首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Tonic immobility (TI) is an inborn defensive behavior characterized by a temporary state of profound and reversible motor inhibition elicited by some forms of physical restraint. It is known that endogenous antinociceptive systems are activated during the emission of defensive behaviors including TI. The nucleus raphe magnus (NRM) is related to the modulation of nociceptive and behavioral responses. In the present study, we investigated the role of the cholinergic system of the NRM in the modulation of TI and nociception in guinea pigs. Microinjection of the cholinergic agonist carbachol (0.5 microg/0.2 microl) into the NRM promoted a reduction in the duration of TI episodes and nociception, the latter measured by the vocalization test in guinea pigs. The effect of microinjection of carbachol on TI reduction and antinociception was blocked by the previous microinjection of the cholinergic antagonist atropine (0.5 microg/0.2 microl and 1 microg/0.2 microl, respectively), demonstrating the participation of muscarinic receptors in the modulation of these responses. Microinjection of atropine per se did not interfere with the duration of TI episodes. In summary, the present results demonstrate that cholinergic stimulation of the NRM promoted analgesia and a reduction in the duration of TI in guinea pigs. These data indicate that the NRM possibly contributes to the modulation of defensive and nociceptive behavioral responses, probably by modulating the activity of neurons in the ventral and dorsal horn of the spinal cord, respectively.  相似文献   

2.
Sanford LD  Yang L  Tang X  Dong E  Ross RJ  Morrison AR 《Neuroscience》2006,141(4):2167-2176
The amygdala has emerged as an important forebrain modulator of arousal. Acetylcholine plays a role in the regulation of sleep and wakefulness, particularly rapid eye movement sleep (REM). The major cholinergic input to the amygdala comes from the basal forebrain, a region primarily linked to wakefulness. We examined sleep and the encephalogram for 8 h following bilateral microinjections into the central nucleus of the amygdala (CNA) of the cholinergic agonist, carbachol (CARB(L): 0.3 microg; CARB(H): 3.0 microg), the acetylcholinesterase inhibitor, neostigmine (NEO(L): 0.3 microg; NEO(H): 3.0 microg), the muscarinic antagonist, scopolamine (SCO(L): 0.3 microg; SCO(H): 1.0 microg), the nicotinic antagonist, mecamylamine (MEC(L): 0.3 microg; MEC(H): 1.0 microg) and saline (SAL, 0.2 microl) alone. Both doses of CARB and NEO significantly reduced REM, but did not significantly alter non-rapid eye movement sleep (NREM). Both doses of SCO significantly increased NREM, and SCO(H) also produced an initial increase in REM followed by a significant decrease. CARB(H) and NEO(H) decreased REM electroencephalogram (EEG) power in the 5.5-10 Hz band, and NEO(L) and NEO(H) decreased NREM EEG power in the 0.5-5.0 Hz band. CARB(L) decreased waking EEG power in the 0.5-5.0 Hz band, and NEO(H) decreased waking EEG power in the 5.0-10.0 Hz band. Both doses of SCO significantly increased waking EEG power in the 5.5-10.0 Hz band. Compared with SAL, MEC did not significantly alter sleep or EEG power. The reduction of REM by CARB and NEO and the alteration of sleep by SCO indicate that cholinergic regulation of the amygdala is involved in the control of arousal in rodents. In contrast, CARB microinjections into CNA increase REM in cats, though the reasons for the species difference are not known. The results are discussed in the context of anatomical inputs and species differences in the cholinergic regulation of CNA.  相似文献   

