首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bee venom (BV) has a broad array of clinical applications in Korean medicine, including treatment of inflammatory conditions such as arthritis. The final common pathway of many arthropathies is the destruction of articular cartilage and consequent loss of articular function. Chondrocyte dysfunction plays a key role in the pathogenesis of such disorders. To explore the global gene expression profiles in a human chondrocyte-like cell line treated with BV, microarray analysis was performed. The HTB-94 human chondrosarcoma cells were treated with BV, lipopolysaccharide (LPS), or both. Of the 344 genes profiled in this study, with a cut-off level of 4-fold change in the expression, (1) 35 were downregulated following BV treatment, (2) 16 were upregulated and 7 downregulated following LPS treatment, and (3) 32 were downregulated following co-stimulation of BV and LPS. The results of the present study shows that treatment of BV reversed the LPS-induced upregulation of such genes as interleukin-6 (IL-6) receptor, matrix metalloproteinase 15 (MMP-15), tumor necrosis factor (ligand) superfamily-10, caspase-6 and tissue inhibitor of metalloproteinase-1 (TIMP-1). It is thought that microarrays will play an ever-growing role in the advance of our understanding of the pharmacologic actions of BV in the treatment of arthritis.  相似文献   

2.
3.
Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue.  相似文献   

4.
Although the effect of 17β-estradial, a polyphenolic phytoestrogen, on bone cell function has been studied in numerous cell models, the synergetic role of 1, 25-dihydroxyvitamin D(3) on 17β-estradial induced-proliferation and differentiation of osteoblastic cells, and the underlying mechanism are obscure. Here, we investigated the in vitro effect of 17β-estradial on cell proliferation and osteoblastic maturation in MC3T3-E1 cells. 17β-estradial could promote the proliferation and viability of MC3T3-E1 cells, associated with upregulation of cyclin E and proliferation cell nuclear antigen (PCNA) mRNA expression, and downregulation of cyclin-dependent kinase inhibitor 2b (Cdkn2b) mRNA expression. Moreover, 17β-estradial also could stimulate osteoblastic differentiation and bone formation as assessed by alkaline phosphatase (ALP) and Alizarin Red S staining, through induction of the expression of osteoblastic markers, including ALP, osteopontin and type I collagen in MC3T3-E1 cells. However, 1,25-dihydroxyvitamin D(3) treatment alone showed no effect on proliferation and differentiation of MC3T3-E1 cells, but could coordinately augment effects of 17β-estradial on MC3T3-E1 cells. The mechanism conducted demonstrated that 17β-estradial activated ERK1/2 but not JNK and p38, and U0126, an ERK1/2 pathway inhibitor, significantly downregulated vitamin D receptor expression induced by 17β-estradial in MC3T3-E1 cells. Thus, our data demonstrated a synergistical role of 1,25-dihydroxyvitamin D(3) and 17β-estradial in proliferation and differentiation of osteoblasts, and this coordinated regulation might depend on the upregulation of vitamin D receptor in osteoblasts by 17β-estradial. Moreover, during the process of vitamin D receptor upregulation by 17β-estradial, ERK1/2 signaling is involved.  相似文献   

5.
Exposure to ambient air particulate matter (particles less than 10 μm or PM10) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM10. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM10/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM10 exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM10 impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM10 increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM10. Taken together, statins protect against PM10-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties.  相似文献   

6.
Cardiovascular disease (CVD) is a leading cause of death and hospitalization worldwide. The need for small caliber vessels ( < 6mm) to treat CVD patients has grown; however the availability of autologous vessels in cardiac and peripheral bypass candidates is limited. The search for an alternative vessel source is widespread with both natural and synthetic tissue engineered materials being investigated as scaffolds. Despite decades of exhaustive studies with decellularized extracellular matrices (ECM) and synthetic graft materials, the field remains in search of a commercially viable biomaterial construct substitute. While the previous materials have been assessed by evaluating their compatibility with fibroblasts, smooth muscle cells and endothelial cells, current materials are being conceived based on their interactions with stem cells, progenitor cells and monocytes, as the latter may hold the key to repair and regeneration. The graft's ability to recruit and maintain these cells has become a major research focus. The successful tissue engineering of a small caliber vessel graft requires the use of optimal material chemistry and biological function to promote cell recruitment into the graft while maintaining each functional phenotype during vessel tissue maturation. The discussion of these significant research challenges constitutes the focus of this review.  相似文献   

