首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperargininemia is a metabolic disorder biochemically characterized by tissue accumulation of arginine and other guanidino compounds. Convulsions, lethargy and psychomotor delay or cognitive deterioration are predominant clinical features of this disease. Although neurologic symptoms predominate in this disorder, their pathophysiology is still unknown. In the present study we investigated the in vitro effects of arginine, N-acetylarginine, argininic acid and homoarginine on some oxidative stress parameters in rat brain in the hope to identify a possible mechanism for the brain damage in hyperargininemia. Chemiluminescence, total radical-trapping antioxidant potential (TRAP), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities were measured in the cerebral cortex of rats in the presence of various concentrations of these compounds. The results showed that all guanidino compounds tested significantly increased chemiluminescence and decreased TRAP at concentrations similar to those observed in the tissue of hyperargininemic patients. Furthermore, these compounds inhibited CAT and GSH-Px activities to varying extents, with GSH-Px activity being more susceptible to their action. In turn, argininic acid inhibited all enzyme activities, and its main action was also directed towards GSH-Px. The results suggest that oxidative stress caused by guanidino compounds may be involved in the brain dysfunction amongst other potential pathophysiological mechanisms observed in hyperargininemia.  相似文献   

2.
N-acetylaspartic acid accumulates in Canavan Disease, a severe leukodystrophy characterized by swelling and spongy degeneration of the white matter of the brain. This inherited metabolic disease, caused by deficiency of the enzyme aspartoacylase, is clinically characterized by severe mental retardation, hypotonia and macrocephaly, and also generalized tonic and clonic type seizures in about half of the patients. Considering that the mechanisms of brain damage in this disease remain not fully understood, in the present study we investigated whether oxidative stress is elicited by N-acetylaspartic acid. The in vitro effect of N-acetylaspartic acid (10-80 mM) was studied on oxidative stress parameters: total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), reduced glutathione content, sufhydryl content and carbonyl content in the cerebral cortex of 14-day-old rats. The effect of the acute administration of N-acetylaspartic acid (0.1-0.6 mmol/g body weight) was studied on TRAP, TAR, carbonyl content, chemiluminescence and TBA-RS. TRAP, TAR, reduced glutathione content and sulfhydryl content were significantly reduced, while chemiluminescence, TBA-RS and carbonyl content were significantly enhanced by N-acetylaspartic acid in vitro. The enhancement in TBA-RS promoted by N-acetylaspartic acid was completely prevented by ascorbic acid plus Trolox, and partially prevented by glutathione and dithiothreitol. The acute administration of N-acetylaspartic acid also significantly reduced TRAP and TAR, and significantly enhanced carbonyl content, chemiluminescence and TBA-RS. Our results indicate that N-acetylaspartic acid promotes oxidative stress by stimulating lipid peroxidation, protein oxidation and by decreasing non-enzymatic antioxidant defenses in rat brain. This could be another pathophysiological mechanism involved in Canavan Disease.  相似文献   

3.
Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II, where tyrosine levels are highly elevated in tissues and physiological fluids of affected patients. In tyrosinemia type II, high levels of tyrosine are correlated with eyes, skin and central nervous system disturbances. Considering that the mechanisms of brain damage in these disorders are poorly known, in the present study, we investigated whether oxidative stress is elicited by l-tyrosine in cerebral cortex homogenates of 14-day-old Wistar rats. The in vitro effect of 0.1-4.0mM l-tyrosine was studied on the following oxidative stress parameters: total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), ascorbic acid content, reduced glutathione (GSH) content, spontaneous chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), thiol-disulfide redox state (SH/SS ratio), protein carbonyl content, formation of DNA-protein cross-links, and the activities of the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glucose-6-phosphate dehydrogenase (G6PDH). TRAP, TAR, ascorbic acid content, SH/SS ratio and CAT activity were significantly diminished, while formation of DNA-protein cross-link was significantly enhanced by l-tyrosine in vitro. In contrast, l-tyrosine did not affect the other parameters of oxidative stress evaluated. These results indicate that l-tyrosine decreases enzymatic and non-enzymatic antioxidant defenses, changes the redox state and stimulates DNA damage in cerebral cortex of young rats in vitro. This suggests that oxidative stress may represent a pathophysiological mechanism in tyrosinemic patients, in which this amino acid accumulates.  相似文献   

