首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Maternal infection during pregnancy is associated with a higher incidence of mental disorders, including schizophrenia, in the offspring in later life. Our recent attempt to study this link between prenatal immunological challenge and subsequent psychopathology has led to the establishment of a mouse model demonstrating the emergence of multiple psychotic-like phenotypes following immunological challenge on gestation day (GD) 9. However, little is known about the impact of similar in utero challenge at different times of pregnancy. Here, we compare the efficacy of identical maternal immune stimulation induced by the exposure to polyriboinosinic-polyribocytidilic acid (Poly(I:C)) at a dose of 5mg/kg (i.v.) on distinct days of gestation (GD 6, 9, 13 or 17). The offspring derived were then compared to those collected from vehicle- and non-treated dams in two paradigms of selective associative learning: latent inhibition (LI) and the US-pre-exposure effect (USPEE). LI deficiency was observed in animals born to dams treated with Poly(I:C) on GD 6, 9 or 13, but not in those on GD17. In contrast, a loss of the USPEE was equivalently seen in all Poly(I:C) treatment groups, regardless of treatment times. Evaluation of the acute cytokine response in a separate cohort of pregnant dams receiving Poly(I:C) challenge on either GD9 or GD17 revealed that the ratio of interleukin-10/tumor necrosis factor-alpha was elevated in the GD17 relative to the GD9 group. The present report thus provides evidence that the acute cytokine reaction as well as the long-term pattern of behavioural sequelae of maternal immune challenge can be affected by its precise timing during pregnancy. The present study provides further support to the use of the prenatal Poly(I:C) model in the elucidation of mechanisms involved in the aetiology and disease process of immuno-precipitated neurodevelopmental mental diseases, including but not limited to, schizophrenia.  相似文献   

2.
Maternal immune activation (MIA) during pregnancy in rodents increases the risk of the offspring to develop schizophrenia-related behaviors, suggesting a relationship between the immune system and the brain development. Here we tested the hypothesis that MIA induced by the viral mimetic polyinosinic-polycytidylic acid (poly I:C) in early or late gestation of mice leads to behavioral and neuroanatomical disorders in the adulthood. On gestational days (GDs) 9 or 17 pregnant dams were treated with poly I:C or saline via intravenous route and the offspring behaviors were measured during adulthood. Considering the progressive structural neuroanatomical alterations in the brain of individuals with schizophrenia, we used magnetic resonance imaging (MRI) to perform brain morphometric analysis of the offspring aged one year. MIA on GD9 or GD17 led to increased basal locomotor activity, enhanced motor responses to ketamine, a psychotomimetic drug, and reduced time spent in the center of the arena, suggesting an increased anxiety-like behavior. In addition, MIA on GD17 reduced glucose preference in the offspring. None of the treatments altered the relative volume of the lateral ventricles. However, a decrease in brain volume, especially for posterior structures, was observed for one-year-old animals treated with poly I:C compared with control groups. Thus, activation of the maternal immune system at different GDs lead to neuroanatomical and behavioral alterations possibly related to the positive and negative symptoms of schizophrenia. These results provide insights on neuroimmunonological and neurodevelopmental aspects of certain psychopathologies, such as schizophrenia.  相似文献   

3.
4.
BackgroundStress during pregnancy and maternal inflammation are two common prenatal factors that impact offspring development. Asthma is the leading chronic condition complicating pregnancy and a common source of prenatal stress and inflammation.ObjectiveThe goal of this study was to characterize the developmental impact of repeated allergic asthma inflammation during pregnancy on offspring behavioral outcomes and brain inflammation.MethodsPregnant female C57BL/6 mice were sensitized with ovalbumin (OVA) or PBS vehicle control and then randomly assigned to receive daily aerosol exposures to the same OVA or PBS treatment during early, gestational days (GD) 2-GD9, or late pregnancy, GD10-GD17. Maternal sera were collected after the first and last aerosol induction regimen and measured for concentrations of corticosterone, anti-OVA IgE, and cytokine profiles. Juvenile male and female offspring were assessed for locomotor and social behaviors and later as adults assessed for anxiety-like, and marble burying behaviors using a series of behavioral tasks. Offspring brains were evaluated for region-specific differences in cytokine concentrations.ResultsIn early gestation, both PBS and OVA-exposed dams had similar serum corticosterone concentration at the start (GD2) and end (GD9) of daily aerosol inductions. Only OVA-exposed dams showed elevations in cytokines that imply a diverse and robust T helper cell-mediated immune response. Male offspring of early OVA-exposed dams showed decreases in open-arm exploration in the elevated plus maze and increased marble burying without concomitant changes in locomotor activity or social interactions. These behavioral deficits in early OVA-exposed male offspring were associated with lower concentrations of G-CSF, IL-4, IL-7, IFNγ, and TNFα in the hypothalamus. In late gestation, both PBS and OVA-exposed dams had increased corticosterone levels at the end of daily aerosol inductions (GD17) compared to at the start of inductions (GD10). Male offspring from both PBS and OVA-exposed dams in late gestation showed similar decreases in open arm exploration on the elevated plus maze compared to OVA male offspring exposed in early gestation. No behavioral differences were present in female offspring across all treatment groups. However, females of dams exposed to OVA during early gestation displayed similar reductions as males in hypothalamic G-CSF, IL-7, IL-4, and IFNγ.DiscussionThe inflammatory responses from maternal allergic asthma in early gestation and resulting increases in anxiety-like behavior in males support a link between the timing of prenatal insults and sex-specific developmental outcomes. Moreover, the heightened stress responses in late gestation and concomitant dampened inflammatory response to allergic asthma suggest that interactions between the maternal immune and stress-response systems shape early life fetal programming.  相似文献   