3.
Corticotropin-releasing factor inhibits maternal aggression in mice   总被引:4,自引:0,他引:4  
Lactating females that fiercely protect offspring exhibit decreased fear and anxiety. The authors tested whether decreased corticotropin-releasing factor (CRF), an activator of fear and anxiety, plays a functional role in maternal aggression. Intracerebroventricular (icv) injections of CRF (1.0 and 0.2 microg, but not 0.02 microg) significantly inhibited maternal aggression but not other maternal behaviors. The CRF antagonist D-Phe-CRF(12-41) had no effect. Maternal aggression and icv CRF (0.2 microg) induced Fos in 11 of the same regions, including the lateral and medial septum, the bed nucleus of the stria terminalis, the medial and central amygdala, the periaqueductal gray, the dorsal raphe, and the locus coeruleus. These findings suggest that decreased CRF is necessary for maternal aggression and may act by altering brain activity in response to an intruder.  相似文献   

4.
OBJECTIVE: To characterize the magnitude and the predictors of highly active antiretroviral therapy (HAART) interruption (TI) and to investigate its immunologic and virological consequences. METHODS: Using Concerted Action on Seroconversion to AIDS and Death in Europe data from 8,300 persons with well-documented seroconversion dates, we identified subjects with stable first HAART (for at least 90 days) not initiated during primary infection. A TI was defined as an interruption of all antiretroviral therapy drugs for at least 14 days. RESULTS: Of 1,551 subjects starting HAART, 299 (19.3%) interrupted treatment. Median (interquartile range) duration of the TI was 189 (101-382) days. The cumulative probability (95% confidence interval) of TI at 2 years was 15.9% (14.0%-18.1%). Women were more likely to have a TI than men in the same exposure group (35.8% vs 24.2% among drug users, 22.1% vs 13.3% among heterosexuals; P < 0.05). Higher baseline viremia and poor immunologic response to HAART were associated with higher probabilities of TI. Median (interquartile range) individual CD4 cell loss during TI was 94 (1-220) cells/microL. Older age at HAART (>40 yr), lower pre-HAART nadir (<200 cells/microL), and lower CD4 at start of TI (<350 cells/microL) were significantly associated with greater relative CD4 loss during TI. CONCLUSIONS: We estimate that almost 1 in 6 subjects on HAART interrupts treatment by 2 years. Further research is needed to investigate the reasons why TI is higher in women. We have identified characteristics of subjects with the greatest risk for CD4 loss in whom TI may have greater risks.  相似文献   

5.
Basal midbrain modulation of tonic immobility in the toad Bufo paracnemis   总被引:1,自引:0,他引:1  
Tonic immobility (TI) is considered to be a final stage in a sequence of defensive responses occurring in the prey/predator encounter. It is known that the basal midbrain of toads is involved in the organization of defensive behavior and analgesia. This study investigated the effect of electrolytic or neurotoxic lesions of two mesencephalic regions [tegmentum (TEG) and interpeduncular nucleus (IPN)] on the latency and duration of TI (induced by postural inversion and by movement restriction) and on the latency of the motor response to a nociceptive stimulus (hot plate) in toads. Electrolytic lesions of TEG and IPN promoted an increase in the duration of TI episodes. Neurotoxic lesion of these two regions also caused an increase in the duration of TI episodes. The effect was more intense in the animals with electrolytic lesion, possibly due to more extensive damage associated with this procedure or to damage of passage fibers. The results suggest that lesions of the midbrain TEG liberate basic circuits placed caudally and are involved in the organization of the TI response. It remains to be determined if the IPN exerts its effect directly on the caudal levels or by acting via the mesencephalic TEG. Lesions do not interfere with the latency of the motor response to a thermal noxious stimulus, indicating that the lesioned regions do not affect the reflexive response and are not essential for the perception of the noxious stimulus.  相似文献   