4.
Quinolinic acid (QA), the major metabolite of the kynurenine pathway, is found at increased concentrations in brain of patients affected by various common neurodegenerative diseases, including Huntington's disease and Alzheimer's disease. Recently, a role for QA in the pathophysiology of glutaric acidemia type I (GAI) was postulated. Considering that oxidative stress has been recently involved in the pathophysiology of the brain injury in these neurodegenerative disorders; in the present study, we investigated the in vitro effect of QA on various parameters of oxidative stress, namely total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), glutathione (GSH) levels, thiobarbituric acid-reactive substances (TBA-RS) measurement and chemiluminescence in cerebral cortex of 30-day-old rats. QA diminished the brain non-enzymatic antioxidant defenses, as determined by the reduced levels of TRAP, TAR and GSH. We also observed that QA significantly increased TBA-RS and chemiluminescence. Therefore, in vitro QA-treatment of rat cortical supernatants induced oxidative stress by reducing the tissue antioxidant defenses and increasing lipid oxidative damage, probably as a result of free radical generation. In addition, we examined the effect of QA on TBA-RS levels in the presence of glutaric acid (GA) and 3-hydroxyglutaric acid (3HGA), which are accumulated in GAI, as well as in the presence of 3-hydroxykynurenine (3HK), a tryptophan metabolite of the kynurenine pathway with antioxidant properties. It was verified that the single addition of QA or GA plus 3HGA to the incubation medium significantly stimulated in vitro lipid peroxidation. Furthermore, 3HK completely prevented the TBA-RS increase caused by the simultaneous addition of QA, GA and 3HGA. Taken together, it may be presumed that QA induces oxidative stress in the brain, which may be associated, at least in part, with the pathophysiology of central nervous system abnormalities of neurodegenerative diseases in which QA accumulates.  相似文献   

5.
L-2-hydroxyglutaric acid (LGA) is the biochemical hallmark of L-2-hydroxyglutaric aciduria (L-OHGA), an inherited neurometabolic disorder characterized by progressive neurodegeneration with cerebellar and pyramidal signs, mental deterioration, epilepsy, and subcortical leukoencephalopathy. Because the underlying mechanisms of the neuropathology of this disorder are virtually unknown, in this study we tested the in vitro effect of LGA on various parameters of oxidative stress, namely, chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), protein carbonyl formation (PCF), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), and the activities of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase in cerebellum and cerebral cortex of 30-day-old rats. LGA significantly increased chemiluminescence, TBA-RS, and PCF measurements and markedly decreased TAR values in cerebellum, in contrast to TRAP and the activity of the antioxidant enzymes, which were not altered by the acid. Similar but less pronounced effects were provoked by LGA in cerebral cortex. Moreover, the LGA-induced increase of TBA-RS was significantly attenuated by melatonin (N-acetyl-5-methoxytryptamine) and by the combinations of ascorbic acid plus Trolox (soluble alpha-tocopherol) and of superoxide dismutase plus catalase but not by the inhibitor of nitric oxide synthase Nomega-nitro-L-arginine methyl ester (L-NAME), creatine, or superoxide dismutase or catalase alone in either cerebral structure. The data indicate that LGA provokes oxidation of lipids and proteins and reduces the brain capacity to modulate efficiently the damage associated with an enhanced production of free radicals, possibly by inducing generation of superoxide and hydroxyl radicals, which are trapped by the scavengers used. Thus, in case these findings can be extrapolated to human L-OHGA, it may be presumed that oxidative stress is involved in the pathophysiology of the brain damage observed in this disorder.  相似文献   

6.
The in vitro effects of propionic and L-methylmalonic acids on some parameters of oxidative stress were investigated in the cerebral cortex of 21-day-old rats. Chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS) and total radical-trapping antioxidant capacity (TRAP) were measured in brain tissue homogenates in the presence of propionic or L-methylmalonic acids at concentrations ranging from 1 to 10mM. Both acids significantly increased chemiluminescence and TBA-RS and decreased TRAP, indicating a simulation of lipid peroxidation and a reduction of tissue antioxidant potential. Other organic acids tested which accumulate in some organic acidemias (suberic, sebacic, adipic, 3-methylglutaric and 4-hydroxybutyric acids) did not affect these parameters. This study provides evidence that free radical generation may participate in the neurological dysfunction of propionic and methylmalonic acidemias.  相似文献   

