首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We used simulation to compare accuracy of estimation and confidence interval coverage of several methods for analysing binary outcomes from cluster randomized trials. The following methods were used to estimate the population-averaged intervention effect on the log-odds scale: marginal logistic regression models using generalized estimating equations with information sandwich estimates of standard error (GEE); unweighted cluster-level mean difference (CL/U); weighted cluster-level mean difference (CL/W) and cluster-level random effects linear regression (CL/RE). Methods were compared across trials simulated with different numbers of clusters per trial arm, numbers of subjects per cluster, intraclass correlation coefficients (rho), and intervention versus control arm proportions. Two thousand data sets were generated for each combination of design parameter values. The results showed that the GEE method has generally acceptable properties, including close to nominal levels of confidence interval coverage, when a simple adjustment is made for data with relatively few clusters. CL/U and CL/W have good properties for trials where the number of subjects per cluster is sufficiently large and rho is sufficiently small. CL/RE also has good properties in this situation provided a t-distribution multiplier is used for confidence interval calculation in studies with small numbers of clusters. For studies where the number of subjects per cluster is small and rho is large all cluster-level methods may perform poorly for studies with between 10 and 50 clusters per trial arm.  相似文献   

2.
Individual randomized trials (IRTs) and cluster randomized trials (CRTs) with binary outcomes arise in a variety of settings and are often analyzed by logistic regression (fitted using generalized estimating equations for CRTs). The effect of stratification on the required sample size is less well understood for trials with binary outcomes than for continuous outcomes. We propose easy-to-use methods for sample size estimation for stratified IRTs and CRTs and demonstrate the use of these methods for a tuberculosis prevention CRT currently being planned. For both IRTs and CRTs, we also identify the ratio of the sample size for a stratified trial vs a comparably powered unstratified trial, allowing investigators to evaluate how stratification will affect the required sample size when planning a trial. For CRTs, these can be used when the investigator has estimates of the within-stratum intracluster correlation coefficients (ICCs) or by assuming a common within-stratum ICC. Using these methods, we describe scenarios where stratification may have a practically important impact on the required sample size. We find that in the two-stratum case, for both IRTs and for CRTs with very small cluster sizes, there are unlikely to be plausible scenarios in which an important sample size reduction is achieved when the overall probability of a subject experiencing the event of interest is low. When the probability of events is not small, or when cluster sizes are large, however, there are scenarios where practically important reductions in sample size result from stratification.  相似文献   

3.
Recent methodological advances in covariate adjustment in randomized clinical trials have used semiparametric theory to improve efficiency of inferences by incorporating baseline covariates; these methods have focused on independent outcomes. We modify one of these approaches, augmentation of standard estimators, for use within cluster randomized trials in which treatments are assigned to groups of individuals, thereby inducing correlation. We demonstrate the potential for imbalance correction and efficiency improvement through consideration of both cluster-level covariates and individual-level covariates. To improve small-sample estimation, we consider several variance adjustments. We evaluate this approach for continuous and binary outcomes through simulation and apply it to data from a cluster randomized trial of a community behavioral intervention related to HIV prevention in Tanzania.  相似文献   