7.
Trivalent inorganic arsenic (arsenite, arsenic trioxide, As(III)) is a primary contaminant of groundwater supplies worldwide. As(III), marketed as trisenox, is also an FDA-approved agent to treat cancer It has been previously shown by our laboratory that As(III) administered at doses lower than a therapeutic anticancer dose results in an increase in tumor formation and blood vessel density of tumors. In this work it was found that chronic administration of As(III) approaching the EPA action level of 10 ppb, given in the drinking water of mice 5 weeks prior to B16-F10 melanoma implantation, increased the growth rate of primary tumors and the number of metastases to the lung. Further, levels of arsenic in the tumor and lung were found to be much greater than those in the blood and similar to pro-angiogenic As(III) doses. Levels of hypoxia inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) surrounding the blood vessels in the tumors of the As(III)-treated mice were also found to be increased. Exposure of isolated B16-F10 tumor cells to chronic (3 or 7 day) but not acute (4 h) low-dose As(III) was found to increase HIF-1alpha expression and secretion of VEGF. Finally, coadministration of an inhibitor of HIF (YC-1) or a VEGFR-2 kinase inhibitor (SU5416) was found to antagonize the pro-angiogenic effects of low-dose As(III). Together, these results suggest that chronic exposure to low-dose As(III) could stimulate growth of tumors through a HIF-dependent stimulation of angiogenesis.  相似文献   

8.
9.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various types of malignant cancer cells, but several cancers have acquired potent resistance to TRAIL-induced cell death by unknown mechanisms. Camptothecin (CPT) is a quinolone alkaloid that induces cytotoxicity in a variety of cancer cell lines. However, it is not known whether CPT triggers TRAIL-induced cell death. In this study, we found that combined treatment with subtoxic doses of CPT and TRAIL (CPT-TRAIL) potentially enhanced apoptosis in a caspase-dependent manner. CPT-TRAIL effectively induced the expression of death receptor (DR) 5, which is a specific receptor of TRAIL, and treatment with a chimeric blocking antibody for DR5 reduced CPT-TRAIL-induced cell death, indicating that CPT functionally triggers DR5-mediated cell death in response to TRAIL. CPT-induced generation of reactive oxygen species (ROS) also preceded the upregulation of DR5 in response to TRAIL. The involvement of ROS in DR5 upregulation confirmed that pretreatment with antioxidants, including N-acetyl-L-cysteine and glutathione, significantly inhibits CPT-TRAIL-induced cell death by suppressing DR5 expression. The specific inhibitors of ERK and p38 also decreased CPT-TRAIL-induced cell death by blocking DR5 expression. In conclusion, our results suggest that CPT sensitizes cancer cells to TRAIL-mediated apoptosis via ROS and ERK/p38-dependent DR5 upregulation.  相似文献   

