首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
OBJECTIVE: To determine the contribution of 18FDG PET, 11C-flumazenil PET, and 123I-iomazenil SPECT to the presurgical evaluation of patients with medically intractable complex partial seizures. METHODS: Presurgical evaluation was performed in 23 patients, who were considered candidates for temporal lobe resective surgery (14 females and nine males with a median age of 34 (range 13 to 50) years). The presurgical diagnosis was based on seizure semiology as demonstrated with ictal video recording, ictal and interictal scalp EEG recordings, and MRI. RESULTS: Eighteen patients had convergent findings in clinical semiology, interictal and ictal EEG with scalp and sphenoidal electrodes, and MRI that warranted surgery without depth EEG (DEEG). In five patients with insufficient precision of localisation, DEEG with intracerebral and subdural electrodes was performed. MRI showed abnormalities in 22 out of 23 patients. Of these 22, 18 had mesial temporal sclerosis. This was limited to the mesial temporal lobe in four and more widespread in the temporal lobe in 14 patients. In one patient only enlargement of the temporal horn was found and in three others only white matter lesions were detected. 18FDG PET showed a large area of glucose hypometabolism in the epileptogenic temporal lobe, with an extension outside the temporal lobe in 10 of 23 patients. Only in one of these patients DEEG showed extratemporal abnormalities that were concordant with a significant extratemporal extension of hypometabolism in 18FDG PET. 18FDG PET was compared with the results of scalp EEG: in none of the patients was an anterior temporal ictal onset in scalp EEG related to a maximum hypometabolism in the mesial temporal area. By contrast, the region of abnormality indicated by 11C-flumazenil PET was much more restricted, also when compared with DEEG findings. Extension of abnormality outside the lobe of surgery was seen in only two patients with 11C-flumazenil and was less pronounced compared with the intratemporal abnormality. Both 18FDG PET and 11C-flumazenil PET reliably indicated the epileptogenic temporal lobe. Thus these techniques provide valuable support for the presurgical diagnosis, especially in patients with non-lesional MRI or non-lateralising or localising scalp EEG recordings. In those patients in whom phase 1 presurgical evaluation on the basis of classic methods does not allow a localisation of the epileptogenic area, PET studies may provide valuable information for the strategy of the implantation of intracranial electrodes for DEEG. Previous studies have suggested that 11C-flumazenil binding has a closer spatial relationship with the zone of ictal onset than the area of glucose hypometabolism, but this study suggests rather that the decrease in the 11C-flumazenil binding simply reflects a loss of neurons expressing the benzodiazepine-GABA receptor. 11C-flumazenil PET did not prove to be superior to 18FDG PET. CONCLUSION: In 21 patients sufficient material was obtained at surgery for a pathological examination. In 17 mesial temporal sclerosis, in one an oligodendroglioma grade B, in another a vascular malformation and in two patients no abnormalities were found. Although all 21 patients with pathological abnormality showed hypometabolic zones with 18FDG PET and a decreased uptake in 11C-flumazenil binding, there was no strong correlation between pathological diagnosis and functional abnormal areas in PET. Grading of medial temporal sclerosis according to the Wyler criteria showed no correlation with the degree of hypometabolism in either 18FDG or 11C-flumazenil PET. The interictal 123I-iomazenil SPECT technique was highly inaccurate in localising the lobe of surgery.  相似文献   

2.
OBJECTIVE: To analyze the clinical utility of [11C]flumazenil (FMZ) PET to detect perilesional and remote cortical areas of abnormal benzodiazepine receptor binding in relation to MRI, 2-deoxy-2-[18F]fluoro-d-glucose (FDG) PET, and electrocorticographic (ECoG) findings as well as clinical characteristics of the epilepsy in epileptic patients with brain lesion. BACKGROUND: The success of resective surgery in patients with medically intractable epilepsy and brain lesion depends not only on removal of the lesion itself but also on the reliable presurgical delineation of the epileptic cortex that commonly extends beyond it. PET could provide a noninvasive identification of such epileptogenic areas. METHODS: Seventeen patients underwent high resolution MRI, FDG and FMZ PET, and presurgical EEG evaluation, including chronic intracranial ECoG monitoring or intraoperative ECoG. Regional cortical FDG/FMZ PET abnormalities were defined on partial volume-corrected PET images using an objective method based on a semiautomated definition of areas with abnormal asymmetry. Structural lesions were defined on coregistered MRI. The marked PET abnormalities visualized on three-dimensional cortical surface were compared with each other, to the extent of MRI-defined lesion, as well as to ECoG findings. RESULTS: The mean surface extent of FMZ PET abnormalities was significantly larger than the corresponding structural lesions, but it was significantly smaller than areas of glucose hypometabolism. The size of perilesional FDG PET abnormalities showed a correlation with the lifetime number of seizures (r = 0.93, p = 0.001). The extent of perilesional FMZ PET abnormalities was independent of the seizure number and showed an excellent correspondence with spiking cortex, the resection of which resulted in seizure-free outcome in all but one operated patient. Remote FMZ PET abnormalities (n = 6) were associated with early age at seizure onset (p = 0.048) and appeared in ipsilateral synaptically connected regions from the lesion area. CONCLUSIONS: Three-dimensional surface-rendered FMZ PET is able to delineate perilesional epileptic cortex, and it may be especially useful to localize such areas in patients with extensive perilesional glucose hypometabolism associated with a large number of seizures. Remote FMZ PET abnormalities in patients with early onset and long duration of epilepsy might represent secondary epileptogenesis, but this requires further study.  相似文献   