7.
Large amounts of d-2-hydroxyglutaric acid (DGA) accumulate in d-2-hydroxyglutaric aciduria (D-2-OHGA), an inherited neurometabolic disorder characterized by severe neurological dysfunction and cerebral atrophy. Despite the significant brain abnormalities, the neurotoxic mechanisms of brain injury in this disease are virtually unknown. In this work, the in vitro effect of DGA on various parameters of oxidative stress was investigated; namely chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR) and the activities of the antioxidant enzymes catalase, glutathione peroxidase and superoxide dismutase in cerebral cortex from 30-day-old-rats. DGA significantly increased chemiluminescence and TBA-RS and decreased TAR values in the cortical supernatants. In contrast, TRAP and the antioxidant enzyme activities were not altered by the metabolite. Furthermore, the DGA-induced increase of TBA-RS was fully prevented by the free radical scavengers ascorbic acid plus Trolox (water-soluble alpha-tocopherol) and attenuated by the inhibitor of nitric oxide synthase Nomega-nitro-L-arginine methyl ester (L-NAME), suggesting the role of superoxide, hydroxyl and nitric oxide radicals in this action. The data indicate a stimulation of lipid peroxidation through the production of free radicals and a reduction of the brain capacity to efficiently modulate the damage associated with the enhanced generation of free radicals by DGA. In the case that these findings also occur in human D-2-OHGA, it is feasible that oxidative stress may be involved in the pathophysiology of the brain injury observed in patients with this disease.  相似文献   

8.
Maple syrup urine disease (MSUD) is an inherited disorder caused by deficiency of branched-chain L-2-keto acid dehydrogenase complex activity. Affected patients present severe brain dysfunction manifested as convulsions, coma, psychomotor delay and mental retardation. However, the underlying mechanisms of these neurological findings are virtually unknown. In this study, we tested the in vitro effect of L-leucine, L-isoleucine and L-valine, the amino acids accumulating in MSUD, on the lipid peroxidation parameters chemiluminescence and thiobarbituric acid-reactive substances (TBA-RS), as well as on total radical-trapping antioxidant potential (TRAP) and total antioxidant reactivity (TAR) in cerebral cortex from 30-day-old rats. L-Leucine significantly increased chemiluminescence and TBA-RS measurements and markedly decreased TRAP and TAR values. L-Isoleucine increased chemiluminescence and decreased TRAP measurements, but TAR and TBA-RS levels were not altered by the amino acid. Finally, TRAP measurement was diminished by L-valine. The results indicate a stimulation of lipid peroxidation and a reduction of brain capacity to efficiently modulate the damage associated with an increased production of free radicals by the branched-chain amino acids (BCAAs) accumulated in MSUD. It is therefore tempting to speculate that oxidative stress may be implicated in the brain damage found in MSUD patients.  相似文献   

