首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classically, glia have been regarded as non-excitable cells that provide nourishment and physical scaffolding for neurones. However, it is now generally accepted that glia are active participants in brain function that can modulate neuronal communication via several mechanisms. Investigations of anatomical plasticity in the magnocellular neuroendocrine system of the hypothalamic paraventricular and supraoptic nuclei led the way in the development of much of our understanding of glial regulation of neuronal activity. In this review, we provide an overview of glial regulation of magnocellular neurone activity from a historical perspective of the development of our knowledge of the morphological changes that are evident in the paraventricular and supraoptic nuclei. We also focus on recent data from the authors' laboratories presented at the 9th World Congress on Neurohypophysial Hormones that have contributed to our understanding of the multiple mechanisms by which glia modulate the activity of neurones, including: gliotransmitter modulation of synaptic transmission; trans-synaptic modulation by glial neurotransmitter transporter regulation of neurotransmitter spillover; and glial neurotransmitter transporter modulation of excitability by regulation of ambient neurotransmitter levels and their action on extrasynaptic receptors. The magnocellular neuroendocrine system secretes oxytocin and vasopressin from the posterior pituitary gland to control birth, lactation and body fluid balance, and we finally speculate as to whether glial regulation of individual magnocellular neurones might co-ordinate population activity to respond appropriately to altered physiological circumstances.  相似文献   

2.
Oxytocin and vasopressin release from neurohypophysial terminals is closely related to the firing activity of magnocellular neurones in the supraoptic (SON) and paraventricular nuclei. It is well established that activation of GABAA receptors potently inhibits the activity of SON neurones and, thus, hormone release. However, whether postsynaptic GABAB receptors are expressed in magnocellular neurones, and the role they play in controlling their firing activity, is still controversial. In the present work, we combined immunohistochemical and electrophysiological techniques to determine whether activation of GABAB receptors in identified oxytocin and vasopressin neurones modulates their firing activity. Patch-clamp recordings from SON neurones were obtained either in the slice preparation or from acutely dissociated neurones. Activation of GABAB receptors with the selective agonist baclofen (10 micro m) inhibited voltage-gated Ca2+ currents, reduced the duration of individual action potentials, as well as the magnitude of the hyperpolarizing after-potential. SON firing activity was reduced by baclofen, and effect that was accompanied by a small membrane hyperpolarization. The inhibition of firing discharge persisted in the presence of synaptic blockade media, and was also observed in acutely dissociated SON neurones. Finally, GABAB-mediated modulation of firing activity was largely blocked by the Ca2+ channel blocker Co2+ (2 mm). In general, baclofen modulatory actions were significantly larger, or observed more predominantly, in vasopressin neurones. In summary, these results support the expression of functional postsynaptic GABAB receptors in SON neurones, activation of which efficiently modulates neuronal excitability, in a Ca2+- and cell-type dependent manner.  相似文献   

3.
The magnocellular neurones in the supraoptic nucleus project to the neural lobe and release vasopressin and oxytocin into the peripheral circulation, where they act on the kidney to promote fluid retention or stimulate smooth muscles in the vasculature, uterus and mammary glands to support blood pressure, promote parturition or induce milk let-down, respectively. Hormone release is regulated by complex afferent pathways carrying information about plasma osmolality, blood pressure and volume, cervical stretch, and suckling. These afferent pathways utilise a broad array of neurotransmitters and peptides that activate both ligand-gated ion channels and G-protein coupled receptors (GPCRs). The ligand-gated ion channels induce rapid changes in membrane potential resulting in the generation of action potentials, initiation of exocytosis and the release of hormone into the periphery. By contrast, the GPCRs activate a host of diverse signalling cascades that modulate action potential firing and regulate other cellular functions required to support hormone release (e.g. hormone synthesis, processing, packaging and trafficking). The diversity of these actions is critical for integration of the distinct regulatory signals into a response appropriate for maintaining homeostasis. This review describes several diverse roles of GPCRs in magnocellular neurones, focusing primarily on adrenergic, purinergic and peptidergic (neurokinin and angiotensin) receptors.  相似文献   