6.
Tonic immobility (TI) is an innate defensive behavior elicited by physical restriction and postural inversion, and is characterized by a profound and temporary state of motor inhibition. The participation of the periaqueductal gray matter (PAG) in TI modulation has previously been described. In addition, the excitatory amino acids (EAA) are important mediators involved in the adjustment of several defensive responses produced by PAG. In the present study, we investigated the effect of microinjection of the EAA agonist dl-homocysteic acid (DLH) and the N-methyl-d-aspartate (NMDA) receptor antagonist (MK-801) into the ventrolateral and dorsal PAG over the duration of TI in guinea pigs. Microinjection of 15 nmol/0.2 microl of DLH into the ventrolateral PAG (vlPAG) and 30 nmol/0.2 microl of DLH into the dorsal PAG (dPAG) promoted an increase and decrease in TI duration, respectively. These responses were blocked by prior microinjection of the NMDA receptor antagonist, MK-801 (3.6 nmol/0.2 microl) at the same site. Microinjection of MK-801 alone into the vlPAG and dPAG did not alter the duration of TI episodes. These results suggest that NMDA receptors are involved in the modulation of TI in both the vlPAG and dPAG. In addition, PAG excitatory amino acids modulate the TI response via columnar organization of the PAG. In this manner, the vlPAG facilitates TI modulation whereas dPAG has an inhibitory role in TI.  相似文献   

7.
The authors examined whether glutamate release from the vagus nerve onto the nucleus of the solitary tract (NTS) is one mechanism by which the vagus influences memory and neural activity in limbic structures. Rats trained to drink from a spout were given a footshock (0.35 mA) on Day 5 after approaching the spout. Phosphate-buffered saline or 5.0, 50.0, or 100.0 nmol/0.5 microl glutamate was then infused into the NTS. Glutamate (5.0 or 50.0 nmol) significantly enhanced memory on the retention test. In Experiment 2, this effect was attenuated by blocking noradrenergic receptors in the amygdala with propranolol (0.3 microg/0.5 microl). Experiment 3 used in vivo microdialysis to determine whether footshock plus glutamate (50.0 nmol) alters noradrenergic output in the amygdala. These treatments caused a significant and long-lasting increase in amygdala noradrenergic concentrations. The results indicate that glutamate may be one transmitter that conveys the effects of vagal activation on brain systems that process memory.  相似文献   

8.
Overactivity of the striatopallidal pathway, associated with an enhancement of enkephalin expression, has been suggested to contribute to the development of parkinsonian symptoms. The aim of the present study was to examine whether the blockade of group I metabotropic glutamate receptors: subtypes 1 and 5 (mGluR1/5), or stimulation of group II: subtypes 2 and 3 (mGluR2/3) may normalize enkephalin expression in the striatopallidal pathway in an animal model of parkinsonism. The proenkephalin mRNA level measured by in situ hybridization in the striatum was increased by pretreatments with haloperidol (1.5 mg/kg s.c., three times, 3 h apart). Triple (3 h apart), bilateral, intrastriatal administration of selective antagonists of mGluR1: (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (3 x 5 microg/0.5 microl) or 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate (3 x 2.5 microg/0.5 microl), reversed the haloperidol-induced increases in proenkephalin mRNA levels in the rostral and central regions of the striatum. Similarly, repeated (6 times, 1.5 h apart), systemic injections of an antagonist of mGluR5, 2-methyl-6-(phenylethynyl)pyridine (6 x 10 mg/kg i.p.) counteracted an increase in the striatal proenkephalin mRNA expression elicited by haloperidol. None of the abovementioned antagonists of mGluR1 and mGluR5 per se influenced the proenkephalin expression. Differential effects were induced by agonists of the group II mGluRs, viz. (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine administered intraventricularly (3 times at 0.1-0.2 microg/4 microl, 3 h apart) increased both the normal and haloperidol-increased proenkephalin mRNA level, whereas (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate injected intrastriatally (3 times at 15 microg/0.5 microl, 3 h apart) was ineffective. The present study indicates that the blockade of striatal glutamate receptors belonging to the group I (mGluR1 and mGluR5) but not stimulation of the group II mGluRs may normalize the function of the striatopallidal pathway in an animal model of parkinsonism, which may be important for future antiparkinsonian therapy in humans.  相似文献   