3.
The success of cortical resection for intractable epilepsy of neocortical origin is highly dependent on the accurate presurgical delineation of the regions responsible for generating seizures. In addition to EEG and structural imaging studies, functional neuroimaging such as positron emission tomography (PET) can assist lateralization and localization of epileptogenic cortical areas. In the presented studies, objectively delineated focal PET abnormalities have been analyzed in patients (mostly children) with intractable epilepsy, using two different tracers: 2-deoxy-2-[18F]fluoro-D-glucose (FDG), that measures regional brain glucose metabolism, and [11C]flumazenil (FMZ), that binds to GABAA receptors. The PET abnormalities were correlated with scalp and intracranial EEG findings, structural brain abnormalities, as well as surgical outcome data. In patients with extratemporal foci and no lesion on MRI, FMZ PET was more sensitive than FDG PET for identification of the seizure onset zone defined by intracranial EEG monitoring. In contrast, seizures commonly originated from the border of hypometabolic cortex detected by FDG PET suggesting that such areas are most likely epileptogenic, and should be addressed if subdural EEG is applied to delineate epileptic cortex. In patients with cortical lesions, perilesional cortex with decreased FMZ binding was significantly smaller than corresponding areas of glucose hypometabolism, and correlated well with spiking cortex. Extent of perilesional hypometabolism, on the other hand, showed a correlation with the life-time number of seizures suggesting a seizure-related progression of brain dysfunction. FMZ PET proved to be also very sensitive for detection of dual pathology (coexistence of an epileptogenic cortical lesion and hippocampal sclerosis). This has a major clinical importance since resection of both the cortical lesion and the atrophic hippocampus is required to achieve optimal surgical results. Finally, the author demonstrated that in patients with neocortical epilepsy, FDG PET abnormalities correctly regionalize the epileptogenic area, but their size is not related to the extent of epileptogenic tissue to be removed. In contrast, complete resection of cortex with decreased FMZ binding predicts good surgical outcome suggesting that application of FMZ PET can improve surgical results in selected patients with intractable epilepsy of neocortical origin.  相似文献   

4.
Surgical treatment of West syndrome.   总被引:15,自引:0,他引:15  
The discovery of focal or multifocal cortical lesions using magnetic resonance imaging (MRI) and positron emission tomography (PET) scanning in the majority of infants with West syndrome has led to a surgical approach in the treatment of some patients with intractable infantile spasms. The locations of these lesions should be concordant with localization of focal ictal and/or interictal electroencephalographic (EEG) abnormalities prior to proceeding with cortical resection. When a single lesion is present on the MRI or PET, and there is good correlation with EEG localization, surgical treatment is generally quite favorable in terms of both seizure control and cognitive development. Interictal glucose metabolism PET scans in children with intractable cryptogenic infantile spasms show unifocal cortical hypometabolism in about 20% of cases. In the majority, however, multifocal asymmetric hypometabolism is suggestive of multifocal underlying lesions, possibly multifocal cortical dysplasia. When the pattern of glucose hypometabolism is symmetric, a lesional etiology is less likely, thus neurometabolic or neurogenetic disorders should be considered. Therefore, the pattern of glucose hypometabolism on PET in infants with intractable cryptogenic spasms is a useful guide to decide whether a medical or surgical approach should be undertaken. In order to achieve the best cognitive outcome with surgery, it is important to resect the entire 'nociferous' area rather than just the seizure focus. Our research with new PET imaging probes has attempted to provide a comprehensive evaluation of the epileptogenic zone including the 'nociferous' cortex. We have used [(11)C]flumazenil (FMZ), which labels gamma aminobutyric acid(A) (GABA(A)) receptors, and have found this to be particularly useful in showing: (i) decreased receptor binding with medial temporal involvement thus indicating resection of medial temporal structures, (ii) the peri-lesional epileptogenic zone surrounding MRI lesions, (iii) the seizure onset zone in MRI-negative cases, and (iv) potential secondary epileptic foci. Another recently developed PET probe, alpha[(11)C]methyl-L-tryptophan (AMT) which is a precursor for the serotonin and the kynurenine metabolism pathways, is capable of differentiating between epileptogenic and non-epileptogenic tubers in patients with tuberous sclerosis complex and intractable epilepsy (including infantile spasms). Subsequently, we have applied AMT PET in patients with multifocal cortical dysplasia to determine the predominant seizure focus, and the results have been promising with regard to seizure control but not cognitive development. Thus, the introduction of newer more specific PET probes for epilepsy has led to improved and more accurate localization of seizure foci that should ultimately improve outcome of epilepsy surgery in West syndrome.  相似文献   