4.
Glutamate and norepinephrine transmitter systems play critical roles in the synaptic control of hypothalamic magnocellular neurones. We recently reported on a norepinephrine-sensitive glutamate circuit within the paraventricular nucleus (PVN) that projects to magnocellular neurones. Here, we present evidence for norepinephrine regulation of glutamate release in the PVN and supraoptic nucleus (SON) via actions on presynaptic terminals. Whole-cell synaptic currents were recorded in magnocellular neurones of the SON and PVN in an acute slice preparation. Bath application of norepinephrine (100 microm) caused a robust, reversible increase in the frequency of spontaneous glutamatergic excitatory postsynaptic currents in 100% of SON neurones (246%) and in 88% of PVN magnocellular neurones (259%). The norepinephrine-induced increase in glutamate release was mediated by activation of both presynaptic alpha1 receptors and alpha2 receptors, but the alpha1-receptor component was the predominant component of the response. The presynaptic actions of norepinephrine were predominantly, although not completely, resistant to blockade of Na-dependent spikes, implicating a presynaptic terminal locus of action. Interestingly, the spike-dependent component of the response was greater in PVN than in SON magnocellular neurones. This robust presynaptic facilitation of glutamate release by norepinephrine, combined with the known excitatory postsynaptic actions of norepinephrine, activational effects on local glutamate circuits, and inhibitory effects on gamma-aminobutyric acid release, indicate a strong excitatory role of norepinephrine in the regulation of oxytocin and vasopressin release during physiological stimulation.  相似文献   

5.
A considerable amount of evidence has accumulated to support a role for excitatory glutamatergic transmission in the regulation of the hypothalamo-neurohypophysial system. Glutamate immunoreactivity has been found in axon terminals forming asymmetric synapses on to magnocellular neurosecretory cells and kynurenic acid, a broad spectrum glutamate receptor antagonist inhibits 1) spontaneous electrical activity in vivo, 2) excitatory postsynaptic potentials in hypothalamic slices, and 3) osmotically-evoked vasopressin release from hypothalamic explants. While this provides strong evidence for glutamatergic regulation of hypothalamic magnocellular neurosecretory cells, the subtypes of glutamate receptors expressed by these cells have not been defined. We have, therefore, obtained current and voltage clamp recordings from supraoptic magnocellular neurosecretory cells in vitro to investigate the functional and pharmacological properties of their glutamate receptors. Application of micromolar concentrations of L-glutamate, or of the agonists kainate, quisqualate and N-methyl-D-aspartate (NMDA), produced reversible and dose-dependent depolarizations in all cells tested. These responses were mediated by postsynaptic receptors since they persisted during chemical synaptic blockade with Ca2 + -free or tetrodotoxin-containing solutions. The inward current induced by NMDA showed a marked Mg2+-sensitive voltage dependence, and was blocked by D, L-2-amino-5-phosphonovalerate. In contrast, currents induced by kainate and quisqualate showed linear current-voltage properties and were antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione. We conclude that both NMDA and non-NMDA receptors are expressed by magnocellular neurosecretory cells of the rat supraoptic nucleus.  相似文献   