5.
Epidemiological studies have indicated an association between maternal bacterial and viral infections during pregnancy and the higher incidence of schizophrenia in the resultant offspring post-puberty. One hypothesis asserts that the reported epidemiological link is mediated by prenatal activation of the foetal immune system in response to the elevation of maternal cytokine level due to infection. Here, we report that pregnant mouse dams receiving a single exposure to the cytokine-releasing agent, polyriboinosinic-polyribocytidilic acid (PolyI:C; at 2.5, 5.0, or 10.0 mg/kg) on gestation day 9 produced offspring that subsequently exhibited multiple schizophrenia-related behavioural deficits in adulthood, in comparison to offspring from vehicle injected or non-injected control dams. The efficacy of the PolyI:C challenge to induce cytokine responses in na?ve non-pregnant adult female mice and in foetal brain tissue when injected to pregnant mice were further ascertained in separate subjects: (i) a dose-dependent elevation of interleukin-10 was detected in the adult female mice at 1 and 6h post-injection, (ii) 12 h following prenatal PolyI:C challenge, the foetal levels of interleukin-1beta were elevated. The spectrum of abnormalities included impairments in exploratory behaviour, prepulse inhibition, latent inhibition, the US-pre-exposure effect, spatial working memory; and enhancement in the locomotor response to systemic amphetamine (2.5 mg/kg, i.p.) as well as in discrimination reversal learning. The neuropsychological parallels between prenatal PolyI:C treatment in mice and psychosis in humans, demonstrated here, leads us to conclude that prenatal PolyI:C treatment represents one of the most powerful environmental-developmental models of schizophrenia to date. The uniqueness of this model lies in its epidemiological and immunological relevance. It is, sui generis, ideally suited for the investigation of the neuropsychoimmunological mechanisms implicated in the developmental aetiology and disease processes of schizophrenia.  相似文献   

6.
7.
Maternal infection during pregnancy is a risk factor for some psychiatric illnesses of neurodevelopmental origin such as schizophrenia and autism. In experimental animals, behavioral and neuropathological outcomes relevant to schizophrenia have been observed in offspring of infected dams. However, the type of infectious agent used and gestational age at time of administration have varied. The objective of the present study was to compare the effects of prenatal challenge with different immune agents given at different time windows during gestation on behavioral outcomes in offspring. For this, pregnant rats were administered bacterial endotoxin (lipopolysaccharide, LPS), the viral mimic polyinosinic: polycytidylic acid (poly I:C), or turpentine, an inducer of local inflammation, at doses known to produce fever, at three different stages in pregnancy: embryonic day (E)10-11, E15-16 and E18-19. Prepulse inhibition of acoustic startle (PPI) was later measured in male adult offspring. PPI was significantly decreased in offspring after prenatal LPS treatment at E15-16 and E18-19. Intramuscular injection of pregnant dams with turpentine at E15-16 also decreased PPI in adult offspring. Maternal poly I:C administration had no significant effect on PPI in offspring. In contrast to prenatal LPS exposure, acute LPS administration to naive adult males had no effect on PPI. Thus, prenatal exposure both to a systemic immunogen and to local inflammation at brief periods during later pregnancy produced lasting deficits in PPI in rat offspring. These findings support the idea that maternal infection during critical windows of pregnancy could contribute to sensorimotor gating deficits in schizophrenia.  相似文献   

