首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the mechanisms involved in beta-amyloid-mediated inflammation in Alzheimer's disease, transgenic Tg2576 mice containing as transgene the Swedish double mutation of human amyloid precursor protein 695, were examined for the expression pattern of various cytokines using double immunocytochemistry and laser scanning microscopy. Tg2576 mice studied at postnatal ages of 13, 16 and 19 months demonstrated an age-related accumulation of both senile and diffuse beta-amyloid plaques in neocortex and hippocampus. Reactive interleukin (IL)-1beta-immunoreactive astrocytes were found in close proximity to both fibrillary and diffuse beta-amyloid deposits detectable at very early stages of plaque development, while activated microglia appeared in and around fibrillary beta-amyloid plaques only. Subpopulations of reactive astrocytes also demonstrated immunolabeling for transforming growth factor (TGF)-beta1, TGF-beta3, and IL-10, already detectable in 13-month-old transgenic mouse brain, while a few IL-6-immunoreactive astrocytes were observed only at later stages of plaque development. The early beta-amyloid-mediated upregulation of IL-1beta, TGF-beta, and IL-10 in surrounding reactive astrocytes indicates the induction of both pro- and anti-inflammatory mechanisms. The transgenic approach used in this study may thus provide a useful tool to further disclose the in vivo mechanisms by which pro- and anti-inflammatory cytokines interact and/or contribute to the progression of Alzheimer's disease.  相似文献   

2.
To elucidate the mechanisms involved in β-amyloid-mediated inflammation in Alzheimer’s disease, transgenic Tg2576 mice containing as transgene the Swedish double mutation of human amyloid precursor protein 695, were examined for the expression pattern of various cytokines using double immunocytochemistry and laser scanning microscopy. Tg2576 mice studied at postnatal ages of 13, 16 and 19 months demonstrated an age-related accumulation of both senile and diffuse β-amyloid plaques in neocortex and hippocampus. Reactive interleukin (IL)-1β-immunoreactive astrocytes were found in close proximity to both fibrillary and diffuse β-amyloid deposits detectable at very early stages of plaque development, while activated microglia appeared in and around fibrillary β-amyloid plaques only. Subpopulations of reactive astrocytes also demonstrated immunolabeling for transforming growth factor (TGF)-β1, TGF-β3, and IL-10, already detectable in 13-month-old transgenic mouse brain, while a few IL-6-immunoreactive astrocytes were observed only at later stages of plaque development. The early β-amyloid-mediated upregulation of IL-1β, TGF-β, and IL-10 in surrounding reactive astrocytes indicates the induction of both pro- and anti-inflammatory mechanisms. The transgenic approach used in this study may thus provide a useful tool to further disclose the in vivo mechanisms by which pro- and anti-inflammatory cytokines interact and/or contribute to the progression of Alzheimer’s disease.  相似文献   

3.
Alzheimer's disease is associated with markedly impaired cerebral glucose metabolism as detected by reduced cortical desoxyglucose utilization, by altered activities of key glycolytic enzymes or by reduced densities of cortical glucose transporter subtypes. To determine whether formation and/or deposition of beta-amyloid plays a role in the pathology of glucose metabolism, transgenic Tg2576 mice that overexpress the Swedish mutation of the human amyloid precursor protein and demonstrate a progressive, age-related cortical and hippocampal deposition of beta-amyloid plaques, were used to study expression and activity of key enzymes of brain glycolysis (phosphofructokinase, PFK) and glyconeogenesis (fructose1,6-bisphosphatase; FbPase). Quantitative RT-PCR revealed high expression levels of both C- and M-type PFK mRNA in non-transgenic mouse cerebral cortex, whilst there was little expression of the L-type. In 24-month-old transgenic Tg2576 mouse cortex, but not in 7-, 13-, and 17-month-old mice, the copy number of PFK-C mRNA was significantly reduced in comparison to non-transgenic littermates, while the mRNA level of the other PFK isoforms and FbPase did not differ between transgenic and non-transgenic tissue samples. In situ hybridization in brain sections from aged Tg2576 mice revealed reduced PFK-C mRNA expression in beta-amyloid plaque-associated neurons and upregulation in reactive astrocytes surrounding beta-amyloid deposits. The decreased PFK-C protein level detected by Western analysis in cerebral cortical tissue from 24-month-old transgenic Tg2576 mice was accompanied by reduced enzyme activity of PFK in comparison to non-transgenic littermates. Our data demonstrate that impairment of cerebral cortical glucose metabolism occurs only due to the long-lasting high beta-amyloid burden. This results from a reduction in glycolytic activity in beta-amyloid plaque-associated neurons and a concomitant upregulation in reactive, plaque-surrounding astrocytes.  相似文献   