6.
Synaptic activity in magnocellular neurosecretory neurones is influenced by the retrograde (i.e. somatodendritic) release of vasopressin, oxytocin and cannabinoids (CBs). For oxytocin neurones, oxytocin exerts constitutive effects on pre-synaptic activity through its ability to release CBs post-synaptically. In the present study, we examined evoked inhibitory post-synaptic currents (eIPSCs) and spontaneous inhibitory post-synaptic currents (sIPSCs) in identified vasopressin (VP) neurones in coronal slices from virgin rats to determine: (i) the extent to which CBs may also tonically modulate VP synaptic activity; and (ii) to determine whether depolarisation-induced suppression of inhibition was present in VP neurones, and if so, whether it was mediated by VP or CBs. The CB1 antagonists AM251 (1 μm) and SR14171 (1 μm) consistently increased the frequency of sIPSCs in VP neurones without affecting their amplitude, suggesting a tonic CB presence. This effect on frequency was independent of action potential activity, and blocked by chelating intracellular calcium with 10 mm ethylene glycol tetraacetic acid (EGTA). AM251 also increased the amplitude of eIPSCs and decreased the paired-pulse ratio (PPR) in VP neurones-effects that were completely blocked with even low (1 mm EGTA) internal calcium chelation. Bouts of evoked firing of VP neurones consistently suppressed sIPSCs but had no effect on eIPSCs or the PPR. This depolarisation-induced suppression of IPSCs was reduced by AM251, and was totally blocked by 10 μm of the mixed vasopressin/oxytocin antagonist, Manning compound. We then tested the effect of vasopressin on IPSCs at the same time as blocking CB1 receptors. Vasopressin (10-100 nm) inhibited sIPSC frequency but had no effect on sIPSC or eIPSC amplitudes, or on the PPR, in the presence of AM251. Taken together, these results suggest a tonic, pre-synaptic inhibitory modulation of IPSCs in VP neurones by CBs that is largely dependent on post-synaptic calcium, and an inhibitory effect of VP on IPSCs that is independent of CB release.  相似文献   

7.
In addition to their peripheral vasoactive effects, accumulating evidence supports an important role for endothelins (ETs) in the regulation of the hypothalamic magnocellular neurosecretory system, which produces and releases the neurohormones vasopressin (VP) and oxytocin (OT). Still, the precise cellular substrates, loci and mechanisms underlying the actions of ETs on the magnocellular system are poorly understood. In the present study, we combined patch-clamp electrophysiology, confocal Ca(2+) imaging and immunohistochemistry to study the actions of ETs on supraoptic nucleus (SON) magnocellular neurosecretory neurones and astrocytes. Our studies show that ET-1 evoked rises in [Ca(2+) ](i) levels in SON astrocytes (but not neurones), an effect largely mediated by the activation of ET(B) receptors and mobilisation of thapsigargin-sensitive Ca(2+) stores. The presence of ET(B) receptors in SON astrocytes was also verified immunohistochemically. ET(B) receptor activation either increased (75%) or decreased (25%) SON firing activity, both in VP and putative OT neurones, and these effects were prevented when slices were preincubated in glutamate receptor blockers or nitric oxide synthase blockers, respectively. Moreover, ET(B) -mediated effects in SON neurones were also prevented by a gliotoxin compound, and when changes in [Ca(2+) ](i) were prevented with bath-applied BAPTA-AM or thapsigargin. Conversely, intracellular Ca(2+) chelation in the recorded SON neurones failed to block ET(B) -mediated effects. In summary, our results indicate that ET(B) receptor activation in SON astrocytes induces the mobilisation of [Ca(2+) ](i) , likely resulting in the activation of glutamate and nitric oxide signalling pathways, evoking in turn excitatory and inhibitory SON neuronal responses, respectively. Taken together, our study supports an important role for astrocytes in mediating the actions of ETs on the magnocellular neurosecretory system.  相似文献   

8.
Dendritic Release of Vasopressin and Oxytocin   总被引:11,自引:0,他引:11  
In addition to the release of neurotransmitters from their axon terminals, several neuronal populations are able to release their products from their dendrites. The cell bodies and dendrites of vasopressin- and oxytocin-producing neurones are mainly located within the hypothalamic supraoptic and paraventricular nuclei and neuropeptide release within the magnocellular nuclei has been shown in vitro and in vivo . Local release is induced by a range of physiological and pharmacological stimuli, and is regulated by a number of brain areas; locally released peptides are mainly involved in pre- and postsynaptic modulation of the electrical activity of magnocellular neurones. Spatial and temporal differences between peptide release within the nuclei and that from the distant axonal varicosities indicate that the release mechanisms are at least partially independent, supporting the hypothesis of locally regulated dendritic release of vasopressin and oxytocin. In this respect, magnocellular neurones show similarities to other neuronal populations and thus autoregulation of neuronal activity by dendritic neuromodulator release may be a general phenomenon within the brain.  相似文献   

