LumaCure, 84% of the ZAP LED, and 78% of the ZAP combination LED and QTH fell between 450 and 500 nm. In contrast, only 56% of the emission spectrum of the Optilux 401? halogen lamp fell within this range. However, the power density between 450 and 500 nm was at least four times greater for the halogen lamp than for the purely LED lights. As I a result, the LED‐based curing lights required from 39 to 61 seconds to cure a 2‐mm thick hybrid I resin composite and between 83 and 131 seconds to adequately cure a microfill resin composite. By I comparison, the QTH light required only 21 and 42 seconds to cure the hybrid and microfill resin I composites, respectively.  相似文献   

12.
INTRODUCTION: Recent studies have suggested that a 10-second cure time with a high-energy quartz-tungsten-halogen (QTH) or a light-emitting diode (LED) light might be adequate when bonding orthodontic brackets to tooth enamel. The purpose of this study was to evaluate the ability of the latest generation of QTH and LED light-curing units (LCUs) to bond orthodontic brackets to teeth at decreased polymerization times. METHODS: Two LED LCUs (Ortholux LED, 3M Unitek, Monrovia, Calif; UltraLume LED 5, Ultradent Products, South Jordan, Utah) and a QTH LCU (Optilux 501, Demetron, Danbury, Conn) were evaluated. One hundred eighty metal orthodontic brackets were bonded to extracted human molars. The specimens were divided into 9 groups (3 lights and 3 curing times) of 20 teeth each. Each group was cured with 1 of the 3 lights for 20, 10, or 6 seconds. Thirty minutes after polymerization, the specimens were subjected to shear force on a universal testing machine until bracket failure. RESULTS: Two-way ANOVA detected significant differences among the main effects of light type and cure time. Tukey post-hoc tests determined that brackets bonded by all light types had lower bond strengths with the 6-second cure than the 20-second cure (P < .001). The highest bond strengths were obtained with the Optilux 501 QTH LCU and the UltraLume LED 5 LCU at the longest cure time of 20 seconds. CONCLUSIONS: It is recommended that orthodontic brackets be photopolymerized for at least 20 seconds with the QTH or the LED LCU before the archwires are engaged.  相似文献   

13.
This study investigated the effectiveness of polymerization of various curing regimes on five nanocomposite restorative materials—Z350, Grandio, Clearfil Majesty Esthetic, Ice and Tetric EvoCeram—by utilizing microhardness measurements. Five (n=5) disc-shaped specimens of each material were subjected to one of three curing regimes: curing with a halogen light for 20 seconds, curing with an LED light for 20 seconds and curing with an LED light for 10 seconds. Immediately following curing, hardness measurements were made with a Vickers indenter at five different locations on both the top and bottom surfaces of each disc. The mean for each surface was calculated. Data were analyzed using a one-way ANOVA and post-hoc Tukey HSD (α=0.05). The results demonstrated that among the Z350 composite samples, top and bottom microhardness values showed no statistical differences when cured with the halogen 20 second or LED 20 second regimes (p>0.05). Comparison of the top and bottom values of discs cured with the LED 10 second regime demonstrated significant differences (p<0.0001). Grandio samples cured with the halogen 20 second regime showed no statistical differences between top and bottom microhardness values (p>0.05); however, the bottom values of Grandio discs cured with the LED 20 second and 10 second regimes were significantly lower when compared with top surface values (p=0.001 and p<0.0001, respectively). Clearfil Majesty Esthetic, Ice and Tetric Evo Ceram samples cured with the halogen 20 second regime produced significantly lower bottom microhardness values, while both LED regimes produced top and bottom surfaces that were statistically comparable. The conclusion may be drawn that LED 10 second curing regimes were insufficient to cure Z350 and Grandio, while they were adequate for curing Clearfil Majesty Esthetic, Ice and Tetric EvoCeram.  相似文献   

14.
The new generation LED curing light units have significantly improved curing performance compared to first generation lights, and even some second generation LED curing light units. This study compared the curing performance of 10 new generation LED light curing units (FLASH-lite 1401, LE Demetron 1, Coltolux, Ultra-Lume 5, Mini LED, bluephase, Elipar FreeLight 2, Radii, Smartlite IQ and Allegro) for depth of cure against a high-powered halogen curing light unit (Optilux 501). Depth of cure measurements were utilized per the ANSI/ADA No 27 standard to detect differences between the lights at three time intervals (10, 20 and 40 seconds). A total of 660 samples were prepared (n=10/group). A full factorial ANOVA and Tukey's HSD test showed FLASH-lite 1401 performed significantly better than the other lights at 10- and 20-second time intervals (p<0.01). This study also demonstrated that an exposure time of 20 seconds or longer assures a better depth of cure, 40 seconds being the optimal polymerization time for all of the curing light units.  相似文献   