9.
Sensorimotor gating can be measured as prepulse inhibition of the startle response in humans and rats. Since prepulse inhibition is impaired in schizophrenics there is considerable interest in understanding the neuronal basis of prepulse inhibition. Neuropathological findings indicate a dysfunction of the glutamatergic and GABAergic system in cortico-limbic areas in schizophrenics. We tested whether blockade of N-methyl-D-aspartate or GABA(A) receptors in the basolateral amygdala affects prepulse inhibition in rats. Local infusion of the N-methyl-D-aspartate receptor antagonist dizocilpine (0, 6.25 microg/0.5 microl), or of the GABA(A) receptor antagonist picrotoxin (0, 5.0, 10.0 ng/0.5 microl) reduced prepulse inhibition. The prepulse inhibition-disrupting effect of 6.25 microg dizocilpine or 10.0 ng picrotoxin was reversed by systemic co-administration of the dopamine antagonist haloperidol (0.1mg/kg i.p.).These data indicate that sensorimotor gating is regulated in a dopamine-dependent way by N-methyl-D-aspartate and GABA(A) receptors in the basolateral amygdala. Our findings are discussed with respect to neuropathological findings in schizophrenics.  相似文献   

10.
Fast oscillations at 25-80 Hz (gamma activity) have been proposed to play a role in attention-related mechanisms and synaptic plasticity in cortical structures. Recently, it has been demonstrated that the preservation of the entorhinal cortex is necessary to maintain gamma oscillations in the hippocampus. Because gamma activity can be reproduced in vitro by cholinergic activation, this study examined the characteristics of gamma oscillations induced by arterial perfusion or local intracortical injections of carbachol in the entorhinal cortex of the in vitro isolated guinea pig brain preparation. Shortly after carbachol administration, fast oscillatory activity at 25.2-28.2 Hz was observed in the medial but not in the lateral entorhinal cortex. Such activity was transiently associated with oscillations in the theta range that showed a variable pattern of distribution in the entorhinal cortex. No oscillatory activity was observed when carbachol was injected in the lateral entorhinal cortex. Gamma activity in the medial entorhinal cortex showed a phase reversal at 200-400 microm, had maximal amplitude at 400-500 microm depth, and was abolished by arterial perfusion of atropine (5 microM). Local carbachol application in the medial entorhinal cortex induced gamma oscillations in the hippocampus, whereas no oscillations were observed in the amygdala and in the piriform, periamygdaloid, and perirhinal cortices ipsilateral and contralateral to the carbachol injection. Hippocampal oscillations had higher frequency than the gamma activity recorded in the entorhinal cortex, suggesting the presence of independent generators in the two structures. The selective ability of the medial but not the lateral entorhinal cortex to generate gamma activity in response to cholinergic activation suggests a differential mode of signal processing in entorhinal cortex subregions.  相似文献   

11.
Injection of carbachol into the anterior hypothalamus or thalamus (intralaminar nuclei) in freely-moving cats caused a dose related inhibition of alimentary conditioned reflex performance (CRP). The inhibition directly correlated with the intensity of the emotional (rage) reaction also elicitable by carbachol from these parts of the brain. The inhibition of CRP after intrahypothalamic or intrathalamic carbachol application seemed to be a secondary effect due exclusively to the altered emotional state of the animal. Injection of carbachol into the dorsal or ventral hippocampus as well as the basal or central part of the amygdala also inhibited CRP. This inhibitory effect could only be observed when the EEG pattern of the animals showed local or propagated seizure discharges. Thus the inhibition of CRP after intralimbic carbachol application seemed to be a secondary effect due to pathologic alterations in the electrical activity of the brain. All the above effects of carbachol were easily counteracted by topical pretreatment with a few μg of atropine. Nicotine and noradrenaline were ineffective in all regions investigated.  相似文献   