9.
Many neurones in the central nervous system possess intrinsic pattern-generating properties, including vasopressin magnocellular neurosecretory cells. Synaptic input to vasopressin cells is not rhythmically patterned and yet these neurones fire action potentials in a 'phasic' activity pattern comprised of alternating periods of activity and silence that each last tens of seconds. This review describes the intrinsic and extrinsic mechanisms that generate phasic activity in vasopressin cells, highlighting recent work that has shown phasic activity to result from feedback modulation of synaptic inputs, and of intrinsic membrane properties, by peptides released from the dendrites of vasopressin cells.  相似文献   

10.
Mechanisms by which luteinizing hormone-releasing hormone (LHRH) affects vasopressin secretion were investigated using the isolated rat hypothalamo-neurohypophysial explants. LHRH in a concentration of 4 x 10(-7)M inhibited both the basal and K(+)-stimulated vasopressin release from explants isolated from euhydrated rats. When, however, the tissue was obtained from animals previously salt-loaded, the inhibitory effect of LHRH was completely abolished, thus implying a decrease in the sensitivity to LHRH. LHRH did not affect vasopressin secretion under conditions of generalized blockade of synaptic inputs by 15 mM MgSO(4), suggesting the indirect action of this neurohormone on the hypothalamic magnocellular system.It is concluded that LHRH may play the role of a neuromodulator of vasopressinergic neurones in the rat.  相似文献   

11.
Magnocellular vasopressin (VP) neurones are activated by increases in blood osmolality, leading to the secretion of VP into the circulation to promote water retention in the kidney, thus constituting a key mechanism for the regulation of body fluid homeostasis. However, chronic high salt intake can lead to excessive activation of VP neurones and increased circulating levels of VP, contributing to an elevation in blood pressure. Multiple extrinsic factors, such as synaptic inputs and glial cells, modulate the activity of VP neurones. Moreover, magnocellular neurones are intrinsically osmosensitive, and are activated by hypertonicity in the absence of neighbouring cells or synaptic contacts. Hypertonicity triggers cell shrinking, leading to the activation of VP neurones. This cell‐autonomous activation is mediated by a scaffold of dense somatic microtubules, uniquely present in VP magnocellular neurones. Treating isolated magnocellular neurones with drugs modulating microtubule stability modifies the sensitivity of neuronal activation in response to acute hypertonic stimuli. However, whether the microtubule network is altered in conditions associated with enhanced neuronal activation and increased VP release, such as chronic high salt intake, remains unknown. We examined the organisation of microtubules in VP neurones of the supraoptic and paraventricular hypothalamic nuclei (SON and PVN, respectively) of rats subjected to salt‐loading (drinking 2% NaCl for 7 days). Using super‐resolution imaging, we found that the density of microtubules in magnocellular VP neurones from the SON and PVN was significantly increased, whereas the density and organisation of microtubules remain unchanged in other hypothalamic neurones, as well as in neurones from other brain areas (e.g., hippocampus, cortex). We propose that the increase in microtubule density in magnocellular VP neurones in salt‐loading promotes their enhanced activation, possibly contributing to elevated blood pressure in this condition.  相似文献   

