首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported that U-87MG glioma cells with wild-type p53 are resistant to p53 replacement gene therapy. As some gliomas harbor wild-type p53, it would be important to override the resistance mechanism due to wild-type p53 in glioma gene therapy. In this study, we transduced U-87MG cells or U251 glioma cells harboring mutated p53 with the p53 or p73alpha gene (a homologue of p53, that differently induces some p53-responsive genes) via adenovirus vectors (Advs) at same multiplicities of infection (MOIs) into respective cells (U-87MG: MOI 1000, U251: MOI 100), and evaluated the degree of apoptosis. The results demonstrate that the degree of apoptosis induced by Adv-mediated transduction of p53 in U-87MG cells was lower than that in U251 cells, whereas that induced by Adv-mediated transduction of p73alpha in U-87MG cells was higher than that in U251 cells. Bax expression in U-87MG and U251 cells induced by Adv-mediated transduction of p53 was almost the same as that of p73alpha. On the other hand, Adv-mediated transduction of p73alpha induced caspase-9 at higher levels than that of p53 in both cells. The results indicate that Adv-mediated transduction of p73alpha might be beneficial to overcome the resistance mechanism of glioma cells harboring wild-type p53.  相似文献   

2.
Recent studies have indicated that the loss of p16 is a frequent event in the progression of malignant gliomas. The loss of p16 promotes the acquisition of malignant characteristics in gliomas, which are among the most angiogenic of all human tumors. High-grade gliomas are distinguished from low-grade gliomas by intense angiogenesis in addition to their frequent loss of p16. New therapeutic strategies aimed at inhibiting tumor angiogenesis on the basis of molecular mechanisms are theoretically attractive. Here we evaluate the effect of p16 gene replacement on the angiogenesis of gliomas. Infection with a recombinant replication-defective adenovirus vector containing the cDNA of wild-type p16 significantly reduced the expression of vascular endothelial growth factor, which is thought to be a pivotal mediator of tumor angiogenesis, in p16-deleted glioma cells. Restoring wild-type p16 expression into p16-deleted glioma cells markedly inhibited angiogenesis induced by tumor cells in vivo. Furthermore, wild-type p16 inhibited neovascularization more potently than did wild-type p53 transfer. These findings indicate that the p16 gene plays an important role in the regulation of glioma angiogenesis, suggesting a novel function of the p16 gene.  相似文献   

3.
Replication-competent oncolytic adenoviruses hold considerable promise for treating malignant gliomas. The toxicity of the clinically tested E1B-55 kDa mutant virus is negligible; however, its full clinical potential is still being evaluated. The purpose of the present study is to compare the antiglioma activity in vitro and in vivo between Delta-24, an E1A mutant adenovirus, and RA55, an E1B-55 kDa mutant adenovirus. We selected human glioma cell lines that were tumorigenic in nude mice and express wild-type p53 (U-87 MG, D54 MG) or mutant p53 (U-251 MG, U-373 MG) protein. Our studies demonstrated that Delta-24 induced a more potent antiglioma effect in vitro than RA55. Moreover, Delta-24 replicated markedly more efficiently than RA55 in both wild-type and mutant p53 scenarios. Importantly, direct intratumoral injection of Delta-24, but not RA55, significantly suppresses tumor growth in intracranial (U-87 MG, U-251 MG) or subcutaneous (D54 MG) animal models. Staining for hexon protein detected replicating adenoviruses in xenografts infected with Delta-24, but not with RA55. Collectively, these data indicate that E1A mutant adenoviruses targeting the Rb pathway are more powerful putative agents for antiglioma therapy than E1B mutant adenoviruses, and suggest that E1A mutant adenoviruses should be tested in the clinical setting for patients with malignant gliomas.  相似文献   