4.
Yang F  Uéda K  Chen P  Ashe KH  Cole GM 《Brain research》2000,853(2):381-383
Patients with the Lewy body variant (LBV) of Alzheimer's disease (AD) have ubiquitinated intraneuronal and neuritic accumulations of alpha-synuclein and show less neuron loss and tau pathology than other AD patients. Aged Tg2576 transgenic mice overexpressing human betaAPP695. KM670/671NL have limited neuron loss and tau pathology, but frequent ubiquitin- and alpha-synuclein-positive, tau-negative neurites resembling those seen in the LBV of AD.  相似文献   

5.
There is experimental evidence that cerebral perfusion is decreased during aging and in Alzheimer's disease. To characterize the temporal relationship between amyloid deposition, plaque size and cerebrovascular abnormalities, a semiquantitative immunohistochemical study was performed in transgenic Tg2576 mice that express the Swedish double mutation of human amyloid precursor protein (APP) and progressively develop Alzheimer-like beta-amyloid deposits. Cortical cryocut sections, obtained from mice at ages ranging between 4 and 18 months, were immunostained to label glucose transporter type 1 (GLUT1), a marker of vascular endothelial cells, and thioflavine-S to visualize plaques. Regardless of age and transgene, a laminar distribution of capillaries was observed being highest in cortical layers IV and V. The density of microvessels estimated in cortical regions with high plaque load was found to be significantly lower as compared to areas with low plaque load. Around large thioflavine-S-positive senile plaques the capillary density was low, while diffuse plaques demonstrated a close association of capillaries with no signs of any damage. The data suggest that amyloid plaque deposition differentially affects the cerebrovascular system in an age- and plaque type-related manner, and provide further evidence that beta-amyloid, in addition to its well-described neurotoxic effects, may also contribute to neuronal dysfunction through its actions on the cerebrovasculature.  相似文献   

6.
beta-Amyloid plaque deposition observed in brains from Alzheimer patients, might function as immune stimulus for glial/macrophages activation, which is supported by observations of activated microglia expressing interleukin (IL)-1beta and elevated IL-6 immunoreactivity in close proximity to amyloid plaques. To elucidate the mechanisms involved in beta-amyloid-mediated inflammation, transgenic mice (Tg2576) expressing high levels of the Swedish double mutation of human amyloid precursor protein and progressively developing typical beta-amyloid plaques in cortical brain regions including gliosis and astrocytosis, were examined for the expression pattern of a number of cytokines.Using ribonuclease protection assay, interleukin (IL)-1alpha,-beta, IL-1 receptor antagonist, IL-6, IL-10, IL-12, IL-18, interferon-gamma, and macrophage migration inhibitory factor (MIF) mRNA were not induced in a number of cortical areas of Tg2576 mice regardless of the postnatal ages studied ranging between 2 and 13 months. Using immunocytochemistry for IL-1alpha,beta, IL-6, tumor necrosis factor (TNF)-alpha, and macrophage chemotactic protein (MCP)-1, only IL-1beta was found to be induced in reactive astrocytes surrounding beta-amyloid deposits detected in 14-month-old Tg2576 mice. Using non-radioactive in situ hybridization glial fibrillary acidic protein (GFAP) mRNA was detected to be expressed by reactive astrocytes in close proximity to beta-amyloid plaques. The local immune response detected around cortical beta-amyloid deposits in transgenic Tg2576 mouse brain is seemingly different to that observed in brains from Alzheimer patients but may represent an initial event of chronic neuroinflammation at later stages of the disease.  相似文献   