10.
Binding of thrombospondin-1 (TSP-1) to the CD36 receptor inhibits angiogenesis and induces apoptosis in endothelial cells (EC). Conversely, matrix-bound TSP-1 supports vessel formation. In this study we analyzed the shear stress-dependent expression of TSP-1 and CD36 in endothelial cells in vitro and in vivo to reveal its putative role in the blood flow-induced remodelling of vascular networks. Shear stress was applied to EC using a cone-and-plate apparatus and gene expression was analyzed by RT-PCR, Northern and Western blot. Angiogenesis in skeletal muscles of prazosin-fed (50 mg/l drinking water; 4 d) mice was assessed by measuring capillary-to-fiber (C/F) ratios. Protein expression in whole muscle homogenates (WMH) or BS-1 lectin-enriched EC fractions (ECF) was analyzed by Western blot. Shear stress downregulated TSP-1 and CD36 expression in vitro in a force- and time-dependent manner sustained for at least 72 h and reversible by restoration of no-flow conditions. In vivo, shear stress-driven increase of C/F in prazosin-fed mice was associated with reduced expression of TSP-1 and CD36 in ECF, while TSP-1 expression in WMH was increased. Down-regulation of endothelial TSP-1/CD36 by shear stress suggests a mechanism for inhibition of apoptosis in perfused vessels and pruning in the absence of flow. The increase of extra-endothelial (e.g. matrix-bound) TSP-1 could support a splitting type of vessel growth.  相似文献   

11.
Our previous studies have proven that crocetin (CCT), extracted from Gardenia jasminoides Ellis, possesses the anti-atherosclerotic effect. Because endothelial dysfunction strongly contributes to the initiation and progression of atherosclerosis, the present study aims to investigate whether CCT is capable of improving this dysfunction and to explore the possible mechanisms. Endothelial dysfunction was induced by in vivo feeding high cholesterol diet (HCD) to rabbit and by in vitro treating bovine aortic endothelial cells (BAECs) with oxidized LDL (oxLDL). Endothelium-dependent relaxation (EDR) evoked by acetylcholine (Ach) and endothelium-independent relaxation (RIDR) mediated by sodium nitroprusside (SNP) of thoracic aorta isolated from rabbit were measured. The results indicated that the EDR in HCD alone treated rabbits was seriously impaired and the maximal relaxation induced by Ach (10(-5.5) M) was only 54% that in control rabbit fed with regular diet. Oral complementation with CCT (15, 30 mg/kg) dose-dependently improved this impairment and restored the maximal relaxation to 68% and 80% that in control group, respectively. However, the EIDR maintained comparable in all groups. Complementation with CCT (15, 30 mg/kg) simultaneously increased serum level of nitric oxide (NO), upregulated vessel activity and mRNA expression of endothelial NO synthase (eNOS) as well as vessel cyclic GMP (cGMP) content compared with those in rabbit treated with HCD alone. Inducible NOS (iNOS) activity remained unchangeable in all groups. In BAECs, oxLDL treatment decreased NO production, downregulated both activity and mRNA expression of eNOS. While those decrease or downregulation were inhibited by co-treatment with CCT (0.1, 1, 10 microM) in a dose-dependent manner. These findings suggested that CCT significantly restored the EDR of thoracic aorta in hypercholesterolemic rabbit, which might be explained by its action to increase the vessel eNOS activity, leading to elevation of NO production.  相似文献   

12.
Endothelin (ET) mediates vasoconstriction in intact arterial blood vessels with functional endothelium via stimulation of ET(A) receptors, while ET(B) receptor stimulation leads to vasodilation via nitric oxide (NO) release and formation of cyclic guanosine-3',5'-monophosphate (cGMP). In spontaneously hypertensive rats (SHR) the cGMP-forming NO-receptor guanylyl cyclase (sGC) is downregulated. It is unclear whether ET contributes to the hypertensive phenotype of SHR, and whether this involves the disturbed cGMP signaling. The selective ETA receptor antagonist darusentan (CAS 171714-84-4), given orally via drinking water (10 mg kg(-1) d(-1)) for 12 weeks, significantly lowered systolic blood pressure of SHR as determined by radiotelemetry. Neither impaired endothelium-dependent relaxation to acetylcholine was restored nor sGC expression and activity affected when compared to control SHR. While these findings show a role for ETA receptors in blood pressure regulation in genetically elevated blood pressure, downregulation of sGC expression and cGMP-mediated vasorelaxant response in SHR were shown to be independent of ETA receptors. The findings suggest distinct mechanisms of gene expression affecting ET and cGMP mediated vasomotor functions.  相似文献   