4.
In cluster‐randomized trials, it is commonly assumed that the magnitude of the correlation among subjects within a cluster is constant across clusters. However, the correlation may in fact be heterogeneous and depend on cluster characteristics. Accurate modeling of the correlation has the potential to improve inference. We use second‐order generalized estimating equations to model heterogeneous correlation in cluster‐randomized trials. Using simulation studies we show that accurate modeling of heterogeneous correlation can improve inference when the correlation is high or varies by cluster size. We apply the methods to a cluster‐randomized trial of an intervention to promote breast cancer screening. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we give focus to cluster randomized trials, also known as group randomized trials, which randomize clusters, or groups, of subjects to different trial arms, such as intervention or control. Outcomes from subjects within the same cluster tend to exhibit an exchangeable correlation measured by the intra‐cluster correlation coefficient (ICC). Our primary interest is to test if the intervention has an impact on the marginal mean of an outcome. Using recently developed methods, we propose how to select a working ICC structure with the goal of choosing the structure that results in the smallest standard errors for regression parameter estimates and thus the greatest power for this test. Specifically, we utilize small‐sample corrections for the estimation of the covariance matrix of regression parameter estimates. This matrix is incorporated within correlation selection criteria proposed in the generalized estimating equations literature to choose one of multiple working ICC structures under consideration. We demonstrate the potential power and utility of this approach when used in cluster randomized trial settings via a simulation study and application example, and we discuss practical considerations for its use in practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Cluster randomized trials (CRTs) are increasingly used to evaluate the effectiveness of health‐care interventions. A key feature of CRTs is that the observations on individuals within clusters are correlated as a result of between‐cluster variability. Sample size formulae exist which account for such correlations, but they make different assumptions regarding the between‐cluster variability in the intervention arm of a trial, resulting in different sample size estimates. We explore the relationship for binary outcome data between two common measures of between‐cluster variability: k, the coefficient of variation and ρ, the intracluster correlation coefficient. We then assess how the assumptions of constant k or ρ across treatment arms correspond to different assumptions about intervention effects. We assess implications for sample size estimation and present a simple solution to the problems outlined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Group‐randomized trials are randomized studies that allocate intact groups of individuals to different comparison arms. A frequent practical limitation to adopting such research designs is that only a limited number of groups may be available, and therefore, simple randomization is unable to adequately balance multiple group‐level covariates between arms. Therefore, covariate‐based constrained randomization was proposed as an allocation technique to achieve balance. Constrained randomization involves generating a large number of possible allocation schemes, calculating a balance score that assesses covariate imbalance, limiting the randomization space to a prespecified percentage of candidate allocations, and randomly selecting one scheme to implement. When the outcome is binary, a number of statistical issues arise regarding the potential advantages of such designs in making inference. In particular, properties found for continuous outcomes may not directly apply, and additional variations on statistical tests are available. Motivated by two recent trials, we conduct a series of Monte Carlo simulations to evaluate the statistical properties of model‐based and randomization‐based tests under both simple and constrained randomization designs, with varying degrees of analysis‐based covariate adjustment. Our results indicate that constrained randomization improves the power of the linearization F‐test, the KC‐corrected GEE t‐test (Kauermann and Carroll, 2001, Journal of the American Statistical Association 96, 1387‐1396), and two permutation tests when the prognostic group‐level variables are controlled for in the analysis and the size of randomization space is reasonably small. We also demonstrate that constrained randomization reduces power loss from redundant analysis‐based adjustment for non‐prognostic covariates. Design considerations such as the choice of the balance metric and the size of randomization space are discussed.  相似文献   

8.
Wang M  Long Q 《Statistics in medicine》2011,30(11):1278-1291
Generalized estimating equations (GEE (Biometrika 1986; 73(1):13-22) is a general statistical method to fit marginal models for correlated or clustered responses, and it uses a robust sandwich estimator to estimate the variance-covariance matrix of the regression coefficient estimates. While this sandwich estimator is robust to the misspecification of the correlation structure of the responses, its finite sample performance deteriorates as the number of clusters or observations per cluster decreases. To address this limitation, Pan (Biometrika 2001; 88(3):901-906) and Mancl and DeRouen (Biometrics 2001; 57(1):126-134) investigated two modifications to the original sandwich variance estimator. Motivated by the ideas underlying these two modifications, we propose a novel robust variance estimator that combines the strengths of these estimators. Our theoretical and numerical results show that the proposed estimator attains better efficiency and achieves better finite sample performance compared with existing estimators. In particular, when the sample size or cluster size is small, our proposed estimator exhibits lower bias and the resulting confidence intervals for GEE estimates achieve better coverage rates performance. We illustrate the proposed method using data from a dental study.  相似文献   