5.
Introduction — No detailed case studies report lateralised hypometabolism on positron emission tomography (PET) contralateral to the epileptogenic focus in temporal lobe epilepsy (TLE). Material and methods — We performed 18F fluorodeoxyglucose (FDG) PET in two intractable TLE patients. Results — One had right temporal interictal spikes on electroencephalography (EEG) and a right medial temporal lobe lesion on magnetic resonance imaging (MRI). FDG-PET showed decreased uptake in the left temporal lobe. Right temporal ictal onset, with bilateral interictal epileptiform activity, occurred on intracranial EEG. He is seizure free after right temporal lobectomy and ganglioglioma resection. The second had right temporal lobe interictal and ictal EEG activity. MRI demonstrated right anteriomedial temporal increased T2 signal. Neuropsychology revealed bilateral cognitive dysfunction. FDG-PET showed left anterior temporal and lateral frontal hypometabolism. He is seizure free after right temporal lobectomy. Conclusion — These findings suggest that regional uptake asymmetry on FDG-PET may be give misleading lateralising information in TLE.  相似文献   

6.
Localization of interictal cerebral dysfunction with 2-[(18)F]fluoro-2-D-deoxyglucose (FDG) positron emission tomography (PET) and neuropsychological examination usefully supplements electroencephalography (EEG) and brain magnetic resonance imaging (MRI) in planning epilepsy surgery. In MRI-negative mesial temporal lobe epilepsy, correlation of temporal lobe hypometabolism with extracranial ictal EEG can support resection without prior intracranial EEG monitoring. In refractory localization-related epilepsies, hypometabolic sites may supplement other data in hypothesizing likely ictal onset zones in order to intracranial electrodes for ictal recording. Prognostication of postoperative seizure freedom with FDG PET appears to have greater positive than negative predictive value. Neuropsychological evaluation is critical to evaluating the potential benefit of epilepsy surgery. Cortical deficits measured with neuropsychometry are limited in lateralizing and localizing value for determination of ictal onset sites, however. Left temporal resection risks iatrogenic verbal memory deficits and dysnomia, and neuropsychological findings are useful in predicting those at greatest risk. Prognostication of cognitive risks with resection at other sites is less satisfactory.  相似文献   