4.
5.
6.
The p53 tumor suppressor gene is an important target for the gene therapy of cancers, and clinical trials targeting this gene have been conducted. Some cancers, however, are refractory to p53 gene therapy. Therefore, it has been combined with other therapies, including chemotherapy and radiotherapy, to enhance the cytopathic effect of p53 induction. The p33ING1 gene cooperates with p53 to block cell proliferation. In this study, we investigated whether adenovirus (Adv)-mediated coinduction of p33ING1 and p53 enhances apoptosis in glioma cells (U251 and U-373 MG), which showed no genetic alterations but low expression levels of p33ING1. Although the single infection of Adv for p33ING1 (Adv-p33) at a multiplicity of infection (MOI) of 100, or Adv for p53 controlled by myelin basic protein (MBP) promoter (Adv-MBP-p53), a glioma-specific promoter, at a MOI of 50, did not induce apoptosis in U251 and U-373 MG glioma cells; coinfection of Adv-p33 and Adv-MBP-p53 at the same MOIs induced drastically enhanced apoptosis in both cell lines. Apoptosis was not induced in NGF-treated PC-12 cells infected with a high MOI (300) of Adv-p33 nor in those coinfected with Adv-p33 (100) and Adv-MBP-p53 (50). Coinfection of Adv-p33 and Adv-MBP-p53 demonstrated morphological mitochondrial damage during the initial stage of apoptosis, which likely led to apoptotic cell death. Our results indicate that this coinfection approach can be used as a modality for the gene therapy of gliomas, sparing damage to normal tissues.  相似文献   

7.
8.
Transient expression of the tumor suppressor gene p53 via adenoviral-mediated gene transfer induces apoptosis in glioma cells expressing mutant p53, while causing cell cycle arrest in cells with wild-type p53. To determine whether a change in p53 status of a wild-type p53-expressing cell line such as U-87 MG would alter its apoptotic resistant phenotype in response to Ad-p53 infection, we generated cell lines U-87-175.4 and U-87-175.13 via retroviral-mediated gene transfer of the p53 (175H) mutant into the U-87 MG parental line. Control cell lines U-87-Lux.6 and U-87-Lux.8 were also generated and express the reporter gene luciferase. Both U-87-175.4 and U-87-175.13, but not control cell lines, exhibited morphology characteristic of apoptosis after Ad-p53 infection. Furthermore, expression of other p53 mutants (248W, 273H) in U-87 MG also sensitized cells to Ad-p53-induced apoptosis. Apoptosis was confirmed by TUNEL and cell cycle analysis. Several p53 response genes were examined in cells infected with Ad-p53, and among these, BCL2, p21WAF1/CIP1, CPP32/caspase 3, and PARP showed differences in expression between U87-175 and U87-Lux cell lines. Taken together, our data demonstrate that the introduction of p53 mutants in U-87 MG promotes an apoptotic response in association with adenoviral-mediated wild-type p53 gene transfer. These results underscore the importance of glioma p53 genotype for predicting tumor response to p53-based gene therapy.  相似文献   

9.
10.
Most malignant astrocytomas (gliomas) express a high level of Fas, whereas the surrounding normal tissues such as neurons and astrocytes express a very low level of Fas. Thus, transduction of Fas ligand would selectively kill malignant astrocytoma cells. On the other hand, glioma cells harboring p53 mutation have been reported to be resistant to conventional therapies including radiation. To override the resistance mechanism of glioma cells with p53 mutation to radiation, we transduced U-373MG malignant astrocytoma (glioma) cells harboring mutant p53 with Fas ligand via an adenovirus (Adv) vector in combination with X-ray irradiation, and evaluated the degree of apoptosis. The degree of apoptosis in U-373MG cells infected with the Adv for Fas ligand (Adv-FL) and treated with irradiation (81%) was much higher than that in U-373MG cells infected with Adv-FL and not treated with irradiation (0.8%) or that in U-373MG cells infected with the control Adv for lacZ and treated with irradiation (5.0%). In U-373MG cells infected with Adv-FL, irradiation increased the expression of Fas ligand. Coincident with the increase in Fas ligand, there was a marked reduction in the caspase-3 level and a marked increase in the cleaved form of poly(ADP-ribose) polymerase (PARP), which are downstream components of Fas ligand-mediated apoptosis. This suggests that the enhanced activation of caspase-3 by the transduction of Fas ligand combined with irradiation, induced extensive apoptosis in U-373MG cells. In summary, transduction of Fas ligand may override the resistance mechanism to radiotherapy in glioma cells harboring p53 mutation.  相似文献   