9.
Three-level cluster randomized trials (CRTs) are increasingly used in implementation science, where 2fold-nested-correlated data arise. For example, interventions are randomly assigned to practices, and providers within the same practice who provide care to participants are trained with the assigned intervention. Teerenstra et al proposed a nested exchangeable correlation structure that accounts for two levels of clustering within the generalized estimating equations (GEE) approach. In this article, we utilize GEE models to test the treatment effect in a two-group comparison for continuous, binary, or count data in three-level CRTs. Given the nested exchangeable correlation structure, we derive the asymptotic variances of the estimator of the treatment effect for different types of outcomes. When the number of clusters is small, researchers have proposed bias-corrected sandwich estimators to improve performance in two-level CRTs. We extend the variances of two bias-corrected sandwich estimators to three-level CRTs. The equal provider and practice sizes were assumed to calculate number of practices for simplicity. However, they are not guaranteed in practice. Relative efficiency (RE) is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal provider and practice sizes. The expressions of REs are obtained from both asymptotic variance estimation and bias-corrected sandwich estimators. Their performances are evaluated for different scenarios of provider and practice size distributions through simulation studies. Finally, a percentage increase in the number of practices is proposed due to efficiency loss from unequal provider and/or practice sizes.  相似文献   

10.
Generalized estimating equations (GEEs) are routinely used for the marginal analysis of correlated data. The efficiency of GEE depends on how closely the working covariance structure resembles the true structure, and therefore accurate modeling of the working correlation of the data is important. A popular approach is the use of an unstructured working correlation matrix, as it is not as restrictive as simpler structures such as exchangeable and AR‐1 and thus can theoretically improve efficiency. However, because of the potential for having to estimate a large number of correlation parameters, variances of regression parameter estimates can be larger than theoretically expected when utilizing the unstructured working correlation matrix. Therefore, standard error estimates can be negatively biased. To account for this additional finite‐sample variability, we derive a bias correction that can be applied to typical estimators of the covariance matrix of parameter estimates. Via simulation and in application to a longitudinal study, we show that our proposed correction improves standard error estimation and statistical inference. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Generalized estimating equations (GEE) are often used for the marginal analysis of longitudinal data. Although much work has been performed to improve the validity of GEE for the analysis of data arising from small‐sample studies, little attention has been given to power in such settings. Therefore, we propose a valid GEE approach to improve power in small‐sample longitudinal study settings in which the temporal spacing of outcomes is the same for each subject. Specifically, we use a modified empirical sandwich covariance matrix estimator within correlation structure selection criteria and test statistics. Use of this estimator can improve the accuracy of selection criteria and increase the degrees of freedom to be used for inference. The resulting impacts on power are demonstrated via a simulation study and application example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A stepped wedge cluster randomized trial is a type of longitudinal cluster design that sequentially switches clusters to intervention over time until all clusters are treated. While the traditional posttest-only parallel design requires adjustment for a single intraclass correlation coefficient, the stepped wedge design allows multiple outcome measurements from the same cluster and so additional correlation parameters are necessary to characterize the within-cluster correlation structure. Although a number of studies have differentiated between the concepts of within-period and between-period correlations, only a few studies have allowed the between-period correlation to decay over time. In this article, we consider the proportional decay correlation structure for a cohort stepped wedge design, and provide a matrix-adjusted quasi-least squares approach to accurately estimate the correlation parameters along with the marginal intervention effect. We further develop the sample size and power procedures accounting for the correlation decay, and investigate the accuracy of the power procedure with continuous outcomes in a simulation study. We show that the empirical power agrees well with the prediction even with as few as nine clusters, when data are analyzed with matrix-adjusted quasi-least squares concurrently with a suitable bias-corrected sandwich variance. Two trial examples are provided to illustrate the new sample size procedure.  相似文献   

