首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 通过对涂层的表面结构及其细胞相容性的研究,对新型的钛基溶胶凝胶HA涂层技术进行评价.方法 在纯钛材料表面制备新型的溶胶凝胶HA涂层,采用SEM对涂层表面特征进行测试.体外成骨细胞(MC-3T3)培养测试涂层的细胞相容性,并将钛基HA溶胶凝胶涂层的细胞相容性与传统的钛基等离子喷涂HA涂层做比较.结果 经过水热处理的钛基涂层表面为均一的晶体颗粒表面,细胞学实验发现与等离子HA涂层相比较,水热处理溶胶凝胶表面增强了细胞粘附作用,具有较好的成骨细胞粘附(P<0.05).结论 本实验结果提示这种新型的水热处理钛基HA溶胶凝胶表面具有良好的成骨细胞粘附特性,因而有待于作进一步研究.  相似文献   

2.
Bulk hydroxyapatite (HA) and titania have been used to improve the osseointegration of orthopedic implants. For this reason, composites of HA and titania have been receiving increased attention in orthopedics as novel coating materials. The objective of this in vitro study was to produce nanophase (i.e., materials with grain size less than 100 nm) HA/titania coatings on titanium. The adhesion of bone forming cells (osteoblasts) on the composite coatings were also assessed and compared with single-phase nanotitania and nano-HA titanium coatings. Nanocrystalline HA powders were synthesized through wet chemistry and hydrothermal treatments at 200 degrees C. Nanocrystalline titania powders obtained commercially were mixed with the nanocrystalline HA powders at various weight ratios. The mixed powders were then deposited on titanium utilizing a room-temperature coating process called IonTite. The results of the present study showed that such coatings maintained the chemistry and crystallite size of the original HA and titania powders. Moreover, osteoblasts adherent on single-phase nanotitania coatings were well-spread whereas they became more round and extended distinct filopodia on the composite and single-phase HA coatings. Interestingly, the number of osteoblasts adherent on the nanotitania/HA composite coatings at weight ratios of 2/1 and 1/2 were significantly greater compared with single-phase nanotitania coatings, currently-used plasma-sprayed HA coatings, and uncoated titanium. These findings suggest that nanotitania/HA coatings on titanium should be further studied for improved orthopedic applications.  相似文献   

3.
The biocompatibility of titania/hydroxyapatite (TiO2 /HA) composite coatings, at different ratio obtained by sol-gel process, were investigated studying the behaviour of human MG63 osteoblast-like cells. The biocompatibility was evaluated by means of cytotoxicity and cytocompatibility tests. Cytotoxicity tests, i.e., neutral red (NR), MTT and kenacid blue (KB) assays, were performed to assess the influence of the material extracts on lysosomes, mitochondria and cell proliferation, respectively. Cell proliferation, some preliminary indications of cell morphology, alkaline phosphatase activity, collagen and osteocalcin production of MG63 cells, cultured directly onto TiO2/HA substrates, were evaluated. The results showed that these materials have no toxic effects. Cell growth and morphology were similar on all the materials tested: on the contrary, alkaline-phosphatase-specific activity and collagen production of osteoblasts cultured on TiO2/HA coatings were significantly higher than uncoated titanium and polystyrene of culture plate and were influenced by chemical composition of the coatings. In particular, TiO2/HA coating at 1:1 ratio (w/w) seems to stimulate more than others the expression of some differentiation markers of osteoblastic phenotype. TiO2/HA coatings resulted to be bioactive owing to the presence of hydroxyl groups detected on their surface that promote the calcium and phosphate precipitation and improve the interactions with osteoblastic cells.  相似文献   

