首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
1. In the present study, we investigated the effect of 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), a free radical scavenger, on myocardial infarct (MI) size and cardiac function in an in vivo model of MI in rabbits. We further investigated the contribution of hydroxyl radicals, superoxide and nitric oxide (NO) to its effects. 2. Anaesthetized open-chest Japanese white male rabbits were subjected to 30 min coronary occlusion and 48 h reperfusion. The control group (n = 10) was injected with saline 10 min before reperfusion. The edaravone group (n = 10) was injected with a bolus of 3 mg/kg edaravone 10 min before reperfusion. The edaravone + N(G)-nitro-L-arginine methyl ester (L-NAME) group (n = 5) was given 10 mg/kg, i.v., L-NAME 10 min before the administration of 3 mg/kg edaravone. The L-NAME group (n = 5) was given 10 mg/kg, i.v., L-NAME 20 min before reperfusion. Infarct size was measured using the triphenyl tetrazolium chloride method and is expressed as a percentage of area at risk. Cardiac function was assessed by echocardiography 14 days after infarction. 3. In another series of experiments, rabbits were subjected to 30 min coronary occlusion and 30 min reperfusion and myocardial interstitial 2,3-dihydroxybenzoic acid (DHBA) and 2,5-DHBA levels, indicators of hydroxyl radical, were measured using a microdialysis technique. 4. Infarct size in the edaravone group was significantly reduced compared with that in the control group (27.4 +/- 6.8 vs 43.4 +/- 6.8%, respectively; P < 0.05). The edaravone-induced reduction of infarct size was abolished by pretreatment with L-NAME. Myocardial interstitial levels of 2,3-DHBA and 2,5-DHBA increased 20 and 30 min after ischaemia and peaked at 10 min reperfusion in the control group. Edaravone significantly inhibited the increase in 2,3-DHBA and 2,5-DHBA levels seen during reperfusion. Dihydroethidium staining showing in situ detection of superoxide was less intense in ischaemic myocardium in the edaravone-treated group compared with the control group. Edaravone improved cardiac function and left ventricular remodelling 14 days after infarction. 5. In conclusion, edaravone significantly reduces MI size and improves cardiac function and LV remodelling by decreasing hydroxyl radicals and superoxide in the myocardium and increasing the production of NO during reperfusion in rabbits.  相似文献   

2.

Background and purpose:

Cannabidiol (CBD) is a phytocannabinoid, with anti-apoptotic, anti-inflammatory and antioxidant effects and has recently been shown to exert a tissue sparing effect during chronic myocardial ischaemia and reperfusion (I/R). However, it is not known whether CBD is cardioprotective in the acute phase of I/R injury and the present studies tested this hypothesis.

Experimental approach:

Male Sprague-Dawley rats received either vehicle or CBD (10 or 50 µg·kg−1 i.v.) 10 min before 30 min coronary artery occlusion or CBD (50 µg·kg−1 i.v.) 10 min before reperfusion (2 h). The appearance of ventricular arrhythmias during the ischaemic and immediate post-reperfusion periods were recorded and the hearts excised for infarct size determination and assessment of mast cell degranulation. Arterial blood was withdrawn at the end of the reperfusion period to assess platelet aggregation in response to collagen.

Key results:

CBD reduced both the total number of ischaemia-induced arrhythmias and infarct size when administered prior to ischaemia, an effect that was dose-dependent. Infarct size was also reduced when CBD was given prior to reperfusion. CBD (50 µg·kg−1 i.v.) given prior to ischaemia, but not at reperfusion, attenuated collagen-induced platelet aggregation compared with control, but had no effect on ischaemia-induced mast cell degranulation.

Conclusions and implications:

This study demonstrates that CBD is cardioprotective in the acute phase of I/R by both reducing ventricular arrhythmias and attenuating infarct size. The anti-arrhythmic effect, but not the tissue sparing effect, may be mediated through an inhibitory effect on platelet activation.  相似文献   

3.
We have previously found that uridine 5'-triphosphate (UTP) significantly reduced cardiomyocyte death induced by hypoxia via activating P2Y(2) receptors. To explore the effect of UTP following myocardial infarction (MI) in vivo we studied four groups: sham with or without LAD ligation, injected with UTP (0.44microg/kg i.v.) 30min before MI, and UTP injection (4.4microg/kg i.v.) 24h prior to MI. Left ventricular end diastolic area (LVEDA), end systolic area (LVESA) fractional shortening (FS), and changes in posterior wall (PW) thickness were performed by echocardiography before and 24h after MI. In addition, we measured different biochemical markers of damage and infarct size using Evans blue and TTC staining. The increase in LVEDA and LVESA of the treated animals was significantly smaller when compared to the MI rats (p<0.01). Concomitantly, FS was higher in groups pretreated with UTP 30min or 24h (56+/-14.3 and 36.7+/-8.2%, p<0.01, respectively). Ratio of infarct size to area at risk was smaller in the UTP pretreated hearts than MI rats (22.9+/-6.6, 23.1+/-9.1%, versus 45.4+/-7.6%, respectively, p<0.001). Troponin T and ATP measurements, demonstrated reduced myocardial damage. Using Rhod-2-AM loaded cardiomyocytes, we found that UTP reduced mitochondrial calcium levels following hypoxia. In conclusion, early or late UTP preconditioning is effective, demonstrating reduced infarct size and superior myocardial function. The resulting cardioprotection following UTP treatment post ischemia demonstrates a reduction in mitochondrial calcium overload, which can explain the beneficial effect of UTP.  相似文献   

4.
《药学学报(英文版)》2021,11(9):2749-2767
Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号