13.
Stepped wedge cluster randomized trials (SW-CRTs) have become increasingly popular and are used for a variety of interventions and outcomes, often chosen for their feasibility advantages. SW-CRTs must account for time trends in the outcome because of the staggered rollout of the intervention. Robust inference procedures and nonparametric analysis methods have recently been proposed to handle such trends without requiring strong parametric modeling assumptions, but these are less powerful than model-based approaches. We propose several novel analysis methods that reduce reliance on modeling assumptions while preserving some of the increased power provided by the use of mixed effects models. In one method, we use the synthetic control approach to find the best matching clusters for a given intervention cluster. Another method makes use of within-cluster crossover information to construct an overall estimator. We also consider methods that combine these approaches to further improve power. We test these methods on simulated SW-CRTs, describing scenarios in which these methods have increased power compared with existing nonparametric methods while preserving nominal validity when mixed effects models are misspecified. We also demonstrate theoretical properties of these estimators with less restrictive assumptions than mixed effects models. Finally, we propose avenues for future research on the use of these methods; motivation for such research arises from their flexibility, which allows the identification of specific causal contrasts of interest, their robustness, and the potential for incorporating covariates to further increase power. Investigators conducting SW-CRTs might well consider such methods when common modeling assumptions may not hold.  相似文献   

14.
The sandwich estimator in generalized estimating equations (GEE) approach underestimates the true variance in small samples and consequently results in inflated type I error rates in hypothesis testing. This fact limits the application of the GEE in cluster‐randomized trials (CRTs) with few clusters. Under various CRT scenarios with correlated binary outcomes, we evaluate the small sample properties of the GEE Wald tests using bias‐corrected sandwich estimators. Our results suggest that the GEE Wald z‐test should be avoided in the analyses of CRTs with few clusters even when bias‐corrected sandwich estimators are used. With t‐distribution approximation, the Kauermann and Carroll (KC)‐correction can keep the test size to nominal levels even when the number of clusters is as low as 10 and is robust to the moderate variation of the cluster sizes. However, in cases with large variations in cluster sizes, the Fay and Graubard (FG)‐correction should be used instead. Furthermore, we derive a formula to calculate the power and minimum total number of clusters one needs using the t‐test and KC‐correction for the CRTs with binary outcomes. The power levels as predicted by the proposed formula agree well with the empirical powers from the simulations. The proposed methods are illustrated using real CRT data. We conclude that with appropriate control of type I error rates under small sample sizes, we recommend the use of GEE approach in CRTs with binary outcomes because of fewer assumptions and robustness to the misspecification of the covariance structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The cluster randomized crossover design has been proposed to improve efficiency over the traditional parallel cluster randomized design, which often involves a limited number of clusters. In recent years, the cluster randomized crossover design has been increasingly used to evaluate the effectiveness of health care policy or programs, and the interest often lies in quantifying the population-averaged intervention effect. In this paper, we consider the two-treatment two-period crossover design, and develop sample size procedures for continuous and binary outcomes corresponding to a population-averaged model estimated by generalized estimating equations, accounting for both within-period and interperiod correlations. In particular, we show that the required sample size depends on the correlation parameters through an eigenvalue of the within-cluster correlation matrix for continuous outcomes and through two distinct eigenvalues of the correlation matrix for binary outcomes. We demonstrate that the empirical power corresponds well with the predicted power by the proposed formulae for as few as eight clusters, when outcomes are analyzed using the matrix-adjusted estimating equations for the correlation parameters concurrently with a suitable bias-corrected sandwich variance estimator.  相似文献   

16.
This paper evaluates methods for unadjusted analyses of binary outcomes in cluster randomized trials (CRTs). Under the generalized estimating equations (GEE) method the identity, log and logit link functions may be specified to make inferences on the risk difference, risk ratio and odds ratio scales, respectively. An alternative, 'cluster-level', method applies the t-test to summary statistics calculated for each cluster, using proportions, log proportions and log odds, to make inferences on the respective scales. Simulation was used to estimate the bias of the unadjusted intervention effect estimates and confidence interval coverage, generating data sets with different combinations of number of clusters, number of participants per cluster, intra-cluster correlation coefficient rho and intervention effect. When the identity link was specified, GEE had little bias and good coverage, performing slightly better than the log and logit link functions. The cluster-level method provided unbiased point estimates when proportions were used to summarize the clusters. When the log proportion and log odds were used, however, the method often had markedly large bias for two reasons: (i) bias in the modified summary statistic used for cluster-level estimation when a cluster has zero cases with the outcome of interest (arising when the number of participants sampled per cluster is small and the outcome prevalence is low) and (ii) asymptotically, the method estimates the ratio of geometric means of the cluster proportions or odds, respectively, between the trial arms rather than the ratio of arithmetic means.  相似文献   