11.
Most malignant astrocytomas (gliomas) express a high level of Fas, whereas the surrounding normal tissues such as neurons and astrocytes express a very low level of Fas. Thus, transduction of Fas ligand would selectively kill malignant astrocytoma cells. On the other hand, glioma cells harboring p53 mutation have been reported to be resistant to conventional therapies including radiation. To override the resistance mechanism of glioma cells with p53 mutation to radiation, we transduced U-373MG malignant astrocytoma (glioma) cells harboring mutant p53 with Fas ligand via an adenovirus (Adv) vector in combination with X-ray irradiation, and evaluated the degree of apoptosis. The degree of apoptosis in U-373MG cells infected with the Adv for Fas ligand (Adv-FL) and treated with irradiation (81%) was much higher than that in U-373MG cells infected with Adv-FL and not treated with irradiation (0.8%) or that in U-373MG cells infected with the control Adv for lacZ and treated with irradiation (5.0%). In U-373MG cells infected with Adv-FL, irradiation increased the expression of Fas ligand. Coincident with the increase in Fas ligand, there was a marked reduction in the caspase-3 level and a marked increase in the cleaved form of poly(ADP-ribose) polymerase (PARP), which are downstream components of Fas ligand-mediated apoptosis. This suggests that the enhanced activation of caspase-3 by the transduction of Fas ligand combined with irradiation, induced extensive apoptosis in U-373MG cells. In summary, transduction of Fas ligand may override the resistance mechanism to radiotherapy in glioma cells harboring p53 mutation.  相似文献   

12.
Su JD  Mayo LD  Donner DB  Durden DL 《Cancer research》2003,63(13):3585-3592
Previous work from our laboratory demonstrated that PTEN regulates tumor-induced angiogenesis and thrombospondin 1 expression in malignant glioma. Herein, we demonstrated the first evidence that the systemic administration of a phosphatidylinositol 3'-kinase (PI3K) inhibitor (LY294002) has antitumor and antiangiogenic activity in vivo. We show that PTEN reconstitution diminished phosphorylation of AKT, induced the transactivation of p53 (7.5-fold induction) and increased the expression of p53 target genes, p21(waf-1) and insulin-like growth factor binding protein 3 in glioma cells. PTEN and LY294002 induced p53 activity in human brain endothelial cells, suggesting that PTEN and PI3K pathways can suppress the progression of cancer through direct actions on tumor and endothelial cells. The capacity of PTEN and LY294002 to inhibit U87MG or U373MG glioma growth was tested in an ectopic skin and orthotopic brain tumor model. LY294002 inhibited glioma tumor growth in vivo, induced tumor regression, decreased the incidence of brain tumors, and blocked the tumor-induced angiogenic response of U87MG cells in vivo. These data provide evidence that both PTEN and PI3K inhibitors regulate p53 function and display in vivo antiangiogenic and antitumor activity. These results provide evidence that the two tumor suppressor genes, PTEN and p53, act together to block tumor progression in vivo. Our data provide the first preclinical evidence for the in vivo efficacy for LY294002 in the treatment of malignant gliomas.  相似文献   

13.
14.
BACKGROUND: p27Kip1 is a potential tumor suppressor gene. As malignant gliomas express Fas at high levels, the relationship between Fas-mediated apoptosis and p27Kip1 expression may improve therapeutic approaches for treating gliomas. MATERIALS AND METHODS: In this study, we transduced U-373MG glioma cells with the Fas ligand or caspase-8 genes using adenovirus vectors after transduction of the p27Kip1 gene to induce cell cycle arrest in U-373MG cells, and evaluated the degree of apoptosis. RESULTS: The results demonstrate that expression of p27Kip1 enhanced Fas ligand- or caspase-8-mediated apoptosis in U-373MG cells. Expression of apoptosis-related genes such as Bax, Bcl-X(L), Bcl-2 or caspase-8 were reduced by p27Kip1 transduction compared with that of beta-actin, whereas p27Kip1 transduction did not affect the expression level of Fas or the Fas ligand. CONCLUSION: Combined transduction of p27Kip1 with Fas ligand or caspase-8 would overide the resistance mechanism to apoptosis in malignant gliomas.  相似文献   