12.
In Pavlovian conditioning the fear-evoking properties of the aversive unconditioned stimulus are represented by the conditioned stimulus. A major challenge for theories of classical fear conditioning has been to understand how associations are formed between a conditioned stimulus and unconditioned stimulus. Although the cellular mechanisms in the amygdala that underlie fear learning have received considerable attention relatively little is known about the neural substrates underlying unconditioned stimulus-associated fear. In the present study we examined the role of GABA(A), N-methyl-D-aspartic acid and non-N-methyl-D-aspartic acid receptors, and protein synthesis inhibition on the immediate fear arousal produced by footshock as measured by the shock sensitization of acoustic startle. Laboratory rats showed shock-enhanced startle after infusion into the basolateral amygdala of the N-methyl-D-aspartic acid receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (5.0 microg), the non-N-methyl-D-aspartic acid receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione disodium (5.0 microg) and the protein synthesis inhibitor anisomycin (80.0 microg). We concluded that fear arousal provoked by footshock is not mediated by glutamate neurotransmission in the amygdala and does not involve de novo protein synthesis. Bilateral infusion into the basolateral amygdala of the GABA(A) receptor agonist muscimol in doses ranging from 0.001-0.5 microg reliably blocked the shock sensitization of acoustic startle responding. None of the muscimol doses altered shock reactivity amplitudes indicating the normal perception of footshock. The muscimol results were interpreted to suggest that decreased GABA neurotransmission in the amygdala may be essential for the neural causation of fear that is acquired and expressed by conditioned stimuli.  相似文献   

13.
The ability of carbachol and isoprenaline to contract and relax respectively the longitudinal layer of ileal smooth muscle has been compared in rats aged six and twenty-four months. The concentration response curve to carbachol did not vary with the age of the animal. In contrast, the ability of isoprenaline to relax longitudinal smooth muscle precontracted with carbachol was significantly (p less than 0.02) reduced in the twenty-four month age group. This reduced response was due to a decrease in the maximal relaxation induced by isoprenaline rather than by a shift to the right of its dose-response curve. These results are discussed in the context of previous histochemical and microscopical studies which have shown a marked reduction in the density of the sympathetic innervation of the rat small intestine in old age.  相似文献   

14.
In order to investigate the effects of monoaminergic mechanisms of the dorsal raphe nucleus on the elaboration and control of sweet-substance-induced antinociception, male albino Wistar rats weighing 180-200 g received sucrose solution (250 g/L) for 14 days as their only source of liquid. After the chronic consumption of sucrose solution, each animal was pretreated with unilateral microinjection of methiothepin mesylate (5.0 microg/0.2 microL), or methysergide maleate (5.0 microg/0.2 microL) in the dorsal raphe nucleus. Each rat consumed an average of 15.6g sucrose/day. Their tail withdrawal latencies in the tail-flick test were measured immediately before and after this treatment. An analgesia index was calculated from the withdrawal latencies before and after the pharmacological treatment. The blockade of serotonergic receptor in the dorsal raphe nucleus with methysergide after the chronic intake of sucrose decreased the sweet-induced antinociception. However, microinjections of methiothepin in the dorsal raphe nucleus did not cause a similar effect on the tail-flick latencies after the chronic intake of sucrose solution, increasing the sweet-substance-induced analgesia. These results indicate the involvement of serotonin as a neurotransmitter in the sucrose-produced antinociception. Considering that the blockade of pre-synaptic serotonergic receptors of the neural networks of the dorsal raphe nucleus with methiothepin did not decrease the sweet-substance-induced antinociception, and the central blockade of post-synaptic serotonergic receptors decreased the sucrose-induced analgesia, the modulation of the release of serotonin in the neural substrate of the dorsal raphe nucleus seems to be crucial for the organization of this interesting antinociceptive process.  相似文献   