12.
Previous studies suggest that activation of N-methyl-D-aspartate (NMDA) receptors facilitates phasic firing and spike clustering displayed by magnocellular neuroendocrine cells (MNCs) of the supraoptic (SON) and paraventricular nucleus of the hypothalamus (PVN). Osmotic stimulation produces similar activity patterns which, in turn, can lead to enhanced release of vasopressin and oxytocin from MNCs. Our laboratory has shown that dehydration regulates the expression of the NMDA receptor subunits, NR1 and NR2B, in the SON and PVN, suggesting their involvement in osmoregulation. In the present study, we examined the cellular localization of NR2B, one of the glutamate-binding subunits of the NMDA receptor, with an NR2B-specific antibody. Using double-label immunohistochemistry and three different detection methods with metallic, peroxidase, and fluorescence markers, it was found that both vasopressin and oxytocin-producing MNC populations synthesize NR2B. The incidence of NR2B colocalization with vasopressin-neurophysin in the SON and lateral magnocellular PVN (PVL) was 0.95 and 0.91, respectively. For oxytocin-neurophysin, the corresponding values were 0.97 and 0.95, respectively. Furthermore, the extent of colocalization in MNCs of the SON, PVL, retrochiasmatic SON, and accessory neurosecretory nuclei was similar. Astrocytes associated with the SON, and identified with antibodies targeting glial fibrillary acidic protein (GFAP) or vimentin, were not colabeled with NR2B. Our results demonstrate that NR2B protein is expressed by almost all MNCs and that it is equally prevalent in vasopressinergic and oxytocinergic populations of various magnocellular neuroendocrine nuclei supporting a role of NMDA receptors in MNC-mediated neurosecretory processes. Although NR2B may form part of functional NMDA receptors on MNCs, it is probably not present on astrocytes associated with nearby MNCs.  相似文献   

13.
Hypothalamo-neurohypophysial magnocellular neurons display specific electrical activities in relation to the mode of release of their hormonal content (vasopressin or oxytocin). These activities are under strong glutamatergic excitatory control. The implication of NMDA receptors in the control of vasopressinergic and oxytocinergic neurons is still a matter of debate. We here report the first detailed characterization of functional properties of NMDA receptors in voltage-clamped magnocellular neurons acutely dissociated from the supraoptic nucleus. All cells responded to NMDA with currents that reversed polarity around 0 mV and were inhibited by D-2-amino-5-phosphonovalerate (d-APV) and by 100 μM extracellular Mg2+ (at -80 mV). Sensitivity to the co-agonist glycine (EC50, 2 μM) was low compared with most other neuronal preparations. The receptors displayed low sensitivity to ifenprodil, were insensitive to glycine-independent potentiation by spermine, and had a unitary conductance of 50 pS. No evidence was found for two distinct cell populations, suggesting that oxytocinergic and vasopressinergic neurons express similar NMDA receptors. Characterization of NMDA receptors at different postnatal ages revealed a transient increase in density of NMDA currents during the second postnatal week. This was accompanied by a specific decrease in sensitivity to d-APV, with no change in NMDA sensitivity or any other properties studied. Supraoptic NMDA receptors thus present characteristics that strikingly resemble those of reconstituted receptors composed of NR1 and NR2A subunits. Understanding the functional significance of the development of NMDA receptors in the supraoptic nucleus will require further knowledge about the maturation of neuronal excitability, synaptic connections and neurohormone release mechanisms.  相似文献   

14.
The magnocellular hypothalamo-neurohypophysial system is, via a release of vasopressin from nerve terminals in the neurohypophysis to the peripheral blood, centrally involved in the regulation of body salt and water homeostasis. Furthermore, it has been shown that expression of neuropeptides co-existing with vasopressin or oxytocin in magnocellular neurons is influenced by salt loading. We here report, that neuropeptide Y (NPY)-immunoreactivity, which is normally not observed in the magnocellular neurons of the hypothalamic supraoptic and paraventricular nuclei of rats becomes immunohistochemically detectable after salt loading. Using a double-immunohistochemical procedure on the same brain sections, it is shown that NPY is co-existing with either vasopressin or oxytocin in these neurons. Within the neurohypophysis of normal rats, a moderate number of predominantly fine calibered NPY-immunoreactive nerve fibers most often coursing along vessels is observed in addition to a low number of large peptidergic terminals. In salt-loaded rats, however, the number of NPY-immunoreactive neurohypophysial large nerve terminals in apposition to vascular lumina is drastically increased. By using quantitative receptor autoradiography, it is demonstrated that in salt-loaded animals, the number of neurohypophysial NPY binding sites is decreased to nearly undetectable levels (0.054 +/- 0.02 fmol/mg) compared to a very high density of binding sites in normal animals (1.151 +/- 0.15 fmol/mg). This raises evidence that NPY containing hypothalamo-neurohypophysial neurons as well as peripherally released NPY may be involved in the regulation of water homeostasis via NPY receptors in the neurohypophysis.  相似文献   