8.
It has been hypothesized that the maternal immune response to infection may influence fetal brain development and lead to schizophrenia. Animal experimentation has supported this notion by demonstrating altered sensorimotor gating (prepulse inhibition, PPI) in adult rats prenatally exposed to an immune challenge. In the present study, pregnant rats were exposed to the bacterial endotoxin lipopolysaccharide (LPS) throughout gestation and the offspring were examined by evaluating the PPI, dopaminergic function, brain protein expression and cytokine serum levels from weaning to late adulthood. Prenatal LPS exposure induced a deficit in PPI that emerged at 'puberty' and that persisted throughout adult life. This prenatal insult caused age-specific changes in accumbal dopamine levels and in synaptophysin expression in the frontal cortex. Moreover, serum cytokine levels were altered in an age- and cytokine-dependent manner. Here we show that prenatal LPS administration throughout pregnancy causes maturation-dependent PPI deficits and age-dependent alterations in dopamine activity, as well as in synaptophysin expression and cytokine levels.  相似文献   

9.
Maternal infection during human pregnancy has been associated with the development of schizophrenia in the adult offspring. The stage of development and the maternal inflammatory response to infection, which undergoes quantitative and qualitative changes throughout gestation, are thought to determine critical windows of vulnerability for the developing brain. In order to investigate how these two factors may contribute to the outcome in the offspring, we studied the inflammatory response to turpentine (TURP) injection (100 μl/dam) and its consequences in the adult offspring, in pregnant rats at gestational day (GD) 15 or 18, which correspond to late first and early second trimester of human pregnancy, respectively. Maternal inflammatory response to TURP was different between the two GDs, with fever and circulating levels of the pro-inflammatory interleukin (IL)-6 significantly attenuated at GD 18, compared to GD 15. In the adult offspring, TURP challenge at GD 15 induced a significant decrease in pre-pulse inhibition (PPI) of acoustic startle, increased latency in the cued task of the Morris-water maze, prolonged conditioned fear response and enhanced locomotor effect of amphetamine. In contrast, the same immune challenge at GD 18 induced only a prolonged conditioned fear response. These results suggest a window of vulnerability at GD 15, at which TURP seems to affect several behaviors that are strongly modulated by dopamine. This was supported by increased tyrosine hydroxylase expression in the nucleus accumbens of the adult offspring of mothers treated at GD 15.  相似文献   

10.
Maternal infection during pregnancy has been associated with an increased risk for the development of schizophrenia, a disorder characterized by abnormalities in hippocampal morphology and function. Neurogenesis occurs in the hippocampus throughout development into adulthood and is believed to modulate hippocampal function. This study used a rat model in which bacterial endotoxin, lipopolysaccharide (LPS), is administered to pregnant dams, to test if prenatal immune activation has acute and/or long term effects on various phases of neurogenesis (proliferation, survival, differentiation) in the hippocampal dentate gyrus of offspring. When LPS was administered to dams on gestation days (GD) 15 and 16, there was decreased proliferation of dentate cells at postnatal day (PD) 14 and decreased survival of cells generated at PD14 in offspring. When prenatal exposure to LPS was later in pregnancy (GD 18 and 19), offspring showed decreased survival of cells generated both at the time of LPS exposure and at PD14. There was no change in cell proliferation or survival in adult offspring at PD60, with prenatal LPS exposure. Co-administration of the cyclo-oxygenase inhibitor, ibuprofen (IBU), together with prenatal LPS on GD 15 and 16, was unable to prevent the deficit in neuronal survival at PD14. IBU blocked LPS-induced fever but did not block LPS-induced increases in plasma cytokines and corticosterone in the pregnant dam. This indicates that deficits in neurogenesis caused by prenatal LPS are not mediated by LPS-induced fever or eicosanoid induction, but could be mediated by LPS-induced increases in maternal cytokines or corticosterone.  相似文献   