13.
Endothelial arginase constrains the activity of endothelial nitric oxide synthase (eNOS) by substrate depletion and reduces nitric oxide bioavailability. During the screening course of arginase inhibitor, we found obacunone as an arginase inhibitor. We tested the hypothesis that obacunone regulates vascular endothelial NO production. Obacunone incubation inhibited arginase I and II activities in liver and kidney lysates, respectively, in dose-dependent manner. Obacunone reciprocally increased nitrite/nitrate (NOx) production in HUVECs. In isolated aortic rings, obacunone increased intracellular l-arginine concentration and enhanced eNOS coupling, leading to increased NO and decreased superoxide production, with no changes in protein expression. Vasoconstriction response to U46619 was attenuated in obacunone-treated aortic vessels compared to that in untreated vessels. Endothelium-dependent vasorelaxant response to acetylcholine was significantly increased in obacunone-treated vessels and was modulated by the NO-dependent signaling cascade. The dose-dependent vasorelaxant response to Ach was reduced in the aortic vessels of ApoE?/? mice fed a high-cholesterol diet. Obacunone incubation increased vasorelaxation to the level of a WT mouse, although the endothelium-independent response to sodium nitroprusside was identical among the groups. Therefore, obacunone may help treat cardiovascular diseases derived from endothelial dysfunction and may be useful for designing pharmaceutical compounds.  相似文献   

14.
This work was aimed to determine if 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284c51), the most selective acetylcholinesterase inhibitor (AchEI), affects the nicotinic acetylcholine (Ach) receptor (AchR) function. Purified Torpedo nicotinic AchRs were injected into Xenopus laevis oocytes and BW284c51 effects on Ach- and carbamylcholine (Cch)-elicited currents were assessed using the voltage-clamp technique.BW284c51 (up to 1 mM) did not evoke any change in the oocyte membrane conductance. When BW284c51 (10 pM-100 microM) and Ach were co-applied, Ach-evoked currents (I(Ach)) were reversibly inhibited in a concentration-dependent manner (Hill coefficient, 1; IC(50), 0.2-0.5 muM for 0.1-1000 microM Ach). Cch-elicited currents showed a similar inhibition by BW284c51.I(Ach) blockade by BW284c51 showed a strong voltage dependence, being only apparent at hyperpolarising potentials. BW284c51 also enhanced I(Ach) desensitisation.BW284c51 changed the Ach concentration-dependence curve of Torpedo AchR response from two-site to single-site kinetics, without noticeably affecting the EC(50) value.The BW284c51 blocking effect was highly selective for nicotinic over muscarinic receptors. BW284c51 inhibition potency was stronger than that of tacrine, and similar to that of d-tubocurarine (d-TC). Coapplication of BW284c51 with either tacrine or d-TC revealed synergistic inhibitory effects.Our results indicate that BW284c51 antagonises nicotinic AchRs in a noncompetitive way by blocking the receptor channel, and possibly by other, yet unknown, mechanisms.Therefore, besides acting as a selective AchEI, BW284c51 constitutes a powerful and reversible blocker of nicotinic AchRs that might be used as a valuable tool for understanding their function.  相似文献   

15.
Hepatocarcinoma (HCC) is the fifth most common neoplasia in the world, and the first cause of death by cancer in some areas. The clinical course of HCC patients has improved greatly owing to the use of the oral multikinase inhibitor, Sorafenib. The expression of receptors belonging to the superfamily of tumor necrosis factor receptors (TNF-R), such as TNF-R1, CD95 and TNF-related apoptosis inducing ligand (TRAIL) receptor -1 (TRAIL-R1) and -2 (TRAIL-R2) are altered in patients with HCC, especially those in advanced stages of de-differentiation. The disruption of death receptor (DR)-dependent cell signaling is related to poor survival in patients with HCC. These observations, together with the lack of antitumoral therapy alternatives, have stimulated research on DR-targeted therapies. The increasing research progress in cell death shows the intense crosstalk among DR and cell survival pathways in cancer cells. In consequence, new potential therapeutic strategies involving antibodies or small molecules specifically targeted to DR pathways either in monotherapy or in combination with other therapeutic strategies may be envisaged in the future to treat HCC.  相似文献   