15.
Jasnow AM  Cooper MA  Huhman KL 《Neuroscience》2004,123(3):625-634
Here, we describe a biologically relevant model called conditioned defeat that is used to examine behavioral responses to social defeat in Syrian hamsters. In this model experimental animals that are normally aggressive experience social defeat and consequently display high levels of submissive/defensive behavior even in response to non-threatening conspecifics. N-methyl-D-aspartate (NMDA) receptors within the amygdala play an important role in conditioned fear; therefore, the purpose of this study was to examine whether NMDA receptors within the amygdala are necessary for the acquisition and expression of conditioned defeat. Specifically, the present study examined whether bilateral infusions of the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5; 0.625, 1.25, 2.5, 5.0, 10.0 microg) into the amygdala would block the acquisition of conditioned defeat. Subsequently, we examined whether bilateral infusions of AP5 (0.625, 1.25, 2.5, 5.0 microg) into the amygdala prior to testing would block the expression of conditioned defeat. Infusions of AP5 into the amygdala immediately before the initial social defeat significantly reduced submissive/defensive behavior when hamsters were tested the following day with a non-aggressive intruder. Similarly, infusions of AP5 into the amygdala immediately before exposure to a non-aggressive intruder significantly attenuated the display of submissive/defensive behavior. These data demonstrate that NMDA receptors are necessary for both the acquisition and expression of conditioned defeat. We believe that conditioned defeat is a unique and valuable animal model with which to investigate the neurobiology of fear-related changes in social behavior.  相似文献   

16.
Tonic immobility (TI) is an innate defensive behavior that can be elicited by physical restriction and postural inversion and is characterized by a profound and temporary state of akinesis. Our previous studies demonstrated that the stimulation of serotonin receptors in the dorsal raphe nucleus (DRN) appears to be biphasic during TI responses in guinea pigs (Cavia porcellus). Serotonin released by the DRN modulates behavioral responses and its release can occur through the action of different neurotransmitter systems, including the opioidergic and GABAergic systems. This study examines the role of opioidergic, GABAergic and serotonergic signaling in the DRN in TI defensive behavioral responses in guinea pigs. Microinjection of morphine (1.1 nmol) or bicuculline (0.5 nmol) into the DRN increased the duration of TI. The effect of morphine (1.1 nmol) was antagonized by pretreatment with naloxone (0.7 nmol), suggesting that the activation of μ opioid receptors in the DRN facilitates the TI response. By contrast, microinjection of muscimol (0.5 nmol) into the DRN decreased the duration of TI. However, a dose of muscimol (0.26 nmol) that alone did not affect TI, was sufficient to inhibit the effect of morphine (1.1 nmol) on TI, indicating that GABAergic and enkephalinergic neurons interact in the DRN. Microinjection of alpha-methyl-5-HT (1.6 nmol), a 5-HT(2) agonist, into the DRN also increased TI. This effect was inhibited by the prior administration of naloxone (0.7 nmol). Microinjection of 8-OH-DPAT (1.3 nmol) also blocked the increase of TI promoted by morphine (1.1 nmol). Our results indicate that the opioidergic, GABAergic and serotonergic systems in the DRN are important for modulation of defensive behavioral responses of TI. Therefore, we suggest that opioid inhibition of GABAergic neurons results in disinhibition of serotonergic neurons and this is the mechanism by which opioids could enhance TI. Conversely, a decrease in TI could occur through the activation of GABAergic interneurons.  相似文献   