15.
Central oxytocin administration has a profound facilitatory effect on the patterning of the milk-ejection reflex in the lactating rat. Lesion and microinjection studies indicate that this action is, in part, mediated via a population of limbic neurones in the bed nuclei of the stria terminalis and ventrolateral septum, which have been shown to possess oxytocin receptors and to be activated by selective oxytocin-receptor agonists in vitro. In vivo electro-physiological recordings reveal that some of these neurones display cyclical activity which is highly correlated to each milk ejection, and are rapidly activated following i.c.v. administration of oxytocin. coincident with the facilitation of milk ejection activity. A hypothetical model is proposed in which this population of limbic neurones serves to gate the activity of a pacemaker which, in turn, coordinates the bursting of hypothalamic magnocellular neurones. The oxytocin innervation of these neurones and their expression of oxytocin receptors increases in the post-partum period, and the resultant enhanced sensitivity leads to a greater facilitatory response during lactation. Inhibitory opioid and noradrenergic inputs which converge on these oxytocin-sensitive neurones may function to switch off the facilitatory circuit during periods of stress. Thus, this population of limbic neurones participates in the regulation of neuroendocrine activity during lactation by providing an appropriate degree of feedback to alter the patterning of the milk-ejection reflex.  相似文献   

16.
Oxytocin and vasopressin reduce the amplitude of excitatory postsynaptic responses in magnocellular neuroendocrine cells of the supraoptic nucleus (SON). To test whether synaptic glutamate release is modulated by these neuropeptides, we examined the combined effect of vasopressin and oxytocin on depolarization-induced glutamate and aspartate release from acutely dissected rat SON or fronto-parietal cortex punches. Glutamate release was stimulated with 60 mm K+ for 5-10 min and measured using ion exchange chromatography or high-performance liquid chromatography. During depolarization with high K+, extracellular glutamate levels increased, on average, to 204% of control values. In the presence of vasopressin/oxytocin, K+-stimulated glutamate and aspartate release were significantly reduced by 34% and 62%, respectively, in the SON. Treatment with the aminopeptidase inhibitor amastatin did not mimic the effects of exogenous vasopressin/oxytocin on glutamate or aspartate release, suggesting that, under the conditions tested here, amastatin treatment may produce more complex effects. The effects of exogenous neuropeptides are likely mediated by oxytocin and/or vasopressin receptors, as the oxytocin- and V1a-receptor antagonist, Manning Compound (10-100 micro m), partially reversed the effects of vasopressin/oxytocin on SON glutamate release. In contrast, in cortical punches, glutamate release was enhanced by high K+, but vasopressin/oxytocin did not significantly reduce glutamate/aspartate release, consistent with the relatively sparse distribution of vasopressin/oxytocin receptors in fronto-parietal cortex. These findings suggest that locally released oxytocin and vasopressin may autoregulate SON magnocellular neuroendocrine cell activity in part by modulating the release of excitatory amino acids from afferent terminals targeting these cells and/or from other cellular sources.  相似文献   

17.
The presence of opioid peptides and opiate receptors in the hypothalamo-neurohypophysial system, as well as the inhibitory effects of enkephalins and beta-endorphin on release of oxytocin and vasopressin have been well documented. The physiological importance of opioid peptides in this classical neurosecretory system, however, has remained illusive. In the present study we tested the effects of naltrexone on the plasma concentrations of oxytocin and vasopressin during dehydration, hemorrhage and suckling in the conscious rat. We obtained evidence supporting the hypothesis that opioid peptides inhibit oxytocin release and thereby promote the preferential secretion of vasopressin when it is of functional importance to maintain homeostasis during dehydration and hemorrhage. Our data support the concept that the coexistence of a neuromodulator and a neurohormone in the same neuron, as demonstrated for vasopressin with dynorphin or leucine-enkephalin, serves to regulate the differential release of two biologically different, yet evolutionarily-related, neurohormones, e.g. oxytocin and vasopressin, from the same neuroendocrine system.  相似文献   