16.
17.
18.
19.
Spontaneously hypertensive stroke-prone rats (SHR-SP) suffer spontaneous stroke in part as a result of abnormal cerebrovascular development. Reduction of regional cerebral blood flow in this model has already been demonstrated. This model has three distinct stages of hypertension: pre-hypertensive, typical hypertensive and malignant hypertensive. We investigated the level of endothelin-1 and its receptor expression in the frontal cortex of SHR-SP at the malignant hypertensive stage (35-40 weeks of age), during which time the rats suffer strokes. The cerebral endothelin-1 level, as determined by enzyme-linked immunosorbent assay, was highly increased at this severely hypertensive stage compared to their genetic control, normotensive Wistar-Kyoto rats. This upregulation was associated with an increased expression of endothelin-A receptor, however, another endothelin-1 receptor, endothelin-B, was downregulated. The regional cerebral blood flow in the frontal cortex was reduced by 60% in 40-week-old malignantly SHR-SP as compared to age-matched Wistar-Kyoto rats. Thus, cerebral endothelin-1 expression increased in malignant hypertension in SHR-SP. The enhanced endothelin-1 may activate the endothelin-A receptor, which would, in turn, result in reduced cerebral blood flow. Downregulation of the endothelin-B receptor may cause suppression of endothelium-derived relaxing factors in the brain of SHR-SP and be an underlying factor in their stroke susceptibility.  相似文献   

20.
Lipopolysaccharides (LPS), the lipid component of gram-negative bacterial cell wall, is recognized as the key factor in acute lung inflammation and is found to exhibit severe immunologic reactions. Phosphodiesterase-4 (PDE-4) inhibitor: “apremilast (AP)” is an immune suppressant and anti-inflammatory drug which introduced to treat psoriatic arthritis. The contemporary experiment designed to study the protective influences of AP against LPS induced lung injury in rodents. Twenty-four (24) male experimental Wistar rats selected, acclimatized, and administered with normal saline, LPS, or AP + LPS respectively from 1 to 4 groups. The lung tissues were evaluated for biochemical parameters (MPO), Enzyme Linked Immunosorbent Assay (ELISA), flowcytometry assay, gene expressions, proteins expression and histopathological examination. AP ameliorates the lung injuries by attenuating immunomodulation and inflammation. LPS exposure upregulated IL-6, TNF-α, and MPO while downregulating IL-4 which were restored in AP pretreated rats. The changes in immunomodulation markers by LPS were reduced by AP treatment. Furthermore, results from the qPCR analysis represented an upregulation in IL-1β, MPO, TNF-α, and p38 whereas downregulated in IL-10 and p53 gene expressions in disease control animals while AP pretreated rats exhibited significant reversal in these expressions. Western blot analysis suggested an upregulation of MCP-1, and NOS-2, whereas HO-1, and Nrf-2 expression were suppressed in LPS exposed animals, while pretreatment with AP showed down regulation in the expression MCP-1, NOS-2, and upregulation of HO-1, and Nrf-2 expression of the mentioned intracellular proteins. Histological studies further affirmed the toxic influences of LPS on the pulmonary tissues. It is concluded that, LPS exposure causes pulmonary toxicities via up regulation of oxidative stress, inflammatory cytokines and stimulation of IL-1β, MPO, TNF-α, p38, MCP-1, and NOS-2 while downregulation of IL-4, IL-10, p53, HO-1, and Nrf-2 at different expression level. Pretreatment with AP controlled the toxic influences of LPS by modulating these signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号