11.
Maternal inflammation during critical stages of gestation is thought to underlie the link between prenatal infection and several neurodevelopmental psychiatric disorders in the offspring, including schizophrenia. Increased activity of mesolimbic dopamine (DA) neurons, a hallmark of psychosis, is found in offspring of rodents exposed to a prenatal inflammatory challenge but it is unclear how this effect is elicited. Using an experimental model of localized aseptic inflammation with turpentine oil (TURP) we sought to establish whether circulating interleukin-6 (IL-6) and leptin play a role in the effects of prenatal inflammation on DA neurons. Both mediators are involved in the systemic inflammatory response to immunogens, with IL-6 mediating the early phase, followed by leptin in the late phase of the response. Maternal treatment with TURP at gestational day (GD) 15 enhanced the locomotor response to the DA indirect agonist, amphetamine (AMPH), increased the expression of tyrosine hydroxylase (TH), an enzyme involved in DA synthesis, DA levels and the expression of the post-synaptic protein spinophilin in the nucleus accumbens (NAcc) in the adult offspring. All of these alterations were totally abolished by co-treating the pregnant dams with a neutralizing IL-6 antiserum. Neutralization of maternal leptin prevented the enhanced behavioral sensitization and elevation of DA and spinophilin in the NAcc but spared other changes regulated by IL-6, such as increased NAcc TH levels and acute locomotor response to AMPH. Our results provide novel evidence to suggest that prenatal surges in both maternal circulating IL-6 and leptin contribute to the appearance of sensitized DA function in the adult offspring.  相似文献   

12.
Impairments in central reward processing constitute an important aspect of the negative symptoms of schizophrenia. Despite its clinical relevance, the etiology of deficient reward processing in schizophrenia remains largely unknown. Here, we used an epidemiologically informed mouse model of schizophrenia to explore the effects of prenatal immune activation on reward-related functions. The model is based on maternal administration of the viral mimic PolyI:C and has been developed in relation to the epidemiological evidence demonstrating enhanced risk of schizophrenia and related disorders following prenatal maternal infection. We show that prenatal immune activation induces selective deficits in the expression (but not acquisition) of conditioned place preference for a natural reward (sucrose) without changing hedonic or neophobic responses to the reward. On the other hand, prenatal immune activation led to enhanced place preference for the psychostimulant drug cocaine, while it attenuated the locomotor reaction to the drug. The prenatal exposure did not alter negative reinforcement learning as assessed using a contextual fear conditioning paradigm. Our findings suggest that the nature of reward-related abnormalities following prenatal immune challenge depends on the specificity of the reward (natural reward vs drug of abuse) as well as on the valence domain (positive vs negative reinforcement learning). Moreover, our data indicate that reward abnormalities emerging in prenatally immune-challenged offspring may, at least in part, stem from an inability to retrieve previously established context–reward associations and to integrate such information for appropriate goal-directed behavior.  相似文献   

13.
Epidemiological studies with human populations indicate associations between maternal infection during pregnancy and increased risk in offspring for central nervous system (CNS) disorders including schizophrenia, autism and cerebral palsy. Since 2000, a large number of studies have used rodent models of systemic prenatal infection or prenatal immune activation to characterize changes in brain function and behavior caused by the prenatal insult. This review provides a comprehensive summary of these findings, and examines consistencies and trends across studies in an effort to provide a perspective on our current state of understanding from this body of work. Results from these animal modeling studies clearly indicate that prenatal immune activation can cause both acute and lasting changes in behavior and CNS structure and function in offspring. Across laboratories, studies vary with respect to the type, dose and timing of immunogen administration during gestation, species used, postnatal age examined and specific outcome measure quantified. This makes comparison across studies and assessment of replicability difficult. With regard to mechanisms, evidence for roles for several acute mediators of effects of prenatal immune activation has emerged, including circulating interleukin-6, increased placental cytokines and oxidative stress in the fetal brain. However, information required to describe the complete mechanistic pathway responsible for acute effects of prenatal immune activation on fetal brain is lacking, and no studies have yet addressed the issue of how acute prenatal exposure to an immunogen is transduced into a long-term CNS change in the postnatal animal. Directions for further research are discussed.  相似文献   

14.
Exposure to prenatal infections has been widely associated with the increased risk for neuropsychiatric disorders of developmental origin such as schizophrenia and autism. Although several behavioral and cognitive deficits have been detected during adulthood in rodent models of prenatal infections, early behavioral changes have not been well characterized. In a prenatal lipopolysaccharide (LPS) model, we have previously observed significant alterations in the neuronal cytoarchitecture during early postnatal life. In the present study, we aimed to investigate the potential effects of prenatal immune activation on early neurophenotypic presentations using a set of behavioral test battery. Female Sprague-Dawley rats were administered with 100 μg/kg LPS (intraperitoneally) at gestational days 15 and 16. During the first postnatal week, we found no significant effect on maternal behavior or mother-pup interaction by this treatment. Also, no major changes in physical developmental milestones of pups were noted from postnatal (P) days P6 to P16. Importantly, prenatal LPS-exposed pups had a significant decrease in the number and duration of ultrasonic vocalization calls at P3 and P5. Prenatal LPS treatment also led to impairments in nest-seeking behavior and odor-stroke associative learning in neonatal rats at P8 and P9. At the molecular level, we detected significant decrease in the expression of cortical 5HT1A and 5HT1B messenger RNA at P3. These data suggest that prenatal exposure to an immune activator can significantly impair the social/communicative behavior in the neonate offspring, which may be relevant to childhood and premorbid abnormalities reported in autism and schizophrenia subjects.  相似文献   