4.
CaTiO(3) is a strong candidate to form at the interface between hydroxylapatite (HA) and titanium implants during many coating procedures. However, few studies have compared the cytocompatibility properties of CaTiO(3) to HA pertinent for bone-cell function. For this reason, the objective of the present in vitro study was to determine the ability of bone-forming cells (osteoblasts) to adhere on titanium coated with HA that resulted in the formation of CaTiO(3). To accomplish the formation of CaTiO(3), titanium was coated on HA discs and annealed either under air or a N(2)+H(2) environment. Materials were characterized by X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), and atomic force microscopy (AFM). These characterization techniques demonstrated the formation of a nanometer rough CaTiO(3) layer as a consequence of interactions between HA and titanium during coating conditions. Results from cytocompatibility tests revealed increased osteoblast adhesion on materials that contained CaTiO(3) compared to both pure HA and uncoated titanium. The greatest osteoblast adhesion was observed on titanium-coated HA annealed under air conditions. Because adhesion is a crucial prerequisite to subsequent functions of osteoblasts (such as the deposition of calcium containing mineral), the present in vitro results imply that orthopedic coatings that form CaTiO(3) could increase osseointegration with juxtaposed bone needed for increased implant efficacy.  相似文献   

5.
Hydroxyapatite coatings have been deposited on titanium cp by plasma spray, sol-gel, and sputtering techniques for dental implant applications. The latter two techniques are of current interest, as they allow coatings of micrometer dimensions to be deposited. Coating morphology, composition, and structure have been investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). All coatings were homogeneous and exhibited a rough morphology suitable for implant applications. The sputtered (after annealing), plasma spray, and sol-gel coatings all showed diffraction peaks corresponding to hydroxyapatite. The surface contaminants were observed to be different for the different coating types. The sputtered coatings were found to have a composition most similar to hydroxyapatite; the sol-gel deposits also showed a high concentration of hydroxyl ions. A discrepancy in the Ca/P ratio was observed for the plasma spray coatings, and a small concentration of carbonate ions was found in the sputter-deposited coatings. The in vitro cell-culture studies using MG63 osteoblast-like cells demonstrated the ability of cells to proliferate on the materials tested. The sol-gel coating promotes higher cell growth, greater alkaline phosphatase activity, and greater osteocalcin production compared to the sputtered and plasma-sprayed coatings.  相似文献   

6.
Hydroxyapatite (HA) composites with titania (TiO2) up to 30 mol % were coated on a titanium (Ti) substrate by a sol-gel route, and the mechanical and biological properties of the coating systems were evaluated. Using polymeric precursors, highly stable HA and TiO2 sols were prepared prior to making composite sols and coatings. Coatings were produced under a controlled spinning and heat treatment process. Pure phases of HA and TiO2 were well developed on the composites after heat treatment above 450 degrees C. The HA-TiO2 composite coating layers were homogeneous and highly dense with a thickness of about 800-900 nm. The adhesion strength of the coating layers with respect to Ti substrate increased with increasing the TiO2 addition. The highest strength obtained was as high as 56 MPa, with an improvement of about 50% when compared to pure HA (37 MPa). The osteoblast-like cells grew and spread actively on all the composite coatings. The proliferation and alkaline phosphatase (ALP) activity of the cells grown on the composite coatings were much higher than those on bare Ti, and even comparable to those on pure HA coating. Notably, the HA-20% TiO2 composite coating showed a significantly higher proliferation and ALP expression compared to bare Ti (p < 0.05). These findings suggest that the sol-gel-derived HA-TiO2 composite coatings possess excellent properties for hard tissue applications from the mechanical and biological perspective.  相似文献   

7.
在羟基磷灰石(HA)中掺入氟可以降低其在体内的溶解性,对提高钛合金植入体表面生物活性改性层(涂层)的长效性有着重要的意义。本研究采用溶胶-凝胶法在钛合金基板上制备了含氟羟基磷灰石(Ca10(PO4)6(OH)2-xFx)(FHA)涂层。X光衍射(XRD)和X光电子能谱(XPS)分析结果显示:本实验中获得的涂层是一个纯磷灰石晶相,含氟涂层中x为1.2。在体外成骨细胞相容性的研究中,以HA涂层为对照,通过定时细胞的计数测定了细胞生长曲线,用流式细胞仪法测定了细胞周期,用MTT比色法分析了涂层浸提液的细胞毒性。实验结果表明:在HA涂层中引入氟后,FHA涂层浸提液对细胞毒性级别为0级,该涂层不但没有对细胞产生毒性,而且会促进成骨细胞的贴壁生长,有着更好的细胞生长速度和增殖活性。  相似文献   