15.
The purpose of this study was to measure and compare the hardness of a light-cured luting resin cured under different shades and thicknesses of porcelain with a halogen and a light-emitting diode (LED) light. Square (11 mm x 11 mm) specimens of a commercially available porcelain with thicknesses of 1 mm and 2 mm were fabricated. Two shades of porcelain--A1 representing a high-value, low-chroma porcelain and C4 representing a low-value, high-chroma porcelain--were used to fabricate specimens. Composite luting resin, 0.5 mm in thickness, was placed under each porcelain specimen and light-cured for 30 or 60 seconds with LED or halogen light. The degree of polymerization of resin cement was determined by measuring the microhardness. The control group in this study was a 0.5-mm composite luting resin cured under clear Mylar matrix. No significant differences were recorded between surface hardness of control subgroups and LED subgroups cured for 30 or 60 seconds. A lower hardness value was recorded for 2-mm C4 porcelain cured for 30 and 60 seconds with the halogen light. Although a cumulative comparison of surface hardness revealed similar results for both lights, the LED light provided more consistent results than the halogen light.  相似文献   

16.
With the introduction of photosensitive (light-cured) restorative materials in dentistry, various methods were suggested to enhance their polymerization and to shorten the curing time including layering and the use of more powerful light-curing devices. The purpose of this study was to determine the effect of using a new light-curing apparatus that uses a light-emitting diode (LED) on the shear bond strength of an orthodontic adhesive. The new light-curing apparatus used in the study was UltraLume 2 (Ultradent USA, South Jordan, Utah) that has an 8-mm footprint and can simultaneously cure two orthodontic brackets. Forty teeth were etched with 37% phosphoric acid, washed and dried, and sealant applied, and then precoated brackets with the Transbond adhesive (APC II, 3M Unitek, Monrovia, Calif) were placed. The teeth were randomly divided into two groups according to the curing light used. In group I (control), 20 brackets were cured using an Ortholux (3M Unitek) halogen curing light for 20 seconds. In group II, 20 brackets were cured using the new LED light for 20 seconds. The findings indicated no significant (P = .343) differences in the shear bond strength between the Ortholux halogen light (5.1 +/- 2.5 MPa) and the UltraLume 2 LED light when the two groups were compared using Student's t-test (t = -0.961). In conclusion, the advantages of the new unit include the ability to cure two brackets at a time and a smaller light-emitting apparatus for the clinician to handle.  相似文献   

17.
The aim of this study was to assess Knoop hardness at different depths of a dual-cured self-adhesive resin cement through different thicknesses of Empress Esthetic? ceramic.Flattened bovine dentin was embedded in resin. The cement was inserted into a rubber mold (0.8 x 5 mm) that was placed between two polyvinyl chloride plastic films and placed over the flat dentin and light cured by Elipar Trilight-QTH (800 mW/cm2) or Ultra-Lumelight-emitting diode (LED 5; 1585 mW/cm2) over ceramic disks 1.4 or 2 mm thick. The specimens(n=6) were stored for 24 hours before Knoop hardness (KHN) was measured. The data were submitted to analysis of variance in a factorial split-plot design and Tukey's test (a=0.05).There was significant interaction among the study factors. In the groups cured by the QTHunit, an increase in ceramic thickness resulted in reduced cement hardness values at all depths, with the highest values always being found in the center (1.4 mm, 58.1; 2 mm, 50.1)and the lowest values at the bottom (1.4 mm,23.8; 2 mm, 20.2). When using the LED unit, the hardness values diminished with increased ceramic thickness only on the top (1.4 mm,51.5; 2 mm, 42.3). In the group with the 1.4-mm-thick disk, the LED curing unit resulted in similar values on the top (51.5) and center(51.9) and lower values on the bottom (24.2).However, when the cement was light cured through the 2-mm disk, the highest hardness value was obtained in the center (51.8), followed by the top (42.3) and bottom (19.9),results similar to those obtained with the QTH curing unit (center > top > bottom). The hardness values of the studied cement at different depths were dependent on the ceramic thickness but not on the light curing units used.  相似文献   