7.
Patients with the Lewy body variant (LBV) of Alzheimer's disease (AD) have ubiquitinated intraneuronal and neuritic accumulations of α-synuclein and show less neuron loss and tau pathology than other AD patients. Aged Tg2576 transgenic mice overexpressing human βAPP695. KM670/671NL have limited neuron loss and tau pathology, but frequent ubiquitin- and α-synuclein-positive, tau-negative neurites resembling those seen in the LBV of AD.  相似文献   

8.
β-Amyloid plaque deposition observed in brains from Alzheimer patients, might function as immune stimulus for glial/macrophages activation, which is supported by observations of activated microglia expressing interleukin (IL)-1β and elevated IL-6 immunoreactivity in close proximity to amyloid plaques. To elucidate the mechanisms involved in β-amyloid-mediated inflammation, transgenic mice (Tg2576) expressing high levels of the Swedish double mutation of human amyloid precursor protein and progressively developing typical β-amyloid plaques in cortical brain regions including gliosis and astrocytosis, were examined for the expression pattern of a number of cytokines.Using ribonuclease protection assay, interleukin (IL)-1α,-β, IL-1 receptor antagonist, IL-6, IL-10, IL-12, IL-18, interferon-γ, and macrophage migration inhibitory factor (MIF) mRNA were not induced in a number of cortical areas of Tg2576 mice regardless of the postnatal ages studied ranging between 2 and 13 months. Using immunocytochemistry for IL-1α,β, IL-6, tumor necrosis factor (TNF)-α, and macrophage chemotactic protein (MCP)-1, only IL-1β was found to be induced in reactive astrocytes surrounding β-amyloid deposits detected in 14-month-old Tg2576 mice. Using non-radioactive in situ hybridization glial fibrillary acidic protein (GFAP) mRNA was detected to be expressed by reactive astrocytes in close proximity to β-amyloid plaques. The local immune response detected around cortical β-amyloid deposits in transgenic Tg2576 mouse brain is seemingly different to that observed in brains from Alzheimer patients but may represent an initial event of chronic neuroinflammation at later stages of the disease.  相似文献   

9.
Transgenic expression of interleukin-6 (IL-6) in the CNS under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-IL6 mice) causes significant damage and alters the expression of many genes, including a dramatic upregulation of metallothionein-I (MT-I). The findings in this report support the idea that the upregulation of MT-I observed in GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, GFAP-IL6 mice that were crossed with TgMTI transgenic mice (GFAP-IL6xTgMTI) and overexpressed MT-I in the brain showed a decreased upregulation of cytokines such as IL-6 and a diminished recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. The GFAP-IL6 mice showed clear evidence of increased oxidative stress, which was significantly decreased by MT-I overexpression. Interestingly, MT-I overexpression increased angiogenesis in GFAP-IL6 mice but not in control littermates. Overall, the results strongly suggest that MT-I+II proteins are valuable factors that protect against cytokine-induced CNS injury.  相似文献   