8.
In this paper, chemically synthesized Mg2SiO4 (MS) powder was plasma-sprayed onto a titanium alloy substrate to evaluate its application potentials in biomedicine. The phase composition and surface morphology of the MS coating were analyzed. Results showed that the MS coating was composed mainly of Mg2SiO4 phase, with a small amount of MgO and glass phases. Mechanical testing showed that the coating exhibited good adhesion strength to the substrate due to the close thermal expansion coefficient between the MS ceramic and the titanium alloy substrate. The measured bonding strength was as high as 41.5 ± 5.3 MPa, which is much higher than the traditional HA coating. In vitro cytocompatibility evaluation of the MS coating was performed using canine bone marrow stem cells (MSCs). The MSCs exhibited good adhesion, proliferation and differentiation behavior on the MS coating surface, which can be explained by the high protein adsorption capability of the MS coating, as well as the stimulatory effects of Mg and Si ions released from the coating. The proliferation rate of the MSCs on MS coating was very close to that on the hydroxylapatite (HA) coating. Alkaline phosphatase (ALP) activity analysis demonstrated that the ALP level of the MSCs on the MS coating remained high even after 21 days, implying that the surface characteristics of the coating are beneficial for the differentiation of MSCs. In summary, our results suggest that MS coating might be a new approach to prepare bone implants.  相似文献   

9.
Arias JL  Mayor MB  Pou J  Leng Y  León B  Pérez-Amor M 《Biomaterials》2003,24(20):3403-3408
Micro- and nano-testing methods have been explored to study the thin calcium phosphate coatings with high adhesive strength. The pulsed laser deposition (PLD) technique was utilised to produce calcium phosphate coatings on metal substrates, because this type of coatings exhibit much higher adhesive strength with substrates than conventional plasma-sprayed coatings. Due to the limitations of the conventional techniques to evaluate the mechanical properties of these thin coatings (1 microm thick), micro-scratch testing has been applied to evaluate the coating-to-substrate adhesion, and nano-indentation to determine the coating hardness and elastic modulus. The test results showed that the PLD produced amorphous and crystalline HA coatings are more ductile than titanium substrates, and the PLD coatings are not delaminated from the substrates by scratch. Also, the results showed that the crystalline HA coating is superior in internal cohesion to the amorphous one, even though the lower elastic modulus of amorphous coating could be more mechanically compatible with natural bone.  相似文献   

10.
The adhesion, orientation and proliferation of human gingival epithelial cells and human maxillar osteoblast-like cells in primary and secondary culture were studied on glossy polished, sandblasted and plasma-sprayed titanium surfaces by scanning electron microscopy and in thin sections. The primary cultured explants of human gingival epithelial cells attached, spread and proliferated on all titanium surfaces with the greatest extension on the polished and the smallest extension on plasma-sprayed surfaces. In secondary suspension cultures of gingival keratinocytes, attachment spreading and growth was only observed on polished and plasma-sprayed surfaces, but not on sandblasted surfaces. Moreover, the attachment of these cells depended on the seeding concentration as well as on the coating with fetal calf serum. Cells on polished surfaces developed an extremely flat cell shape, but on sandblasted and plasma-sprayed surfaces a more cuboidal shape. In contrast human maxillar osteoblasts seeded as secondary suspension cultures attached very well to all three differently textured titanium surfaces and showed identical growth patterns independent of the titanium surface structure. These findings suggest that cell morphology, orientation, proliferation and adhesion of human gingival epithelial cells in primary or secondary culture are dependent on the texture of the titanium surface whereas no such differences were observed for maxillar osteoblast-like cells. In conclusion, the soft tissue integration and response is more influenced by the surface texture than the process of osseointegration.  相似文献   