18.
PURPOSE: To evaluate the depth of cure and surface hardness of two resin composites when subjected to three preheating temperatures, three polymerization times and two types of curing lights. METHODS: Two resin composites were used in this study (Esthet-X and TPH), three polymerization times (10, 20, 40 seconds), three preheating temperatures (70, 100, 140 degrees F/21.1, 37.7 and 60 degrees C), and two curing lights (halogen and LED). For depth of cure measurements, 180 specimens (4 mm in diameter and 2 mm in depth) were made for 36 combinations of variables. Four Knoop hardness measurements were obtained from both the top and bottom surfaces. For the surface hardness, another 180 (4 x 6 mm) cylindrical specimens were fabricated. Each specimen was sectioned in half and hardness measurements were made at 0.5 mm intervals. Statistical analyses were performed using the multifactor ANOVA at a level of significance of alpha = 0.05. RESULTS: For depth of cure, there was a statistical difference among all the main effects (time, temperature and curing light) for both composites (P > 0.001) when the % difference from the top was analyzed. Results indicate that there was an increase in hardness as the temperature of the composite was increased from 70 to 140 degrees F for both composites for either the top or the bottom. The percent difference in hardness was greater when the LED curing light was used compared to the halogen curing light. Overall there was a greater change in hardness when the resin composite was polymerized at 140 degrees F. Although the ISO standard was not met in many cases, there was a significant increase in hardness on both the top and bottom as temperature and curing time increased (P < 0.001). Results for the surface hardness showed that there was a significant statistical difference (P < 0.001) in hardness when the surface hardness at 0.5 and 3.5 mm were analyzed separately. There was a general increase in surface hardness for both the hybrid and microhybrid as time and temperature increased. For both hybrid and microhybrid groups, as the temperature increased, there was an increase in hardness and it was statistically different (P < 0.001). When the percent difference between 70 and 100 degrees F or 70 and 140 degrees F was evaluated, the greatest increase occurred between the 70 and 140 degrees F and minimal increase between 100 and 140 degrees F. Overall, the LED curing light provided a greater surface hardness for the hybrid at both depths than the halogen curing light. For the microhybrid, the halogen curing light provided the greatest surface hardness when the resin was polymerized for 40 seconds.  相似文献   

19.
The purpose of this study was to assess the effect of light-tip distance on the shear bond strength and failure site of brackets cured with three different light curing units: a high-intensity halogen (Astralis 10, 10-second curing), a light-emitting diode (LED, e-Light, six-second curing), and a plasma arc (PAC System, four-second curing). One hundred and thirty-five bovine permanent mandibular incisors were randomly allocated to nine groups of 15 specimens each. Stainless steel brackets were bonded with a composite resin to the teeth, and each curing light was tested at zero, three, and six mm from the bracket. After bonding, all samples were stored in distilled water at room temperature for 24 hours and subsequently tested for shear bond strength. When the three light curing units were compared at a light-tip distance of zero mm, the three lights showed no significantly different shear bond strengths. At light-tip distances of three and six mm, no significant differences were found between the halogen and plasma arc lights, but both lights showed significantly higher shear bond strengths than the LED light. When evaluating the effect of the light-tip distance on each light curing unit, the halogen light showed no significant differences between the three distances. However, the LED light produced significantly lower shear bond strengths at a greater light-tip distance, and the plasma arc lamp showed significantly higher shear bond strengths at a greater light-tip distance. In hard-to-reach areas, the use of PAC system is suggested, whereas the LED evaluated in this study is not recommended.  相似文献   

20.
C Strydom 《SADJ》2005,60(6):252-253
Dentists nowadays have a choice of conventional halogen lights, halogen lights with more sophisticated curing cycles (step-cure, rapid-cure, ramp-cure & pulse-cure), fast halogen lights, laser lights, plasma arc lights (PAC) and, lately, LED lights. While the manufacturers of some of the curing units try to improve on the operational reliability of their lights with a slower initial rate of cure, other manufacturers simply wish to offer as fast a curing time as possible. The conventional approach to cure accepts that sufficient light intensity of at least 400 mW/cm2 at a wavelength of 400-500 nm, and an exposure time of at least 40 seconds is needed to cure a 2-mm layer of composite. When a halogen light with higher or very high intensity is used, alternative curing strategies provide for an initial slower cure to allow flow, and after that a higher-intensity cure to improve the degree of cure. In contrast, in the fast-cure or rapid-cure approach it is suggested that a layer of composite can be cured for only 5- 10 seconds at >2000 mW/cm2. Some go so far as to say that an exposure time of 3 seconds per layer may be enough. This contradictory approach is compounded by the fact that this support for fast cure does not seem to consider the negative consequences. Therefore, to address these concerns, this review discusses the possible effects of a fast cure approach compared to a more conventional approach in polymerization and polymerization shrinkage, and the consequences there-off. Other factors that play an influencing role in polymerization shrinkage stress are also included in the discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号