17.
Multiple subtypes of nicotinic acetylcholine receptors (nAChRs) are expressed in the CNS. The amygdala complex, the limbic structure important for emotional memory formation, receives cholinergic innervation from the basal forebrain. Although cholinergic drugs have been shown to regulate passive avoidance performance via the amygdala, the neuronal subtypes and circuits involved in this regulation are unknown. In the present study, whole-cell patch-clamp electrophysiological techniques were used to identify and characterize the presence of functional somato-dendritic nAChRs within the basolateral complex of the amygdala. Pressure-application of acetylcholine (ACh; 2 m m ) evoked inward current responses in a subset of neurons from both the lateral (49%) and basolateral nuclei (72%). All responses displayed rapid activation kinetics, and were blocked by the α7-selective antagonist methyllycaconitine. In addition, the α7-selective agonist choline induced inward current responses that were similar to ACh-evoked responses. Spiking patterns were consistent with pyramidal class I neurons (the major neuronal type in the basolateral complex); however, there was no correlation between firing frequency and the response to ACh. The local photolysis of caged carbachol demonstrated that the functional expression of nAChRs is located both on the soma and dendrites. This is the first report demonstrating the presence of functional nAChR-mediated current responses from rat amygdala slices, where they may be playing a significant role in fear and aversively motivated memory.  相似文献   

18.
This study investigated calcium/calmodulin kinase II (CaMKII) activity related to long-standing neuronal injury of the hippocampus in kainate (KA)-induced experimental temporal lobe epilepsy. Epileptic seizure was induced by injection of KA (1 microg/microL) dissolved in phosphate buffer (0.1 M, pH 7.4) into the left amygdala. Clinical seizures, histopathologic changes and CaMKII activity of the hippocampus were evaluated. Characteristic early limbic and late seizures were developed. Hippocampal CaMKII activity increased significantly 4 and 8 weeks after intra-amygdaloid injection of KA, when late seizures developed. The histopathologic changes of the hippocampus included swelling of neuronal cytoplasm with nuclear pyknosis and loss of neurons in CA3 during this period. The increased activity of CaMKII may correlate with appearance of distant damage in the hippocampus. The above results indicate that intra-amygdaloid injection of KA produces excitatory signals for ipsilateral CA3 neurons in the hippocampus and that subsequently increased levels of CaMKII in postsynaptic neurons induce neuronal injury via phosphorylation of N-methyl-D-aspartate type glutamate receptor.  相似文献   

19.
Transforming growth factor beta1 (TGF-beta1) has been shown to stimulate bone healing in several animal models and may influence bone response directly after implant installation. Aim of the present study is to investigate the effect of a low dose of TGF-beta1, on the early bone-healing around oral implants placed in trabecular bone (femoral condyle of goats). Twenty-four cylindrical screw type implants were used and TGF-beta1 in two different concentrations were applied on sixteen of them. Each animal received three implants: one Ti (control), one Ti loaded with 0.5 microg TGF-beta1 (Ti-TGF(0.5)), and one Ti loaded with 1.0 microg TGF-beta1 (Ti-TGF(1.0)). The eight animals were euthanized at 6 weeks after implantation and implants with surrounding tissue were retrieved for histological preparation and histomorphometrical evaluation. Light microscopical analysis showed the occurrence of an intervening fibrous tissue layer around about half of the TGF-beta1 loaded implants. Further, the histomorphometrical measurements revealed that the Ti implants demonstrated the highest percentage of bone-implant contact (65+/-4%), while Ti-TGF(1.0) implants showed the lowest amount (45+/-12%). The difference between these two groups was statistically significant. On basis of the results, it is concluded that a low dose of TGF-beta1 has a negative effect on the integration of oral implants in trabecular bone during the early post-implantation healing phase.  相似文献   

20.
The effects upon normal defensive behavior of carbachol administered intraventricularly have been studied in the cat. The dose of carbachol (7 – 9 μg) elicited no observable behavioral response. The defense reaction in the animal receiving carbachol was evoked by the presence of a second cat which was impelled to emit threatening behavior by concurrent hypothalamic electrical stimulation. The intensity of withdrawal, backward flattening of the ears, and hissing induced by threat, increased significantly as a consequence of otherwise non-behaviorally active doses of intraventricular carbachol. Rage or attack behavior were not observed at these doses of carbachol. The conclusion drawn from these experiments is that doses of carbachol which are below the threshold for elicitation of overt behavior increase a form of behavior which is thought to be motivated or accompanied by fright or fear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号