11.
The aim of this study was to characterize and compare various titanium (Ti) and hydroxyapatite (HA) coatings on Ti6Al4V, in view of their application on noncemented orthopedic implants. Two innovative vacuum plasma sprayed (VPS) coatings, the first of ultrahigh rough and dense Ti (PG60, Ra=74 microm) and the second of ultrahigh rough and dense Ti coated with HA (HPG60, Ra=52 microm), have been developed, and the response of osteoblast-like cells (MG-63) seeded on these new coatings was evaluated in comparison to: a low roughness and sandblasted (Ti/SA, Ra=4 microm) Ti6Al4V surface; Ti medium (TI01, Ra=18 microm), and high (TI60, Ra=40 microm) roughness VPS coatings; and the relative Ti plus HA duplex coatings (HT01, Ra=12 microm and HT60, Ra=36 microm respectively), also obtained by VPS. PG60 coating presented no open porosity, making it dense and potentially intrinsically stronger. Cell adhesion and proliferation on PG60 was similar to those of the smoothest one (Ti/SA) and adhesion on ultrahigh roughness was lower than the medium- and high-roughness coatings, whereas cell proliferation on PG60 was lower than TI60. The HA coating determined significant increases in cell proliferation at medium and high roughness levels when compared to the relative Ti coating, but not compared to the ultrahigh one; all HA-coated surfaces showed a decrease in alkaline phosphatase activity and collagen I production. Surface morphology and the HA coating strongly affected cell behavior. However, ultrahigh values of roughness are not correctly seen by cells, and the presence of HA has no improving effects.  相似文献   

12.
In order to improve orthopedic implant performance, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (HA) powders to coat titanium. HA was synthesized through a wet chemical process. The precipitated powders were either sintered at 1100 degrees C for 1h in order to produce UltraCap HA (or microcrystalline size HA) or were treated hydrothermally at 200 degrees C for 20 h to produce nanocrystalline HA. Some of the UltraCap and nanocrystalline HA powders were doped with yttrium (Y) since previous studies demonstrated that Y-doped HA in bulk improved osteoblast (or bone-forming cell) function over undoped HA. The original HA particles were characterized using X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), BET, a laser particle size analyzer, and scanning electron microscopy (SEM). These powders were then deposited onto titanium by a novel room-temperature process, called IonTite. The properties of the resulting HA-coatings on titanium were compared to respective properties of the original HA powders. The results showed that the chemical and physical properties of the original HA powders were retained when coated on titanium by IonTite, as determined by XRD, SEM, and atomic force microscopy (AFM) analysis. More importantly, results showed increased osteoblast adhesion on the nanocrystalline HA IonTite coatings compared to traditionally used plasma-sprayed HA coatings. Results also demonstrated greater amounts of calcium deposition by osteoblasts cultured on Y-doped nanocrystalline HA coatings compared to either UltraCap IonTite coatings or plasma-sprayed HA coatings. These results encourage further studies on nanocrystalline IonTite HA coatings on titanium for improved orthopedic applications.  相似文献   

13.
Sol-gel thin films of hydroxyapatite (HA) and titania (TiO(2)) have received a great deal of attention in the area of bioactive surface modification of titanium (Ti) implants. Sol-gel coatings were developed on Ti substrates of pure HA and TiO(2) and two composite forms, HA+10% TiO(2) and HA+20% TiO(2), and the biological properties of the coatings were evaluated. All the coating layers exhibited thin and homogeneous structures and phase-pure compositions (either HA or TiO(2)). Primary human osteoblast cells showed good attachment, spreading and proliferation on all the sol-gel coated surfaces, with enhanced cell numbers on all the coated surfaces relative to uncoated Ti control at day 1, as observed by MTT assay and scanning electron microscopy. Cell attachment rates were also enhanced on the pure HA coating relative to control Ti. The pure HA and HA+10% TiO(2) composite coating furthermore enhanced proliferation of osteoblasts at 4 days. Moreover, the gene expression level of several osteogenic markers including bone sialoprotein and osteopontin, as measured by RT-PCR at 24h, was shown to vary according to coating composition. These findings suggest that human primary bone cells show marked and rapid early functional changes in response to HA and TiO(2) sol-gel coatings on Ti.  相似文献   