15.
A panel of 6 human glioma cell lines was examined for TGF-beta1 responsiveness. U-178 MG and U-251 MG AgCl1 were significantly inhibited by TGF-beta1, while U-343 MGa 31L and U-343 MGa 35L were potently stimulated to proliferate. TGF-beta1 induced endogenous PAI-1 protein synthesis, Smad binding element/(CAGA)12-luciferase-reporter activity, as well as mRNA expression of Smad6 and Smad7 in all gliomas. Interestingly, TGF-beta1 differentially stimulated or inhibited the expression of TbetaR-I and TbetaR-II mRNA in the gliomas. Affinity cross-linking studies using 125I-TGF-beta1 revealed that the gliomas expressed TGF-beta-type-I(TbetaR-I) and -type-II(TbetaR-II) receptors, although binding to TbetaR-II in U-343 MGa 31L and U-251 MG AgCl1 was low to undetectable. Smad2 protein was abundantly present in U-178 MG, U-343 MG, and U-343 MGa 35L, while Smad3 was readily detectable in U-178 MG, U-343 MG, U-343 MGa 35L and U-251 MG AgCl1. In all gliomas, TGF-beta1 induced phosphorylation of Smad2. The level to which TGF-beta1 could activate the pathway leading to induction of the (CAGA)12-luciferase reporter seemed to correlate to the expression levels of TGF-beta receptors, Smad3 and Smad4 proteins. However, despite the plethora of data regarding TGF-beta1 signalling in the different glioma cell lines, the mechanism underlying the differential growth effects mediated by TGF-beta1 is still unclear. The results suggest that a complex balance between several components in the TGF-beta signalling pathway controls glioma responsiveness to TGF-beta1, and extend reports indicating that distinct signal transduction pathways are involved in growth inhibition and other cellular responses.  相似文献   

16.
Loss of the PTEN tumor suppressor gene and amplification of the epidermal growth factor receptor (EGFR), which is common in malignant gliomas, result in activation of the mammalian target of rapamycin (mTOR). Rapamycin is a highly specific inhibitor of mTOR and induces a cytostatic effect in various glioma cell lines. DNA-damaging agents such as nitrosourea are widely used in malignant glioma treatment; therefore, we investigated the effect of rapamycin on cell growth and death in combination with 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU, nimustine hydrochloride) in human glioma cells. In U251 malignant glioma (U251MG) cells, we confirmed that rapamycin enhanced ACNU-induced apoptosis. We found that rapamysin inhibited ACNU-induced p21 induction, and knocking down of p21 protein by siRNA enhanced ACNU-induced apoptosis in U251MG cells. Furthermore, adenovirus-mediated over-expression of p21 protein rescued U251MG cells from apoptosis induced by ACNU and rapamycin. Finally, treatment of intracerebral U251MG xenografts with a combination of rapamycin and ACNU in vivo resulted in statistically prolonged median survival (P < 0.05). These results suggest that rapamycin in combination with DNA-damaging agents may be efficacious in the treatment of malignant gliomas.  相似文献   

17.
Function of aberrant EGFR in malignant gliomas   总被引:2,自引:0,他引:2  
The most common alteration of the epidermal growth factor receptor (EGFR) gene in human malignant gliomas is an in-frame deletion of exon 2–7 from the extracellular domain. To study the relationship between the expression of this aberrant EGFR and cell proliferation, as well as apoptosis in malignant gliomas, we have developed U-87MG cell transfectants that express the aberrant (mutant-type) or normal (wild-type) EGFR. We analyzed cell number, tumor volume, and MIB-1 positive rate as proliferation markers, and found that in tissue culture, tumors derived from U-87 MG cells (mutant-type) have the same proliferative activity as those derived from U-87 MG cells (wild-type). However, when cells expressing mutant EGFR were implanted into nude mice subcutaneously, the tumorigenic capacity was much enhanced. We also found that the apototic index of tumors derived from U-87 MG cells (mutant-type) was less than 0.1%, whereas that of wild-type tumor was 1%. These results suggest that aberrant EGFR affects the malignancy of glioma by stimulating proliferation and inhibiting apoptosis.  相似文献   