15.
Prenatal exposure to infectious or inflammatory insults can increase the risk of developing neuropsychiatric disorder in later life, including schizophrenia, bipolar disorder, and autism. These brain disorders are also characterized by pre- and postsynaptic deficits. Using a well-established mouse model of maternal exposure to the viral mimetic polyriboinosinic–polyribocytidilic acid [poly(I:C)], we examined whether prenatal immune activation might cause synaptic deficits in the hippocampal formation of pubescent and adult offspring. Based on the widely appreciated role of microglia in synaptic pruning, we further explored possible associations between synaptic deficits and microglia anomalies in offspring of poly(I:C)-exposed and control mothers. We found that prenatal immune activation induced an adult onset of presynaptic hippocampal deficits (as evaluated by synaptophysin and bassoon density). The early-life insult further caused postsynaptic hippocampal deficits in pubescence (as evaluated by PSD95 and SynGAP density), some of which persisted into adulthood. In contrast, prenatal immune activation did not change microglia (or astrocyte) density, nor did it alter their activation phenotypes. The prenatal manipulation did also not cause signs of persistent systemic inflammation. Despite the absence of overt glial anomalies or systemic inflammation, adult offspring exposed to prenatal immune activation displayed increased hippocampal IL-1β levels. Taken together, our findings demonstrate that age-dependent synaptic deficits and abnormal pro-inflammatory cytokine expression can occur during postnatal brain maturation in the absence of microglial anomalies or systemic inflammation.  相似文献   

16.
ABSTRACT: BACKGROUND: There is mounting evidence for a neurodevelopmental basis for disorders such as autism and schizophrenia, in which prenatal or early postnatal events may influence brain development and predispose the young to develop these and related disorders. We have now investigated the effect of a prenatal immune challenge on brain development in the offspring. Pregnant rats were treated with the double-stranded RNA polyinosinic:polycytidylic acid (poly(I:C); 10mg/kg) which mimics immune activation occurring after activation of Toll-like receptors-3 (TLR3) by viral infection. Injections were made in late gestation (embryonic days E14, E16 and E18), after which parturition proceeded naturally and the young were allowed to develop up to the time of weaning at postnatal day 21 (P21). The brains of these animals were then removed to assess the expression of 13 different neurodevelopmental molecules by immunoblotting. RESULTS: Measurement of cytokine levels in the maternal blood 5 hours after an injection of poly(I:C) showed significantly increased levels of monocyte chemoattractant protein-1 (MCP-1), confirming immune activation. In the P21 offspring, significant changes were detected in the expression of GluN1 subunits of NMDA receptors, with no difference in GluN2A or GluN2B subunits or the postsynaptic density protein PSD-95 and no change in the levels of the related small GTPases RhoA or RhoB, or the NMDA receptor modulator EphA4. Among presynaptic molecules, a significant increase in Vesicle Associated Membrane Protein-1 (VAMP-1; synaptobrevin) was seen, with no change in synaptophysin or synaptotagmin. Proliferating Cell Nuclear Antigen (PCNA), as well as the neurogenesis marker doublecortin were unchanged, although Sox-2 levels were increased, suggesting possible changes in the rate of new cell differentiation. CONCLUSIONS: The results reveal the induction by prenatal poly(I:C) of selective molecular changes in the brains of P21 offspring, affecting primarily molecules associated with neuronal development and synaptic transmission. These changes may contribute to the behavioural abnormalities that have been reported in adult animals after exposure to poly(I:C) and which resemble symptoms seen in schizophrenia and related disorders.  相似文献   