10.
We measured tissue distribution and expression pattern of the beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE) in the brains of transgenic Tg2576 mice that show amyloid pathology. BACE protein was expressed at high levels in brain; at lower levels in heart and liver; and at very low levels in pancreas, kidney, and thymus and was almost absent in spleen and lung when assayed by Western blot analysis. We observed strictly neuronal expression of BACE protein in the brains of nontransgenic control mice, with the most robust immunocytochemical labeling present in the cerebral cortex, hippocampal formation, thalamus, and cholinergic basal forebrain nuclei. BACE protein levels did not differ significantly between control and transgenic mice or as a result of aging. However, in the aged, 17-month-old Tg2576 mice there was robust amyloid plaque formation, and BACE protein was also present in reactive astrocytes present near amyloid plaques, as shown by double immunofluorescent labeling and confocal laser scanning microscopy. The lack of astrocytic BACE immunoreactivity in young transgenic Tg2576 mice suggests that it is not the APP overexpression but rather the amyloid plaque formation that stimulates astrocytic BACE expression in Tg2576 mice. Our data also suggest that the neuronal overexpression of APP does not induce the overexpression of its metabolizing enzyme in neurons. Alternatively, the age-dependent accumulation of amyloid plaques in the Tg2576 mice does not require increased neuronal expression of BACE. Our data support the hypothesis that neurons are the primary source of beta-amyloid peptides in brain and that astrocytic beta-amyloid generation may contribute to amyloid plaque formation at later stages or under conditions when astrocytes are activated.  相似文献   

11.
We investigated the influence of five- to sevenfold neuronal overexpression of the Swedish mutation of human APP695 (APPsw) in the transgenic mouse strain Tg2576 on neocortical protein kinase C (PKC) expression and subcellular distribution. Using specific antibodies to PKC alpha, PKC beta, PKC gamma, PKC epsilon and PKC zeta isoforms for Western blot analysis, we observed increased immunoreactivity for PKC alpha and PKC gamma isoforms in crude tissue homogenates from the neocortex of 16-month-old APPsw mice as compared with nontransgenic littermates, which was not present in 6 month-old Tg2576 mice. We also observed elevated levels of PKC alpha, PKC beta, PKC gamma and PKC zeta in membrane fractions and reduced concentrations of PKC alpha and PKC gamma in cytosolic fractions of aged Tg2576 mice, indicating that these PKC isoforms are in their activated state. In young, 6-month-old Tg2576 mice, however, the increase in membrane-bound PKC isoforms and concomitant decrease in cytosolic PKC isoforms was much less pronounced, demonstrating the age-dependent nature of alterations in PKC isoforms. Immunocytochemistry of brain sections supported these findings and revealed increased neuronal labelling for PKC alpha, PKC gamma and PKC lambda isoforms in neocortex of 16-month-old APPsw mice compared with nontransgenic littermates, with the increase being strongest for PKC gamma and PKC lambda isoforms. Additionally, PKC gamma and to a lesser extent PKC lambda isoforms were induced in reactive astrocytes in proximity to amyloid plaques. Our data indicate that neuronal overexpression of APPsw causes a dynamic change in neuronal expression and activation of multiple PKC isoforms known to be regulators of proteolytic amyloid precursor protein (APP) processing (PKC alpha) and of neuronal survival (PKC lambda and PKC zeta). The induction of the PKC gamma and PKC lambda isoforms in reactive astrocytes surrounding amyloid plaques might be required for astrocyte activation and astrocytic cytokine expression in response to amyloid plaque formation.  相似文献   

12.
Alzheimer's disease (AD) is a complex, progressive neurological disorder characterized by the formation of extracellular amyloid plaques composed of β‐amyloid protein (Aβ), the key component in pathogenesis of AD. Peripheral administration of enoxaparin (ENO) reportedly reduces the level of Aβ and the amyloid plaques in the cortex of amyloid precursor protein (APP) transgenic mice. However, the exact mechanism of these effects is unclear. Our previous studies indicated that ENO can inhibit APP processing to Aβ in primary cortical cells from Tg2576 mice by downregulating BACE1 levels. This study examines whether ENO‐induced reduction of amyloid load is due to the decreased APP processing to Aβ in Tg2576 mice. Surprisingly, our results indicated that ENO significantly increases the Aβ42/Aβ40 ratio in cortex and enhances the amyloid plaque load in both cortex and hippocampus, although overall APP processing was not influenced by ENO. Moreover, ENO stimulated the aggregation of both Aβ40 and Aβ42 in vitro. Although ENO has been reported to improve cognition in vivo and has potential as a therapeutic agent for AD, the results from our study suggest that ENO can exacerbate the amyloid pathology, and the strategy of using ENO for the treatment of AD may require further assessment. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Transgenic mice expressing the cytokine interleukin-6 exhibit distinctive hippocampal interneuron pathology and behavioral seizures. Electroencephalographic recordings from these mice revealed anomalous hippocampal paroxysmal discharges and suppressed theta rhythm. Analysis of hippocampal field responses evoked by monosynaptic afferent stimulation revealed a site-specific increase in recurrent inhibition in the dentate gyrus. In addition, the cholinergic component of septohippocampal conditioning of dentate-evoked activity was absent in the transgenic mice. These results indicate that overexpression of interleukin-6 selectively disrupts cholinergic transmission by inducing a functional pathophysiology of hippocampal cholinoceptive target neurons.  相似文献   