18.
Simvastatin is one of the competitive inhibitors of HMG-CoA reductase. During clinical trials, it has shown the ability to lower serum cholesterol. We investigated the effect of simvastatin on the growth of malignant gliomas in vitro, semi-in vivo, and in vivo. An in-vitro MTT assay revealed that human malignant glioma cell lines: U-251MG, U-373MG, and U-87MG, and rat malignant glioma cell line C6 were well inhibited in growth in a dose-dependent fashion. An anchorage-independent growth assay showed that the number of colonies (more than 100 microM in size) of human (U-373MG) and rat malignant gliomas (C6) was markedly reduced in a dose-dependent fashion. A flow cytometry analysis revealed that simvastatin treatment led U-251MG cells to accumulate in sub G0-G1. Immunostaining by TUNEL method showed that most glioma cells treated by 10 microM simvastatin had nuclear immunostaining, suggesting apoptotic changes of the treated cells. The human umbilical vein endothelial cells and human lung fibroblasts were inhibited in growth by no more than 20% of controls even with a high dose (10 microM) of simvastatin. In the semi-in vivo model, using newborn rat brain slice cultures, the rhodamine-labeled glioma cells were abolished after 7 days of local simvastatin treatment with fibrin glue probably suggesting that simvastatin led the cells to apoptosis. In rat models using subcutaneously inoculated C6, the local application of simvastatin combined with fibrin glue (spray method) was quite effective in inhibiting the growth of the tumor. These data suggest that simvastatin may be a novel anti-glioma drug, and the local application of simvastatin combined with fibrin glue (by spray method) may be a crucial new clinical strategy against glioma growth.  相似文献   

19.
PURPOSE: A mutation in the p53 gene is believed to play an important role in the radioresistance of many cancer cell lines. We studied cytotoxic effects of high linear energy transfer (LET) carbon beams on glioma cell lines with either mutant or wild-type p53. METHODS AND MATERIALS: Cell lines U-87 and U-138 expressing wild-type p53 and U-251 and U-373 expressing mutant p53 were used. These cells were irradiated with 290 MeV/u carbon beams generated by the Heavy Ion Medical Accelerator in the National Institute of Radiologic Science or X-rays. A standard colony-forming assay and flow cytometric detection of apoptosis were performed. Cell cycle progression and the expression of p53, p21, and bax proteins were examined. RESULTS: High LET carbon radiation was more cytotoxic than low LET X-ray treatment against glioma cells. The effects of the carbon beams were not dependent on the p53 gene status but were reduced by G(1) arrest, which was independent of p21 expression. The expression of bax remained unchanged in all four cell lines. CONCLUSION: These results indicate that high LET charged particle radiation can induce cell death in glioma cells more effectively than X-rays and that cell death other than p53-dependent apoptosis may participate in the cytotoxicity of heavy charged particles. Thus, it might prove to be an effective alternative radiotherapy for patients with gliomas harboring mutated p53 gene.  相似文献   

20.
Thrombin is a key enzyme in the blood coagulation system where it converts fibrinogen to fibrin. It participates in a variety of biological processes such as the induction of mitogenesis and of morphological changes, the production of cytokines and growth factors, and apoptosis. To clarify the role of thrombin in the proliferation of human malignant gliomas, we investigated its effect on the expression of vascular endothelial growth factor (VEGF) in vitro and determined its intrinsic expression in human glioma tissues. In 3 human glioma cell lines tested, U-87 MG, U-251 MG, and U-105 MG, thrombin induced the VEGF mRNA expression and protein in a dose- and time-dependent manner. The thrombin receptor expression was detectable by RT-PCR and immunoblot. The secretion of VEGF protein in glioma cells was stimulated by the thrombin receptor agonist peptide and the induction of VEGF was significantly blocked by the thrombin inhibitor hirudin, indicating that the up-regulation of VEGF was mediated by the thrombin/thrombin receptor pathway. Immunoblot analysis demonstrated that prothrombin, the precursor of thrombin, was distributed in all 10 glioma tissues examined. In situ hybridization and immunohistochemical analysis revealed the co-localization of prothrombin mRNA-positive and GFAP-positive cells in the glioma tissues. Although various factors may be involved in the up-regulation of VEGF, our results suggest that human gliomas per se express prothrombin, and that thrombin, converted from prothrombin in glioma tissues, substantially stimulates angiogenesis in an autocrine fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号