9.
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder biochemically characterized by the accumulation of very long chain fatty acids (VLCFA), particularly hexacosanoic acid (C(26:0)) and tetracosanoic acid (C(24:0)), in tissues and biological fluids. Although patients affected by this disorder predominantly present central and peripheral demyelination as well as adrenal insufficiency, the mechanisms underlying the brain damage in X-ALD are poorly known. The current treatment of X-ALD with glyceroltrioleate (C(18:1))/glyceroltrierucate (C(22:1)) (Lorenzo's oil, LO) combined with a VLCFA-poor diet normalizes VLCFA concentrations, but the neurological symptoms persist or even progress in symptomatic patients. Considering that free radical generation is involved in various neurodegenerative disorders and that in a previous study we showed evidence that oxidative stress is probably involved in the pathophysiology of X-ALD symptomatic patients, in the present study we evaluated various oxidative stress parameters, namely thiobarbituric acid reactive species (TBA-RS) and total antioxidant reactivity (TAR) in plasma, as well as the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes from symptomatic and asymptomatic X-ALD patients and verified whether LO treatment and a VLCFA restricted diet could change these parameters. We observed a significant increase of plasma TBA-RS in symptomatic and asymptomatic X-ALD patients, reflecting induction of lipid peroxidation even before the disease was manifested. In addition, LO treatment did not alter this profile. Furthermore, plasma TAR measurement of X-ALD patients was not different from that of controls. Similarly, the antioxidant enzyme activities CAT, SOD and GPx were not altered in erythrocyte from X-ALD patients as compared to controls. We also examined the in vitro effects of hexacosanoic acid (C(26:0)) and tetracosanoic acid (C(24:0)) alone or combined with oleic (C(18:1))/erucic (C(22:1)) acids on various oxidative stress parameters in cerebral cortex of young rats, namely chemiluminescence, TBA-RS, TAR, CAT, SOD and GPx in order to investigate whether those fatty acids were able to induce oxidative stress. We found that there was a significant increase of TBARS and of chemiluminescence in rat cerebral cortex exposed to C(26:0)/C(24:0), and that the addition of C(18:1)and C(22:1) to the assays did not prevent this effect. Furthermore, TAR measurement was not altered by C(26:0) and C(24:0) acids in rat cerebral cortex. Taken together, our results indicate that lipid peroxidation occurs in X-ALD and that LO treatment does not attenuate or prevent free radical generation in these patients. Therefore, it may be presumed that antioxidants should be considered as an adjuvant therapy for X-ALD patients.  相似文献   

10.
In the present study we investigated the in vivo and in vitro effects of proline on some parameters of oxidative stress, such as chemiluminescence, total radical-trapping antioxidant potential (TRAP) and the activity of the antioxidant enzymes catalase, glutathione peroxidase and superoxide dismutase in rat cerebral cortex. Ten-day-old rats received one subcutaneous injection of proline (12.8 micromol/g body weight), while control rats received saline in the same volumes. The animals were killed 1h after injection, the cerebral cortex was isolated and the assays immediately carried out. For the in vitro studies, homogenates from cerebral cortex of 10-day-old untreated rats were incubated for 1h at 37 degrees C with various concentrations of proline (3.0 microM-1.0mM). Results showed that proline-treated rats presented a decrease of TRAP (30%) and an increase of chemiluminescence (78%). In contrast, the activities of catalase, glutathione peroxidase and superoxide dismutase were not modified by proline acute treatment. Furthermore, the presence of proline in the medium increased chemiluminescence, decreased TRAP and the activity of superoxide dismutase at proline concentrations similar to those observed in tissues of hyperprolinemic patients (0.5-1.0mM). However, catalase and glutathione peroxidase activities were not affected by the presence of proline in the medium. The results indicate that proline induces oxidative stress in the brain, which may be related, at least in part, to the neurological dysfunction observed in hyperprolinemia.  相似文献   

11.
Glutaryl-CoA dehydrogenase deficiency (GDD) is an inherited neurometabolic disorder biochemically characterized by tissue accumulation of glutaric, 3-hydroxyglutaric (3-OHGA) and glutaconic acids and clinically by severe neurological symptoms and cerebral atrophy whose pathophysiology is poorly known. In the present study we investigated the effect of 3-OHGA, considered the main neurotoxin in GDD, on the lipoperoxidation parameters chemiluminescence and thiobarbituric acid-reactive species (TBA-RS), and on the amount of nitric oxide metabolites in cerebral cortex of young rats. Total radical-trapping antioxidant potential (TRAP), which reflects the tissue antioxidant defenses, was also examined. We observed that 3-OHGA significantly increased chemiluminescence, TBA-RS and nitric oxide metabolites, in contrast to TRAP, which was decreased by the metabolite. The data indicate a stimulation of lipid peroxidation and free radical production, and a reduction of the tissue antioxidant defenses caused by the metabolite. In case these findings also occur in the human condition, it may be presumed that oxidative stress is involved in the brain damage observed in GDD.  相似文献   