14.
The molecular mechanisms of beta-amyloidogenesis in sporadic Alzheimer's disease are still poorly understood. To reveal whether aging-associated increases in brain oxidative stress and inflammation may trigger onset or progression of beta-amyloid deposition, a transgenic mouse (Tg2576) that express the Swedish double mutation of human amyloid precursor protein (APP) was used as animal model to study the developmental pattern of markers of oxidative stress and APP processing. In Tg2576 mouse brain, cortical levels of soluble beta-amyloid (1-40) and (1-42) steadily increased with age, but significant deposition of fibrillary beta-amyloid in cortical areas did not occur before postnatal age of 10 months. The slope of increase in cerebral cortical beta-secretase (BACE1) activities in Tg2576 mice between ages of 9 and 13 months was significantly higher as compared to that of the alpha-secretase, while the expression level of BACE1 protein and mRNA did not change with age. The activities of superoxide dismutase and glutathione peroxidase in cortical tissue from Tg2576 mice steadily increased from postnatal age 9-12 months. The levels of cortical nitric oxide, and reactive nitrogen species demonstrated peak values around 9 months of age, while the level of interleukin-1beta steadily increased from postnatal month 13 onwards. The developmental temporal coincidence of increased levels of reactive nitrogen species and antioxidative enzymes with the onset of beta-amyloid plaque deposition provides further evidence that developmentally and aging-induced alterations in brain oxidative status exhibit a major factor in triggering enhanced production and deposition of beta-amyloid, and potentially predispose to Alzheimer's disease.  相似文献   

15.
Liu XP  Zheng HY  Qu M  Zhang Y  Cao FY  Wang Q  Ke D  Liu GP  Wang JZ 《Glia》2012,60(9):1279-1288
One of the earliest neuropathological changes in Alzheimer disease (AD) is the accumulation of astrocytes at sites of β-amyloid (Aβ) deposits, but the cause of this cellular response is unclear. As the activity of protein phosphatase 2A (PP2A) is significantly decreased in the AD brains, we studied the role of PP2A in astrocytes migration. We observed unexpectedly that PP2A activity associated with glial fibrillary acidic protein, an astrocyte marker, was significantly upregulated in tg2576 mice, demonstrated by an increased enzyme activity, a decreased demethylation at leucine-309 (DM-PP2Ac), and a decreased phosphorylation at tyrosine-307 of PP2A (pY307-PP2Ac). Further studies by using in vitro wound-healing model and transwell assay demonstrated that upregulation of PP2A pharmacologically and genetically could stimulate astrocytes migration. Activation of PP2A promotes actin organization and inhibits p38 mitogen-activated protein kinases (p38 MAPK), while simultaneous activation of p38 MAPK partially abolishes the PP2A-induced astrocytes migration. Our data suggest that activation of astrocytes PP2A in tg2567 mice may stimulate the migration of astrocytes to the amyloid plaques by p38 MAPK inhibition, implying that PP2A deficits observed in AD may cause Aβ accumulation via hindering the astrocytes migration.  相似文献   