17.
Generalized estimating equations (GEE) is a general statistical method to fit marginal models for longitudinal data in biomedical studies. The variance–covariance matrix of the regression parameter coefficients is usually estimated by a robust “sandwich” variance estimator, which does not perform satisfactorily when the sample size is small. To reduce the downward bias and improve the efficiency, several modified variance estimators have been proposed for bias‐correction or efficiency improvement. In this paper, we provide a comprehensive review on recent developments of modified variance estimators and compare their small‐sample performance theoretically and numerically through simulation and real data examples. In particular, Wald tests and t‐tests based on different variance estimators are used for hypothesis testing, and the guideline on appropriate sample sizes for each estimator is provided for preserving type I error in general cases based on numerical results. Moreover, we develop a user‐friendly R package “geesmv” incorporating all of these variance estimators for public usage in practice. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The analysis of repeated measure or clustered data is often complicated by the presence of correlation. Further complications arise for discrete responses, where the marginal probability‐dependent Fr'echet bounds impose feasibility limits on the correlation that are often more restrictive than the positive definite range. Some popular statistical methods, such as generalized estimating equations (GEE), ignore these bounds, and as such can generate erroneous estimates and lead to incorrect inferential results. In this paper, we discuss two alternative strategies: (i) using QIC to select a data‐driven correlation value within the Fréchet bounds, and (ii) the use of likelihood‐based latent variable modeling, such as multivariate probit, to get around the problem all together. We provide two examples of the repercussions of incorrectly using existing GEE software in the presence of correlated binary responses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Cluster randomized trials (CRTs) were originally proposed for use when randomization at the subject level is practically infeasible or may lead to a severe estimation bias of the treatment effect. However, recruiting an additional cluster costs more than enrolling an additional subject in an individually randomized trial. Under budget constraints, researchers have proposed the optimal sample sizes in two-level CRTs. CRTs may have a three-level structure, in which two levels of clustering should be considered. In this paper, we propose optimal designs in three-level CRTs with a binary outcome, assuming a nested exchangeable correlation structure in generalized estimating equation models. We provide the variance of estimators of three commonly used measures: risk difference, risk ratio, and odds ratio. For a given sampling budget, we discuss how many clusters and how many subjects per cluster are necessary to minimize the variance of each measure estimator. For known association parameters, the locally optimal design is proposed. When association parameters are unknown but within predetermined ranges, the MaxiMin design is proposed to maximize the minimum of relative efficiency over the possible ranges, that is, to minimize the risk of the worst scenario.  相似文献   

20.
Cluster randomization trials are randomized controlled trials (RCTs) in which intact clusters of subjects are randomized to either the intervention or to the control. Cluster randomization trials require different statistical methods of analysis than do conventional randomized controlled trials due to the potential presence of within-cluster homogeneity in responses. A variety of statistical methods have been proposed in the literature for the analysis of cluster randomization trials with binary outcomes. However, little is known about the relative statistical power of these methods to detect a statistically significant intervention effect. We conducted a series of Monte Carlo simulations to examine the statistical power of three methods that compare cluster-specific response rates between arms of the trial: the t-test, the Wilcoxon rank sum test, and the permutation test; and three methods that compare subject-level response rates: an adjusted chi-square test, a logistic-normal random effects model, and a generalized estimating equations (GEE) method. In our simulations we allowed the number of clusters, the number of subjects per cluster, the intraclass correlation coefficient and the magnitude of the intervention effect to vary. We demonstrated that the GEE approach tended to have the highest power for detecting a statistically significant intervention effect. However, in most of the 240 scenarios examined, the differences between the competing statistical methods were negligible. The largest mean difference in power between any two different statistical methods across the 240 scenarios was 0.02. The largest observed difference in power between two different statistical methods across the 240 scenarios and 15 pair-wise comparisons of methods was 0.14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号