7.
BACKGROUND: Cortical areas showing abnormal glucose metabolism and [(11)C]flumazenil (FMZ) binding are commonly seen on PET scans of patients with intractable partial epilepsy, but it is unclear whether these must be totally resected to achieve seizure control. OBJECTIVE: To analyze whether the extent of cortex showing 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) or FMZ PET abnormalities correlates with the outcome of resective epilepsy surgery. METHODS: Cortical FDG and FMZ PET abnormalities in 15 young patients (mean age, 12.2 +/- 7.0 years) with intractable partial epilepsy of neocortical origin were marked as regions with abnormal asymmetry using an objective semiautomated software package. These marked regions were then projected and measured on the brain surface reconstructed from the coregistered high-resolution MRI. Following cortical resection, the size of nonresected cortex with preoperative PET abnormalities was also measured (calculated separately for marked areas in the lobe of seizure onset as defined by long-term video EEG monitoring, and in remote cortical areas). Extent of preoperative PET abnormalities and postoperative nonresected cortex abnormalities on PET were correlated with outcome scores. RESULTS: Large preoperative FMZ PET abnormalities were associated with poor outcome (r = 0.57; p = 0.025). Larger areas of nonresected cortex with preoperative FMZ PET abnormalities in the lobe of seizure onset were also associated with worse outcome in the whole group (r = 0.66; p = 0.007) as well as in patients with extratemporal resection (r = 0.73; p = 0.007), and in those with no lesion on MRI (r = 0.60; p = 0.049). Patients with seizure-free outcome had significantly smaller nonresected cortex with preoperative FMZ PET abnormalities than those who continued to have seizures (p = 0.022). No significant correlations between nonresected FDG PET abnormalities and surgical outcome were found. CONCLUSIONS: Extensive cortical abnormalities on FMZ PET predict poor outcome in neocortical epilepsy surgery. Resection of FMZ abnormalities in the lobe of seizure onset is associated with excellent outcome even in the absence of a structural lesion. In contrast, although FDG PET abnormalities regionalized the epileptogenic area, their size was not related to the extent of epileptogenic tissue to be removed.  相似文献   

8.
Interictal cerebral metabolism in partial epilepsies of neocortical origin   总被引:7,自引:0,他引:7  
We performed interietal [18F]fluorodeoxyglucose positron emission tomography (FDG PET) in 24 patients with partial epilepsy of neocortical origin. Two-thirds of patients had regions of hypometabolism. The zone of intracranially recorded electrographic ictal onset was always located in a region of hypometabolism, in those with hypometabolism. Hypometabolic regions in partial epilepsies of neocortical origin were usually associated with structural imaging abnormalities. Regional hypometabolism occasionally occurred without localizing ictal scalp EEG and cerebral magnetic resonance imaging findings, however. FDG PET may be useful in directing placement of intracranial electrodes for presurgical evaluation of refractory neocortical seizures.  相似文献   

9.
OBJECTIVE: To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy. BACKGROUND: Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients with refractory epilepsy, the electrophysiologic significance of the identified PET abnormalities remains poorly understood. METHODS: We studied 10 patients, mostly children (4 boys, 6 girls, aged 2 to 19 years; mean age, 11 years), who underwent FDG and FMZ PET scans, intracranial EEG monitoring, and cortical resection for intractable epilepsy. EEG electrode positions relative to the brain surface were determined from MRI image volumes. Cortical areas of abnormal glucose metabolism or FMZ binding were determined objectively based on asymmetry measures derived from homotopic cortical areas at three asymmetry thresholds. PET data were then coregistered with the MRI and overlaid on the MRI surface. A receiver operating characteristics (ROC) analysis was performed to determine the specificity and sensitivity of PET-defined abnormalities against the gold standard of intracranial EEG data. RESULTS: FMZ PET detected at least part of the seizure onset zone in all subjects, whereas FDG PET failed to detect the seizure onset region in two of 10 patients. The area under the ROC curves was higher for FMZ than FDG PET for both seizure onset (p = 0.01) and frequent interictal spiking (p = 0.04). Both FMZ and FDG PET showed poor performance for detection of rapid seizure spread (area under the ROC curve not significantly different from 0.5). CONCLUSIONS: [11C]flumazenil (FMZ) PET is significantly more sensitive than 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET for the detection of cortical regions of seizure onset and frequent spiking in patients with extratemporal lobe epilepsy, whereas both FDG and FMZ PET show low sensitivity in the detection of cortical areas of rapid seizure spread. The application of PET, in particular FMZ PET, in guiding subdural electrode placement in refractory extratemporal lobe epilepsy will enhance coverage of the epileptogenic zone.  相似文献   

10.
Purpose: This study aims to map the temporal and extratemporal 18‐fluorodeoxyglucose positron emission tomography (FDG‐PET)–defined hypometabolism in mesial temporal lobe epilepsy (MTLE). We hypothesize that quantitative analysis will reveal extensive extratemporal glucose hypometabolism (EH), that the EH is related to seizure propagation beyond the temporal lobe, hypometabolism restricted to one temporal lobe predicts a good outcome following surgery, and EH predicts a poor outcome. Methods: Sixty‐four patients were studied who had undergone temporal lobectomy for intractable MTLE and had at least 2 years of postoperative follow‐up. Spatial preprocessing and statistical analysis on preoperative interictal FDG‐PET using statistical parametric mapping (SPM 2) identified significant regions of hypometabolism compared to normal controls. The predictors of outcome were determined by univariable and multiple logistic regression analyses. Results: EH was common and widespread, occurring most frequently in the ipsilateral insula and frontal lobe. The extent of EH was not significantly associated with age of onset or the duration of epilepsy. Presence of secondarily generalized tonic‐–clonic seizures (SGTCS) was associated with a larger extent of remote hypometabolism (RH, p < 0.005). Multiple logistic regression analysis identified the extent of RH and the age at surgery as independent predictors of seizure outcome. Discussion: Our results indicate that RH in MTLE is associated with a poorer surgical outcome, especially if seen in the contralateral hemisphere. The extent of RH relates to SGTCS but not to duration of epilepsy.  相似文献   