16.
Insulin-degrading enzyme (IDE) has been identified as a candidate protease in the clearance of amyloid-delta (Abeta) peptides from the brain. IDE activity and binding to insulin are known to be inhibited by glucocorticoids in vitro. In Alzheimer disease (AD), both a decrease in IDE levels and an increase in peripheral glucocorticoid levels have been documented. Our study investigated the effects of glucocorticoid treatment on IDE expression in vivo in 12 nonhuman primates (Macaca nemestrina). Year-long, high-dose exposure to the glucocorticoid cortisol (hydrocortisone acetate) was associated with reduced IDE protein levels in the inferior frontal cortex and reduced IDE mRNA levels in the dentate gyrus of the hippocampus. We assessed Abeta40 and Abeta42 levels by ELISA in the brain and in plasma, total plaque burden by immunohistochemistry, and relative Abeta1-40 and Abeta1-42 levels in the brain by mass spectrometry. Glucocorticoid treatment increased Abeta42 relative to Abeta40 levels without a change in overall plaque burden within the brain, while Abeta42 levels were decreased in plasma. These findings support the notion that glucocorticoids regulate IDE and provide a mechanism whereby increased glucocorticoid levels may contribute to AD pathology.  相似文献   

17.
King DL  Arendash GW 《Brain research》2002,926(1-2):58-68
Regional loss of synapses, particularly within the neocortex and hippocampus, is characteristic of Alzheimer's Disease (AD) and strongly correlated with extent of cognitive impairment. The Tg2576 transgenic mouse model of AD develops Abeta-containing neuritic plaques by 10-16 months of age and shows cognitive impairment in several tasks. In the present study, synaptophysin immunoreactivity (SYN-IR; a marker for synaptic terminals) was evaluated in the neocortex and hippocampus of behaviorally-tested Tg2576 transgenic (Tg+) mice aged 3, 9, 14, and 19 months of age. In control non-transgenic (Tg-) mice, SYN-IR in both neocortex and hippocampus tended to decrease with age, while SYN-IR in Tg+ mice was maintained with age. Thus, 19M Tg+ mice exhibited significantly greater synaptophysin immunostaining compared to 19M Tg- mice in both inner and outer neocortical regions, as well as in the dentate gyrus' outer molecular layer and polymorphic layer. Over all four age groups collectively, outer cortical SYN-IR was also greater in Tg+ compared to Tg- mice. Multiple factors could be responsible for maintained SYN-IR in aged Tg+ mice, including compensatory changes in synaptic morphology and staining of dystrophic neuritics associated with Abeta deposition. For all animals combined (Tg+ and Tg-), as well as for aged 19M animals alone, hippocampal SYN-IR was correlated with impaired acquisition and spatial reference memory in the Morris water maze task, suggestive that elevated hippocampal SYN-IR is a manifestation of pathophysiologic synaptic processing within the hippocampus. Also for 19M animals alone, hippocampal SYN-IR was highly correlated with impaired visible platform recognition, indicative that elevated SYN-IR is linked to visual agnosia. The results of this study are consistent with the premise that maintained SYN-IR in Tg2576 mice during aging is associated with impaired synaptic function, resulting in cognitive deficits.  相似文献   