18.
It was shown previously that luteinizing hormone-releasing hormone (LHRH) affects the neurohypophysial oxytocin release in water-deprived rats. However, the detailed mechanisms by which LHRH modifies the oxytocin response to hyperosmotic stimulation have not been explained so far. Using the isolated hypothalamo-neurohypophysial explants obtained from euhydrated rats, the effect of LHRH on the oxytocin secretion was studied under conditions of direct osmotic (i.e., Na(+)- evoked) as well as nonosmotic (i.e., K(+)-evoked) stimulation. Additionally, the oxytocin response to LHRH was investigated using the explants obtained from animals drinking 2% saline for eight days (systemic, i. e., both direct and indirect, osmotic stimulation). LHRH significantly enhanced Na(+)- and K(+)-evoked oxytocin release from explants taken from rats drinking tap water, indicating that LHRH could affect the Na(+)/K(+)-dependent depolarization of perikarya of oxytocin neurones. In contrast, LHRH significantly diminished the K(+)-stimulated hormone release when the neurohypophysial complex was obtained from previously salt-loaded rats, suggesting that peripheral osmotic stimulation somehow modifies the sensitivity of oxytocinergic neurones to LHRH (possible mechanisms are discussed). It is concluded that LHRH may participate in the regulation of oxytocin secretion via both direct and indirect impact on magnocellular oxytocinergic neurones depending on the current functional status of the hypothalamo-neurohypophysial complex.  相似文献   

19.
alpha-Melanocyte-stimulating hormone (alpha-MSH) and oxytocin share remarkable similarities of effects on behaviour in rats; in particular, they both inhibit feeding behaviour and stimulate sexual behaviour. Recently, we showed that alpha-MSH interacts with the magnocellular oxytocin system in the supraoptic nucleus; alpha-MSH induces the release of oxytocin from the dendrites of magnocellular neurones but it inhibits the secretion of oxytocin from their nerve terminals in the posterior pituitary. This effect of alpha-MSH on supraoptic nucleus oxytocin neurones is remarkable for two reasons. First, it illustrates the capacity of magnocellular neurones to differentially regulate peptide release from dendrites and axons and, second, it emphasises the putative role of magnocellular neurones as a major source of central oxytocin release, and as a likely substrate of some oxytocin-mediated behaviours. The ability of peptides to differentially control secretion from different compartments of their targets indicates one way by which peptide signals might have a particularly significant effect on neuronal circuitry. This suggests a possible explanation for the striking way in which some peptides can influence specific, complex behaviours.  相似文献   

20.
The isolated rat hypothalamo-neurohypophysial system was used to investigate possible mechanisms of glucagon-like peptide-1 (7-36) amide (tGLP-1) effects on the vasopressin/oxytocin (AVP/OXY) release. The non-selective inhibition of synaptic transmission as brought about by excess of MgSO(4) in the incubation medium completely abolished the tGLP-1-induced AVP release and attenuated OXY secretion. The non-specific blockade of excitatory amino acid receptors with kynurenic acid (KA) completely suppressed the tGLP-1-induced AVP but not OXY release. Specific inhibition of NMDA receptors suppressed the tGLP-1-evoked AVP release without affecting tGLP-1-induced OXY secretion. Selective blockade of non-NMDA receptors did not affect either tGLP-1-induced AVP or OXY release. It is concluded that tGLP-1 can influence the function of AVP neurons indirectly, most probably via the glutamatergic system through NMDA receptors. On the other hand, tGLP-1-evoked activation of OXY neurons, at least in part, seems to be a result of direct tGLP-1 activation of these neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号