17.
Prenatal maternal infection is an environmental risk factor for neurodevelopmental psychiatric illness and disease-associated cognitive impairments. Modeling this epidemiological link in animals shows that prenatal immune challenge is capable of inducing long-lasting deficits in numerous cognitive domains. Here, we combined a neonatal cross-fostering design with a mouse model of prenatal immune challenge induced by maternal gestational treatment with the viral mimetic poly(I:C) to dissect the relative contribution of prenatal and postnatal maternal effects on the offspring. We show that offspring prenatally exposed to poly(I:C) display significant impairments in spatial matching-to-position working memory and spatial novelty presence regardless of whether they are raised by gestationally immune-challenged or non-challenged control surrogate mothers. Likewise, prenatally immune challenged offspring exhibit reduced glutamic acid decarboxylase 65-kDa (GAD65) and 67-kDa (GAD67) gene expression in the adult medial prefrontal cortex and dorsal hippocampus largely independently of the postnatal rearing conditions. In addition, we confirm that being raised by a gestationally immune-challenged surrogate mother is sufficient to increase the offspring’s locomotor response to systemic amphetamine treatment. Our data thus suggest that prenatal infection-induced deficits in spatial short-term memory are mediated by prenatal maternal effects on the offspring. At the same time, our study adds further weight to the notion that being reared by a surrogate mother that experienced immune activation during pregnancy may constitute a risk factor for specific dopaminergic abnormalities.  相似文献   

18.
Growing evidence suggests schizophrenia may arise from abnormalities in early brain development. The prefrontal cortex (PFC) stands out as one of the main regions affected in schizophrenia. Latent inhibition, an interesting cognitive marker for schizophrenia, has been found in some studies to be reduced in acute patients. It is generally widely accepted that there is a dopaminergic dysfunctioning in schizophrenia. Moreover, several authors have reported that the psychostimulant, D-amphetamine (D-AMP), exacerbates symptoms in patients with schizophrenia. We explored in rats the effects in adulthood of neonatal transient inactivation of the PFC on behavioral and neurochemical anomalies associated with schizophrenia. Following tetrodotoxin (TTX) inactivation of the left PFC at postnatal day 8, latent inhibition-related dopaminergic responses and dopaminergic reactivity to D-AMP were monitored using in vivo voltammetry in the left core part of the nucleus accumbens in adult freely moving rats. Dopaminergic responses and behavioral responses were followed in parallel. Prefrontal neonatal inactivation resulted in disrupted behavioral responses of latent inhibition and latent inhibition-related dopaminergic responses in the core subregion. After D-AMP challenge, the highest dose (1.5?mg/kg i.p.) induced a greater dopamine increase in the core in rats microinjected with TTX, and a parallel increase in locomotor activity, suggesting that following prefrontal neonatal TTX inactivation animals display a greater behavioral and dopaminergic reactivity to D-AMP. Transitory inactivation of the PFC early in the postnatal developmental period leads to behavioral and neurochemical changes in adulthood that are meaningful for schizophrenia modeling. The data obtained may help our understanding of the pathophysiology of this disabling disorder.  相似文献   

19.
20.
Inflammation-induced disruption of fetal neurodevelopmental processes has been linked to the precipitation of long-lasting behavioral abnormalities and associated neuropathology. Recent longitudinal investigations in prenatal immune activation models have revealed developmental correspondences between the ontogeny of specific dopaminergic neuropathology and the postnatal onset of distinct forms of dopamine-dependent functional abnormalities implicated in schizophrenia. Two examples of such developmental correspondences are increased expression of the orphan nuclear receptor Nurr1 (NR4A2) in ventral midbrain areas and disruption of prepulse inhibition of the acoustic startle reflex, with both the neuroanatomical and behavioral effects emerging only in adult but not pre-pubertal subjects exposed to prenatal maternal inflammation. In the present study, we tested the hypothesis that Nurr1 may be a critical molecular mediator of prepulse inhibition deficits induced by prenatal immune activation. To this end, we compared the effects of prenatal immune challenge on adult PPI in wild-type (wt) mice and mice with a heterozygous constitutive deletion of Nurr1 (Nurr1+/−) using a well established mouse model of maternal immune activation by exposure to the viral mimetic poly(I:C) (=polyriboinosinic–polyribocytidilic acid). We found that prenatal poly(I:C) treatment on gestation day 9 was similarly effective in disrupting prepulse inhibition in adult wt and Nurr1+/− mice. Prenatal poly(I:C) treatment also generally increased midbrain Nurr1-positive cells and counteracted the genetically driven Nurr1 deficit in the substantia nigra. Our data thus suggest that at least under the present experimental conditions, Nurr1 is not essential for the development of prepulse inhibition deficits induced by prenatal immune activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号