18.
Insulin-degrading enzyme (IDE) is a neutral thiol metalloprotease, which cleaves insulin with high specificity. Additionally, IDE hydrolyzes Aβ, glucagon, IGF I and II, and β-endorphin. We studied the expression of IDE protein in postmortem brains of patients with schizophrenia and controls because: (1) the gene encoding IDE is located on chromosome 10q23-q25, a gene locus linked to schizophrenia; (2) insulin resistance with brain insulin receptor deficits/receptor dysfunction was reported in schizophrenia; (3) the enzyme cleaves IGF-I and IGF-II which are implicated in the pathophysiology of the disease; and (4) brain γ-endorphin levels, liberated from β-endorphin exclusively by IDE, have been reported to be altered in schizophrenia. We counted the number of IDE immunoreactive neurons in the dorsolateral prefrontal cortex, the hypothalamic paraventricular and supraoptic nuclei, and the basal nucleus of Meynert of 14 patients with schizophrenia and 14 matched control cases. Patients had long-term haloperidol treatment. In addition, relative concentrations of IDE protein in the dorsolateral prefrontal cortex were estimated by Western blot analysis. There was a significantly reduced number of IDE expressing neurons and IDE protein content in the left and right dorsolateral prefrontal cortex in schizophrenia compared with controls, but not in other brain areas investigated. Results of our studies on the influence of haloperidol on IDE mRNA expression in SHSY5Y neuroblastoma cells, as well as the effect of long-term treatment with haloperidol on the number of IDE immunoreactive neurons in rat brain, indicate that haloperidol per se, is not responsible for the decreased neuronal expression of the enzyme in schizophrenics. Haloperidol however, might exert some effect on IDE, through changes of the expression levels of its substrates IGF-I and II, insulin and β-endorphin. Reduced cortical IDE expression might be part of the disturbed insulin signaling cascades found in schizophrenia. Furthermore, it might contribute to the altered metabolism of certain neuropeptides (IGF-I and IGF-II, β-endorphin), in schizophrenia.  相似文献   

19.
Dissociation of Alzheimer type pathology in a disconnected piece of cortex   总被引:2,自引:0,他引:2  
A woman with Alzheimer’s disease died at the age of 85 years. A left sphenoid meningioma had been removed 27 years earlier. The tumor and the operation had severely altered the white matter of the frontal lobe and of the anterior part of the temporal lobe on the left side and massively disconnected a small piece of frontal cortex. There were numerous senile plaques and neurofibrillary tangles in the limbic and isocortical samples. The white matter lesions, on the operated (left) side, were associated with a lower density of neuritic plaques and of neuropil threads and with a higher density of β-amyloid (Aβ) deposits. The density of tau-positive neuritic plaques, neurofibrillary tangles and neuropil threads was close to zero, whereas the diffuse deposits of Aβ were abundant, in the small disconnected piece of cortex. In this area, the white matter was severely damaged, as in the adjoining cortex, but the continuity of the cortical ribbon was also disrupted. These data show that neuritic and Aβ pathologies may be dissociated and suggest that the neuritic alterations mainly involve cortico-cortical fibers coursing tangentially in the cortical ribbon. Received: 1 July 1996 / Revised, accepted: 29 October 1996  相似文献   

20.
Cholinergic deficits in Alzheimer's disease are accompanied by a number of alterations in other transmitter systems including glutamate, noradrenaline and serotonin, suggesting the involvement also of other neurotransmitter systems in the pathogenesis of the disease. To address the question whether beta-amyloid may contribute to these deficits, brain tissue from transgenic Tg2576 mice with Alzheimer plaque pathology at ages of 5 (still no significant plaque load) and 17 months (moderate to high cortical beta-amyloid plaque load) were examined for a number of cholinergic and non-cholinergic markers. Transgenic mice with no significant plaque load demonstrated reduced hemicholinium-3 (HCh-3) binding to choline uptake sites in anterior brain regions as compared to non-transgenic littermates, while in aged transgenic mice with high number of plaque deposits decreased HCh-3 binding levels were accompanied by increased vesicular acetylcholine transporter binding in selected cortical brain regions. In aged transgenic mice GABA(A), NMDA, AMPA, kainate, and beta-adrenergic as well 5-HT(1A)- and 5-HT(2A)-receptor binding levels were hardly affected, whereas alpha(1)- and alpha(2)-adrenoceptor binding was increased in selected cerebral cortical regions as compared to non-transgenic littermates. The development of changes in both cholinergic and non-cholinergic markers in transgenic Tg2576 mouse brain already before the onset of progressive plaque deposition provides in vivo evidence of a modulatory role of soluble beta-amyloid on cortical neurotransmission and may be referred to the deficits in learning and memory observed in these mice also before significant plaque load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号