11.
We present a non-invasive epilepsy surgery protocol, which includes EEG-video-monitoring, magnetic resonance imaging (MRI), interictal positron emission tomography (PET) and ictal single photon emission computerized tomography (SPECT). According to this non-invasive protocol 50 of 173 patients with medically intractable focal epilepsy underwent resective surgery. The localization of the epileptogenic zone was based on the congruence of the localizing results of EEG-video-monitoring, MRI, interictal PET and ictal SPECT. 46 (92%) of the patients had temporal and 4 (8%) had extratemporal epilepsies. 78% (n = 39) of all patients operated according to our non-invasive protocol were postoperatively completely or almost seizure free. Extramesiotemporal resections could be carried out without invasive EEG-recording if the epileptogenic zone was not adjacent to the eloquent cortex. We conclude from our results that in a considerable number of patients with medically intractable particularly temporal focal epilepsies, resective epilepsy surgery can be based on non-invasive EEG-evaluations and the risk of invasive recordings can be avoided.  相似文献   

12.
Purpose: Fluorodeoxyglucose positron emission computed tomography (FDG‐PET) hypometabolism is important for surgical planning in patients with temporal lobe epilepsy (TLE), but its significance remains unclear in patients who do not have evidence of mesial temporal sclerosis (MTS) on magnetic resonance imaging (MRI). We examined surgical outcomes in a group of PET‐positive, MRI‐negative patients and compared them with those of patients with MTS. Methods: We queried the Thomas Jefferson University Surgical Epilepsy Database for patients who underwent anterior temporal lobectomy (ATL) from 1991 to 2009 and who had unilateral temporal PET hypometabolism without an epileptogenic lesion on MRI (PET+/MRI?). We compared this group to the group of patients who underwent ATL and who had MTS on MRI. Patients with discordant ictal electroencephalography (EEG) were excluded. Surgical outcomes were compared using percentages of Engel class I outcomes at 2 and 5 years as well as Kaplan‐Meier survival statistic, with time to seizure recurrence as survival time. A subgroup of PET+/MRI? patients who underwent surgical implantation prior to resection was compared to PET+/MRI? patients who went directly to resection without implantation. Key Findings: There were 46 PET+/MRI? patients (of whom 36 had 2‐year surgical outcome available) and 147 MTS patients. There was no difference between the two groups with regard to history of febrile convulsions, generalized tonic–clonic seizures, interictal spikes, depression, or family history. Mean age at first seizure was higher in PET+/MRI? patients (19 ± 13 vs.14 ± 13 years, Mann‐Whitney test, p = 0.008) and disease duration was shorter (14 ± 10 vs. 22 ± 13 years, student’s t‐test, p = 0.0006). Class I surgical outcomes did not differ significantly between the PET+/MRI? patients and the MTS group (2 and 5 year outcomes were 76% and 75% for the PET+/MRI? group, and 71% and 78% for the MTS group); neither did outcomes of the PET+/MRI? patients who were implanted prior to resection versus those who went directly to surgery (implanted patients had 71% and 67% class I outcomes at 2 and 5 years, whereas. nonimplanted patients had 77% and 78% class I outcomes, p = 0.66 and 0.28). Kaplan‐Meier survival statistics for both comparisons were nonsignificant at 5 years. Dentate gyrus and hilar cell counts obtained from pathology for a sample of patients also did not differ between groups. Significance: PET‐positive, MRI‐negative TLE patients in our study had excellent surgical outcomes after ATL, very similar to those in patients with MTS, regardless of whether or not they undergo intracranial monitoring. These patients should be considered prime candidates for ATL, and intracranial monitoring is probably unnecessary in the absence of discordant data.  相似文献   