12.
In the present work we investigated the in vitro effect of 3-hydroxy-3-methylglutarate (HMG) that accumulates in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency (HMGLD) on important parameters of oxidative stress in rat cerebral cortex. It was observed that HMG induced lipid peroxidation by significantly increasing chemiluminescence and levels of thiobarbituric acid-reactive substances (TBA-RS). This effect was prevented by the antioxidants alpha-tocopherol, melatonin, N-acetylcysteine, and superoxide dismutase plus catalase, suggesting that free radicals were involved in the lipid oxidative damage. On the other hand, HMG did not change TBA-RS levels in intact or disrupted mitochondrial preparations, indicating that generation of oxidants by this organic acid was dependent on cytosolic mechanisms. HMG also induced protein oxidative damage in cortical supernatants, which was reflected by increased carbonyl content and sulfhydryl oxidation. Furthermore, HMG significantly reduced the nonenzymatic antioxidant defenses total-radical trapping antioxidant potential, total antioxidant reactivity, and reduced glutathione (GSH) levels in rat cerebral cortex. HMG-induced GSH reduction was totally blocked by melatonin pretreatment. We also verified that the decrease of GSH levels provoked by HMG in cortical supernatants was not due to a direct oxidative effect of this organic acid, because exposition of commercial GSH and purified membrane protein-bound thiol groups to HMG in the absence of cortical supernatants did not decrease the reduced sulfhydryl groups. Finally, the activities of the main antioxidant enzymes were not altered by HMG exposure. Our data indicate that oxidative stress elicited in vitro by HMG may possibly contribute at least in part to the pathophysiology of the brain injury in HMGLD.  相似文献   

13.
There is mounting evidence indicating that reactive free radical species are involved in initiation and development of many different forms of human pathologies including psychiatric disorders. In the present study, we aimed to determine whether serum selenium (Se), antioxidant enzyme (glutathione peroxidase, GSH-Px, superoxide dismutase, SOD, and catalase, CAT) activities, and plasma malondialdehyde (MDA) levels, a product of lipid peroxidation, were associated with obsessive-compulsive disorder (OCD). The participants were 28 patients with OCD that were drug-free at least for a month and a control group (n=28) of healthy subjects, matched with respect to age and sex. In both groups, the levels of the erythrocyte MDA, GSH-Px, SOD, Se, and the CAT were measured. The levels of MDA and SOD were statistically significantly higher (p<0.01, p<0.05 respectively) in patients than controls. The activities of CAT, GSH-Px, and serum Se levels were statistically significantly lower (p<0.0001, p<0.001, and p<0.001 respectively) in patients than controls. There was a positive correlation in patients between plasma GSH-Px activity and Se concentration (r=52, p=0.001). However, in patients with OCD, CAT and SOD activities were significantly and negatively correlated with MDA levels (r=-0.45, p=0.017 for CAT and r=-0.54, p=0.020 for SOD). The study shows the presence of a significant relationship of OCD and oxidative stress, and consequently, an involvement of free radicals and of the antioxidant defence.  相似文献   

14.
This study aimed to explore the relationship between antioxidant enzyme activities and neurological soft signs (NSS) in a sample of patients with schizophrenia. Sixty clinically stable patients with schizophrenia treated mostly by first-generation antipsychotics and 30 matched healthy controls were recruited. NSS were assessed in two groups by a standardized neurological examination (Krebs et al., 2000). The red blood cell (RBC) antioxidant activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) were measured by spectrophotometry. RBC activities of all enzymes studied: SOD, GSH-Px and CAT, were significantly lower in the patients compared to control group. All NSS scores were significantly higher in the patients compared to healthy controls' scores. In the patients, a negative correlation was found between RBC SOD activity and NSS total score and motor coordination and motor integration sub-scores. The association between low SOD activity as a marker of oxidative stress and NSS in schizophrenic patients suggests a common pathological process of these abnormalities.  相似文献   