14.
Implant success requires a direct bond between bone and implant surface. Bioinert implants, such as titanium alloys, are commonly plasma-spray-coated with a bone-bonding, bioactive material such as hydroxyapatite. Such coatings tend to be chemically and topographically inhomogeneous without reproducible properties. A family of bioactive glasses that can be enameled and reliably adheres to titanium alloy has been developed. In this study the cytocompatibility of two of these glass compositions was tested in the as-cast condition. The effects of these glasses on the early and late events of osseous tissue formation in vitro were determined with MC3T3-E1.4 mouse osteoblast-like cells. MC3T3-E1.4 cells were cultured on glasses containing 55 and 50 wt % SiO(2), with titanium alloy (Ti6Al4V) and tissue culture polystyrene as controls. Cellular adhesion and proliferation, and alkaline phosphatase activity were studied over 5 to 15 days in culture. Qualitative and quantitative assays of mineralization were conducted. The osteoblast-like cells showed increased proliferation when grown on a bioactive glass containing 50 wt % silica. However, the adhesion, differentiation and mineralization behavior were similar on both glass compositions used in this study. These bioactive glasses proved to be cytocompatible substrata for osteoblast-like cell culture, and yielded higher cellular proliferation than titanium alloy.  相似文献   

15.
The clinical use of plasma-sprayed hydroxyapatite (HA) coatings on metal implants has been widely adopted because the HA coating can achieve the firmly and directly biological fixation with the surrounding bone tissue. However, the long-term mechanical properties of HA coatings has been concern for the long-term clinical application. Previous research showed that the concept of adding ZrO2 as second phase to HA significantly increased the bonding strength of plasma-sprayed composite material. The present work aimed to explore the biological properties, including the histological responses and shear strength, between the plasma-sprayed HA and HA/ZrO2 coating, using the transcortical implant model in the femora of canines. After 6 and 12 weeks of implantation, the HA coating revealed the direct bone-to-coating contact by the backscattered electron images (BEIs) of scanning electron microscope (SEM), but the osseointegration was not observed at the surface of HA/ZrO2 coating. For new bone healing index (NBHI) and apposition index (AI), the values for HA implants were significantly higher than that for HA/ZrO2 coatings throughout all implant periods. After push-out test, the shear strength of HA-coated implants were statistically higher than HA/ZrO2 coated implants at 6- and 12-week implantation, and the failure mode of HA/ZrO2 coating was observed at the coating-bone interface by SEM. The results indicate that the firm fixation between bone and HA/ZrO2 has not been achieved even after 12-week implantation. Consequently, the addition of ZrO2 could improve the mechanical properties of coatings, while the biocompatibility was influenced by the different material characteristics of HA/ZrO2 coating compared to HA coatings.  相似文献   

16.
Carbonated hydroxyapatite (CHA) coatings on a titanium alloy were prepared by hydrothermal synthesis of precursors plasma-sprayed with brushite as a raw powder. The structures, residual stresses, and bond strengths of the precursors and CHA coatings were investigated. The results showed that the sprayed precursors consisted of beta-Ca(2)P(2)O(7), alpha-Ca(3)(PO(4))(2), and CaHPO(4), whereas the CHA coatings exhibited a unique phase construction, nanostructured and needle-like crystals, and a fairly low tensile residual stress. The bond strength of a CHA coating 200 microm thick was 15 MPa, equivalent to that of a plasma-sprayed hydroxyapatite (HA) coating. The evaluation of the CHA coatings was performed together with that of plasma-sprayed HA coatings immersed in distilled water. The dissolution and bond-strength degradation of the CHA coatings were much lower than those of the plasma-sprayed HA coatings.  相似文献   