13.
PURPOSE: Patients with tuberous sclerosis complex (TSC) are potential surgical candidates if the epileptogenic region(s) can be accurately identified. This retrospective study determined whether FDG-PET/MRI coregistration and diffusion-tensor imaging (DTI) showed better accuracy in the localization of epileptogenic cortex than structural MRI in TSC patients. METHODS: FDG-PET/MRI coregistration and/or DTI for apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were utilized in 15 TSC patients. Presurgery scalp EEG and postsurgery seizure control identified epileptogenic tubers (n = 27) and these were compared with nonepileptogenic tubers (n = 204) for MRI tuber volume, volume of FDG-PET hypometabolism on MRI coregistration, DTI, ADC, and FA values. RESULTS: Compared with nonepileptogenic tubers, epileptogenic regions had increased volume of FDG-PET hypometabolism (p < 0.0001), and increased ADC values in subtuber white matter (p < 0.0001). In contrast, the largest MRI identified tuber (p = 0.046) and decreased FA values (p = 0.58) were less accurate in identifying epileptogenic regions. Larger volumes of FDG-PET hypometabolism correlated positively with increased ADC values (p = 0.029), and localized to areas of cortical dysplasia adjacent to the tuber in four cases. CONCLUSIONS: Larger volumes of FDG-PET hypometabolism relative to MRI tuber size and higher ADC values identified epileptogenic tubers and adjoining cortex containing cortical dysplasia in TSC patients with improved accuracy compared with largest tuber by MRI or lowest FA values. Used in conjunction with ictal scalp EEG and interictal magnetoencephalography, these newer neuroimaging techniques should improve the noninvasive evaluation of TSC patients with intractable epilepsy in distinguishing epileptogenic sites for surgical resection.  相似文献   

14.
Purpose: Temporal hypometabolism on fluorodeoxyglucose positron emission tomography (FDG‐PET) is a common finding in patients with drug‐resistant temporal lobe epilepsy (TLE). The pathophysiology underlying the hypometabolism, including whether it reflects a primary epileptogenic process, or whether it occurs later as result of limbic atrophy or as a result of chronic seizures, remains unknown. This study aimed to investigate the ontologic relationship among limbic atrophy, histological changes, and hypometabolism in rats. Methods: Serial in vivo imaging with FDG‐PET and volumetric magnetic resonance imaging (MRI) was acquired before and during the process of limbic epileptogenesis resulting from kainic acid–induced status epilepticus in the rat. The imaging data were correlated with histologic measures of cell loss, and markers of astrogliosis (glial fibrillary acid protein [GFAP]), synaptogenesis (synaptophysin), glucose transporter 1 (Glut1) and energy metabolism (cytochrome oxidase C), on brains of the animals following the final imaging point. Key Findings: Hippocampal hypometabolism on FDG‐PET was found to be present 24 h following status epilepticus, tending to lessen by 1 week and then become more marked again following the onset of spontaneous seizures. Atrophy of limbic structures was evident from 7 days post‐SE, becoming progressively more marked on serial MRI over subsequent weeks. No relationship was observed between the severity of MRI‐detected atrophy or CA1 pyramidal cell loss and the degree of the hypometabolism on FDG‐PET. However, an inverse relationship was observed between hypometabolism and increased expression of the Glut1 and synaptophysin in the hippocampus. Significance: These findings demonstrate that hypometabolism occurs early in the processes of limbic epileptogenesis and is not merely a consequence of pyramidal cell loss or the progressive atrophy of limbic brain structures that follow. The hypometabolism may reflect cellular mechanisms occurring early during epileptogenesis in addition to any effects of the subsequent recurrent spontaneous seizures.  相似文献   