15.
Niemann-Pick type C (NPC) is a rare neurodegenerative disorder biochemically characterized by the accumulation of cholesterol and glycosphingolipids in late endosomes and lysosomes of the affected patients. N-butyl-deoxynojirimycin is the only approved drug for patients with NPC disease. It inhibits glycosphingolipid synthesis, therefore reducing intracellular lipid storage. Although the mechanisms underlying the neurologic damage in the NPC disease are not yet well established, in vitro and in vivo studies suggest an involvement of reactive species in the pathophysiology of this disease. In this work we aimed to evaluate parameters of lipid and protein oxidation, measured by thiobarbituric acid-reactive species (TBA-RS) and protein carbonyl formation, respectively, as well as the enzymatic and non-enzymatic antioxidant defenses in plasma, erythrocytes and fibroblasts from NPC1 patients, at diagnosis and during treatment with N-butyl-deoxynojirimycin. We found a significant increase of TBA-RS in plasma and fibroblasts, as well as increased protein carbonyl formation and decreased total antioxidant status (TAS) in plasma of untreated NPC1 patients as compared to the control group. In addition, erythrocyte glutathione peroxidase (GSH-Px) activity was increased, whereas CAT and SOD activities were normal in these patients. We also observed that patients treated with N-butyl-deoxynojirimycin normalized plasma TBA-RS and TAS, as well as erythrocyte GSH-Px activity. Taken together, the present data indicate that oxidative stress is increased in patients with NPC1 disease and that treatment with N-butyl-deoxynojirimycin is able to confer protection against this pathological process.  相似文献   

16.
Experimental studies have demonstrated that free radicals play a major role on neuronal injury during ischemia/reperfusion (I/R) in rats. Erdosteine is a thioderivative endowed with mucokinetic, mucolytic and free-radical-scavenging properties. The aim of the present study was to investigate the effect of erdosteine treatment against short-term global brain ischemia/reperfusion injury in rats. The study was carried out on Wistar rats divided into four groups. (i) Control group, (ii) ischemia/reperfusion group, (iii) ischemia/reperfusion+erdosteine group, and (iv) erdosteine group. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities as well as thiobarbituric acid reactive substances (TBARSs) and nitric oxide (NO) levels were analysed in erythrocyte and plasma of rats. Plasma NO levels were significantly higher in the ischemia/reperfusion group than the other groups. The activities of SOD and GSH-Px were decreased, while TBARS levels increased in the ischemia/reperfusion group compared to other groups in both plasma and erythrocyte. The erythrocyte CAT activity was higher in erdosteine group and there was a statistically significant increase, when compared with the erdosteine plus ischemia/reperfusion group. By treating the rats with erdosteine, the depletion of endogenous antioxidant enzymes (SOD, CAT, GSH-Px) and increase of TBARS and NO levels were prevented. This study, therefore, suggests that erdosteine reduces parameters of oxidative stress is well supported by the data.  相似文献   

17.
Increased oxidative stress resulting from free radical damage to cellular function is associated with a number of neurodegenerative diseases, in particular with Alzheimer's disease (AD). The deposition of amyloid beta-peptide (Abeta), the major pathological hallmark for AD, has been suggested as the central disease-causing and disease-promoting event for the disease, and the pathological role of Abeta was partially mediated by oxidative stress. Here we compared the effects of huperzine A (HupA) and tacrine, two acetylcholinesterase (AChE) inhibitors available for AD, on Abeta-induced cell lesion, level of lipid peroxidation, and antioxidant enzyme activities in rat PC12 and primary cultured cortical neurons. Following exposure of both cells to different concentrations of an active fragment of Abeta, a marked reduction in cell survival and activities of glutathione peroxidase (GSH-Px) and catalase (CAT), as well as increased production of malondialdehyde (MDA) and superoxide dismutase (SOD), were observed. Pretreatment of the cells with HupA or tacrine (0.1-10 microM) prior to Abeta exposure significantly elevated the cell survival and GSH-Px and CAT activities and decreased the level of MDA. Both drugs have similar protection against Abeta insult. Our results indicate that HupA and tacrine exert neuroprotective effects against Abeta toxicity, which might be of importance and might contribute to their clinical efficacy for the treatment of AD.  相似文献   