17.
This study determined the effects of a plasma-sprayed hydroxyapatite/tricalcium phosphate (HA/TCP) coating on osseointegration of plasma-sprayed titanium alloy implants in a lapine, distal femoral intramedullary model. The effects of the HA/TCP coating were assessed at 1, 3, and 6 months after implant placement. The HA/TCP coating significantly increased new bone apposition onto the implant surfaces at all time points. The ceramic coating also stimulated intramedullary bone formation at the middle and distal levels of the implants. Fluorescent bone labeling indicated that new bone formation occurred primarily during the first 3 months after implantation, with comparatively little activity detected in the latter stages of the study. There was no associated increase in pullout strength at either 3 or 6 months; however, post-pullout evaluation of the implants indicated that the HA/TCP coating itself was not the primary site of construct failure. Rather, failure was most commonly observed through the periprosthetic osseous struts that bridged the medullary cavity. The demonstrated osteoconductive activity of HA/TCP coating on plasma-sprayed titanium alloy implant surfaces may have considerable clinical relevance to early host-implant interactions, by accelerating the establishment of a stable prosthesis-bone interface.  相似文献   

18.
The objective of this study was to characterize the physicochemical, dissolution, and osteogenic properties of radio frequency magnetron sputtered dicalcium pyrophosphate/tricalciumphosphate (Pyro/TCP) and hydroxylapatite (HA) coatings. Therefore Pyro/TCP and HA coatings were deposited on grit-blasted titanium discs. The results showed that the deposited coatings were amorphous and changed into a crystalline structure after IR heat-treatment of 550 degrees C for HA and 650 degrees C for Pyro/TCP. Heat-treated HA coatings appeared to be stable during immersion in simulated body fluid (SBF), that is no changes in the XRD pattern were observed. Also, no dissolution of the coating was observed by scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) revealed that the Ca/P ratio of the HA coatings remained constant during SBF immersion. On the other hand, the heat-treated Pyro/TCP coatings showed a surface reaction of calcium pyrophosphate into a beta-tricalcium phosphate phase during SBF immersion. This was confirmed by EDS analysis. Rat bone marrow-derived osteoblast-like cells cultured on the heat-treated substrates showed that cell proliferation and differentiation occurred on both types of bioceramic coatings. No significant differences for proliferation and early differentiation were observed between cells cultured on heat-treated Pyro/TCP and HA at individual time points. However, osteocalcin expression, a late marker for osteoblast-like cell differentiation, was significantly increased after 12 days of culture on HA-coatings. These results were confirmed by SEM observations and suggest increased osteogenic properties for HA-coatings over Pyro/TCP-coatings. Additional research is necessary to obtain conclusive evidence on the in vivo osteogenic capacity of Pyro/TCP coatings.  相似文献   

19.
Zhang C  Leng Y  Chen J 《Biomaterials》2001,22(11):1357-1363
A novel approach that combines the indentation tests with nonlinear finite element modeling (FEM) is proposed to estimate the elastic/plastic constitutive relation of plasma-sprayed hydroxyapatite (HA) coatings on a Ti-6Al-4V substrate. The Ramberg-Osgood constitutive equation can well describe the deformation behavior of plasma-sprayed HA coating on Ti-6Al-4V. A reasonable estimation for the elastic modulus of the HA coatings is given, based on the fact that the coating consists of a crystalline phase, an amorphous phase and pores. The Ramberg-Osgood equations of the coatings indicate that the post-treatment increases both resistance to elastic and plastic deformation, but no effect on strain hardening behavior. The post-treatment, however, could reduce the resistance to coating/substrate separation. The influence of titanium substrate becomes more significant with decreasing coating thickness and increasing indentation load because the plasma-sprayed HA coatings exhibit much less resistance to indentation deformation than does Ti-6Al-4V.  相似文献   

20.
A thin hydroxyapatite (HA) layer was coated on a microarc oxidized titanium (MAO-Ti) substrate by means of the sol-gel method. The microarc oxidation (anodizing) enhanced the biocompatibility of the Ti, and the bioactivity was improved further by the sol-gel HA coating on the anodized Ti. The HA sol was aged fully to obtain a stable and phase-pure HA, and the sol concentration was varied to alter the coating thickness. Through the sol-gel HA coating, the Ca and P concentrations in the coating layer increased significantly. However, the porous morphology and roughness of the MAO-Ti was altered very little by the sol-gel treatment. The proliferation and alkaline phosphatase (ALP) activity of the osteoblast-like cells on the MAO/HA sol-gel-treated Ti were significantly higher than those on the MAO-Ti without the HA sol-gel treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号