15.
Yun CH  Lee SK  Lee SY  Kim KK  Jeong SW  Chung CK 《Epilepsia》2006,47(3):574-579
PURPOSE: Defining prognostic factors for neocortical epilepsy surgery is important for the identification of ideal candidates and for predicting the prognosis of individual patients. We use multivariate analysis to identify favorable prognostic factors for neocortical epilepsy surgery. METHODS: One hundred ninety-three neocortical epilepsy patients, including 91 without focal lesions on MRI, were included. Sixty-one had frontal lobe epilepsy (FLE), 80 had neocortical temporal lobe epilepsy (nTLE), 21 had parietal lobe epilepsy (PLE), and 22 had occipital lobe epilepsy (OLE). The primary outcome variable was patient status >or=2 years after surgery (i.e., seizure free or not). Clinical characteristics and the recent presurgical diagnostic modalities were considered as probable prognostic factors. Univariate and standard multiple logistic regression analyses were used to identify favorable prognostic factors. RESULTS: The seizure-free rate was 57.5%. By univariate analysis, a focal lesion on MRI, localized ictal onset on surface EEG, epilepsies other than FLE, localized hypometabolism on fluorodeoxyglucose-positron emission tomography (FDG-PET), and pathologies other than cortical dysplasia were significantly associated with a seizure-free outcome (p<0.05). Multivariate analysis revealed that a focal lesion on MRI (p=0.003), correct localization by FDG-PET (p=0.007), and localized ictal onset on EEG (p=0.01) were independent predictors of a good outcome. CONCLUSIONS: The presence of a focal lesion on MRI, correct localized hypometabolism on FDG-PET, or localized ictal rhythms on EEG were identified as predictors of a seizure-free outcome. Our results suggest that these findings allow the selection of better candidates for neocortical epilepsy surgery.  相似文献   

16.
One hundred fifty-three patients with medically refractory partial epilepsy underwent chronic stereotactic depth-electrode EEG (SEEG) evaluations after being studied by positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) and scalp-sphenoidal EEG telemetry. We carried out retrospective standardized reviews of local cerebral metabolism and scalp-sphenoidal ictal onsets to determine when SEEG recordings revealed additional useful information. FDG-PET localization was misleading in only 3 patients with temporal lobe SEEG ictal onsets for whom extratemporal or contralateral hypometabolism could be attributed to obvious nonepileptic structural defects. Two patients with predominantly temporal hypometabolism may have had frontal epileptogenic regions, but ultimate localization remains uncertain. Scalp-sphenoidal ictal onsets were misleading in 5 patients. For 37 patients with congruent focal scalp-sphenoidal ictal onsets and temporal hypometabolic zones, SEEG recordings never demonstrated extratemporal or contralateral epileptogenic regions; however, 3 of these patients had nondiagnostic SEEG evaluations. The results of subsequent subdural grid recordings indicated that at least 1 of these patients may have been denied beneficial surgery as a result of an equivocal SEEG evaluation. Weighing risks and benefits, it is concluded that anterior temporal lobectomy is justified without chronic intracranial recording when specific criteria for focal scalp-sphenoidal ictal EEG onsets are met, localized hypometabolism predominantly involves the same temporal lobe, and no other conflicting information has been obtained from additional tests of focal functional deficit, structural imaging, or seizure semiology.  相似文献   

17.
Purpose: Type II focal cortical dysplasia (TTFCD), a highly epileptogenic lesion with severe epilepsy curable by surgery, is missed by magnetic resonance imaging (MRI) in about one third of cases. Little is known about the electroclinical presentation in these MRI‐negative patients and a poor surgical outcome is frequently reported. We compared the clinical and neurophysiologic features in MRI‐negative and MRI‐positive cases in order to better identify candidates for surgery. Methods: Among 62 consecutive TTFCD patients (38 male, 24 female; 7–52 years old; 22 children) operated for intractable epilepsy, 25 (40%) presented negative MRI findings. We compared the history of epilepsy; the type, frequency, and distribution of seizures; neurologic examination cognitive and psychiatric impairment; interictal‐ictal electroencephalography (EEG) and stereo‐EEG (SEEG) data, fluorodeoxyglucose positron emission tomography (FDG‐PET) data, neuropathologic findings; and surgical outcome in the MRI‐negative and the MRI‐positive groups. Key Findings: Severe partial epilepsy beginning in childhood, high seizure frequency including status epilepticus, stereotyped seizures suggestive of precise brain localization, extratemporal location and functional area involvement were characteristic and similarly found in both groups. On EEG, pseudorhythmic activity was found in about 40% of patients in each group. SEEG recordings demonstrated the typical pattern characterizing TTFCD in both groups. FDG‐PET had a localization value in 84% of the MRI‐negative cases and helped to delineate the dysplastic cortex in 65% of the MRI‐positive cases. The combination of imaging and neurophysiologic data allowed us to perform safe and restricted resections, limited to a single gyrus in more than half of all cases. In addition, we were able to avoid invasive monitoring in most MRI‐positive cases and even in some selected MRI‐negative cases. The proportion of patients with a favorable surgical outcome was comparable in both groups (88% in MRI‐negative and 94% in MRI‐positive cases). The main difference between the groups was a significantly higher frequency of sleep‐related epilepsy in the MRI‐negative group (p = 0.028). This phenotypic characteristic provides a new argument for TTFCD in MRI‐negative extratemporal epilepsy. Significance: These results lead us to consider that children or adult patients in whom electroclinical data suggest TTFCD, are highly suitable for surgery, especially for cryptogenic sleep‐related epilepsy.  相似文献   