18.
This study investigated the response of the antioxidant defense system in brain subcellular fractions after oral graded doses of ethanol to rat. Four groups of male Fischer-344 rats were orally administered saline, ethanol 2 g, 4 g, and 6 g/kg, respectively, and sacrificed 1 hour post treatment. Brain cytosol, synaptosomes, microsomes and mitochondria were separated by density gradient differential centrifugation and assayed for antioxidant system. A significant and dose-dependent-decrease in superoxide dismutase (SOD) activity was observed in all brain subcellular fractions. Catalase (CAT) activity was significantly decreased in brain mitochondria (67% and 80% of control) at higher doses of ethanol; whereas, CAT activity was significantly increased in cytosol, synaptosomes and microsomes. Glutathione peroxidase (GSH-Px) activity was significantly increased in all brain subcellular fractions except in cytosol at higher dose of ethanol. Malondialdehyde (MDA) content was significantly increased in all brain subcellular fractions showing dose response of ethanol-induced oxidative stress. The increase in MDA levels in the brain synaptosomes and microsomes were higher at 6 g dose of ethanol (155% and 163% of control) when compared to mitochondria and cytosol. Glutathione (GSH) levels were significantly increased in brain cytosol and microsomes at higher dose of ethanol (164% and 159% of control); whereas, the GSH concentration was significantly decreased in brain synaptosomes and mitochondria. The antioxidant enzyme (AOE) activity ratios (GSH-Px/SOD and GSH-Px + CAT/SOD) were dose dependently increased in all brain subcellular fractions, particularly in synaptosomes. The GSH/GSSG ratio was dose dependently increased in brain microsomes. The perturbations in the antioxidant defense system and enhanced lipid peroxidation following graded doses of ethanol ingestion indicate a dose-dependent-oxidative 2133stress response in brain subcellular compartments of rats.  相似文献   

19.
Dysregulation of free radical metabolism as reflected by abnormal erythrocyte activities of three critical enzymes of the antioxidant defense system (AODS), i.e. superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), has been reported in schizophrenic patients. The present study examined the effects of haloperidol, a standard antipsychotic agent, on the AODS enzymes, using a within-subject, repeated-measures, on–off haloperidol treatment design. The mean drug free period was 40 days. At baseline, there were no significant differences for all three enzymes between patients and age and sex-matched normal volunteers. During the drug-free condition, SOD activity, but not GSH-Px and CAT activities, was significantly higher relative to normal control subjects. However, within-subjects both SOD and GSH-Px activities, but not CAT activity, were higher in the drug-free condition compared to the treatment condition. No significant correlation was observed between SOD activity and plasma haloperidol (or daily haloperidol dose) levels. Smoking status, as assessed by the cotinine level, was unrelated to enzyme activities. In addition, none of the major AODS enzymes showed significant differences between relapsed and clinically stable patients. These findings suggest that haloperidol may not have direct regulatory effect on AODS enzyme activities and that SOD and GSH-Px activities may change in response to other factors such as change in symptom severity.  相似文献   

20.

Objective

To determine Red Blood Cell (RBC) antioxidant enzyme activities and plasma Thiobarbituric Acid Reactive Substances (TBARS) in clinically stable patients with schizophrenia and their unaffected siblings.

Methods

A case-control study carried out on three groups: 60 schizophrenic patients treated with neuroleptics, 33 of their unaffected siblings and 30 healthy controls with no family psychiatric history. Biological markers were measured on fasting patients after a period of tobacco abstinence: RBC antioxidant enzyme activities – superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) – by spectrophotometry and plasma levels of TBARS by spectrofluorimetry.

Results

RBC SOD and CAT activities were significantly lower in schizophrenic patients and their unaffected siblings compared to the control group (P < 0.001). Schizophrenic patients also had significantly lower RBC GSH-Px activity than controls (P = 0.03), whereas their unaffected siblings had significantly higher RBC GSH-Px activity than controls (P = 0.04). Plasma TBARS were higher in schizophrenic patients than their unaffected siblings: 2.1 ± 0.8 μmol/l vs. 1.7 ± 0.6 μmol/l (P = 0.06).

Conclusions

Our results showed a decrease in antioxidant enzyme activities and an increase in lipid peroxidation confirming the existence of oxidative stress in schizophrenic patients treated with neuroleptics. Additionally, this suggests that the increase in GSH-Px activity in unaffected siblings would be a protective mechanism against oxidative stress and damage. Other studies are necessary to confirm these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号