18.
The relationship between interictal focal hypometabolism determined by 18-fluorodeoxyglucose positron emission tomography (FDG-PET) scans and memory function with the intracarotid amobarbital procedure (IAP) was evaluated in 23 patients with temporal lobe epilepsy. All patients underwent prolonged EEG/video monitoring. The epileptogenic focus was defined by interictal epileptiform discharges and ictal onsets. All 23 patients had recorded seizures arising exclusively from one temporal lobe. PET showed temporal lobe hypometabolism ipsilateral to the epileptogenic focus in 86% (20 of 23) of patients; IAP showed impaired memory of the hemisphere of seizure onset in 65% (15 of 23). Sixty-five percent (13 of 20) of patients with focal hypometabolism had ipsilateral memory impairment. Memory impairment contralateral to the hypometabolic zone was not observed. Ninety-five percent (22 of 23) of patients demonstrated functional impairment by either PET or IAP (or both) on the epileptogenic side.  相似文献   

19.
Kim YH  Kang HC  Kim DS  Kim SH  Shim KW  Kim HD  Lee JS 《Epilepsia》2011,52(4):722-727
Purpose: The purpose of this study is to determine the sensibility of each imaging tool in identifying focal cortical dysplasia (FCD) in children and adolescents with epilepsy and to define the prognostic factors of pediatric and adolescent epilepsy surgery. Methods: We identified 48 children with FCD who underwent resective surgery and analyzed their preoperative data. The results of various anatomic and functional neuroimaging studies were compared for accuracy in locating the lesion. We also investigated clinical factors that affected the outcome of surgical treatment. Key Findings: Brain magnetic resonance imaging (MRI) was able to localize FCD in 30 patients and fluorodeoxyglucose positron emission tomography (FDG‐PET) and/or subtraction ictal single photon emission computed tomography (SPECT) coregistered with MRI provided additional information that helped to define the lesion in 13 patients. When comparing the pathologic results between a mild malformation of cortical development (MCD) and FCD type I and II, we noted a strong tendency for patients with FCD to have MRI abnormalities (p = 0.005). In addition, severe pathologic features (Palmini’s classification, FCD type II) (p = 0.025) showed significant correlation with a better surgical outcome. To define the primary epileptogenic area, various interictal epileptiform discharges and the results of multimodal neuroimaging studies were helpful, and younger age at the time of operation could aid in more favorable surgical outcomes (p = 0.048). Significance: Our study showed a significant relationship between pathologic grade and the detectability of FCD by brain MRI. In addition, early surgery can be justified by showing that advanced neuroimaging studies in children with FCD and even with extensive epileptiform discharges have a higher rate of success.  相似文献   

20.
PURPOSE: Positron emission tomography (PET) using 18F-radiolabeled deoxyglucose (18F-FDG) is a sensitive procedure for detection of epileptogenic foci. Although alterations in glucose consumption are not restricted to the area of seizure generation itself, the magnitude and extent of cerebral metabolic disturbances induced by epileptic discharges can be detected. Despite two decades of epilepsy research using 18F-FDG-PET, little is known about the metabolic changes during therapy of focal epilepsy. We report on a child with frontal epilepsy with severe glucose hypometabolism that was nearly completely normalized during drug therapy. METHODS: Interictal 18F-FDG-PET was performed at the onset of epilepsy and after optimized drug therapy in a 5-year-old boy with behavioral abnormalities and repetitive seizures of frontal origin with bifrontal interictal EEG slowing for 8 weeks. Both scans were anatomically matched; initial and intratherapeutic glucose metabolism were compared. RESULTS: In accordance with the epileptogenic focus as identified by EEG and ictal/interictal perfusion single-photon emission tomography (SPECT), bifrontal hypometabolism was depicted by 18F-FDG-PET. Magnetic resonance imaging (MRI) was unremarkable. After dual-drug therapy (valproate, carbamazepine), the boy became seizure free, and his initial behavioral deficits disappeared. A control PET study after 3 months of therapy showed restored glucose consumption; the frontal EEG slowing was normalized. CONCLUSIONS: This case demonstrates that reduction of glucose metabolism in epileptogenic foci may be a result of reversible neuronal dysfunction that correlates with the electroclinical follow-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号