首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed poly(propylene fumarate)/poly(lactic-co-glycolic acid) (PPF/PLGA) blend microspheres and investigated the effects of various processing parameters on the characteristics of these microspheres. The advantage of these blend microspheres is that the carbon-carbon double bonds along the PPF backbone could be used for their immobilization in a PPF scaffold. Microspheres containing the model drug Texas red dextran were fabricated using a double emulsion-solvent extraction technique. The effects of the following six processing parameters on the microsphere characteristics were investigated: PPF/PLGA ratio, polymer viscosity, vortex speed during emulsification, amount of internal aqueous phase, use of poly(vinyl alcohol) (PVA) in the internal aqueous phase, and PVA concentration in the external aqueous phase. Our results showed that the microsphere surface morphology was affected most by the viscosity of the polymer solution. Microspheres fabricated with a kinematic viscosity of 39 centistokes had a smooth, nonporous surface. In most microsphere formulations, the model drug was dispersed uniformly in the polymer matrix. For all fabricated formulations, the average microsphere diameter ranged between 19.0 and 76.9 microm. The external PVA concentration and vortex speed had most effect on the size distribution. Entrapment efficiencies varied from 60 to 98% and were most affected by the amount of internal aqueous phase, vortex speed, and polymer viscosity. Overall, we demonstrated the ability to fabricate PPF/PLGA blend microspheres with similar surface morphology, entrapment efficiency, and size distribution as conventional PLGA microspheres.  相似文献   

2.
The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study are promising to serve as vehicles for controlled drug delivery for bone tissue engineering.  相似文献   

3.
This study investigated the in vivo degradation of poly(propylene fumarate) (PPF)/poly(DL-lactic-co-glycolic acid) (PLGA) composite scaffolds designed for controlled release of osteogenic factors. PPF/PLGA composites were implanted into 15.0mm segmental defects in the rabbit radius, harvested after 12 and 18 weeks, and analyzed using histological techniques to assess the extent of polymer degradation as well as the tissue response within the pores of the scaffolds. Polymer degradation was limited to micro-fragmentation of the scaffold at the ends and edges of the implant at both 12 and 18 weeks. The tissue within the pores of the scaffold consisted of fibrous tissue, blood vessels and some inflammatory cells. In areas where polymer breakdown was evident, an increased inflammatory response was observed. In contrast, areas of bone ingrowth into the polymer scaffold were characterized by minimal inflammatory response and polymer degradation. Our results show that minimal degradation of porous PPF occurs within 18 weeks of implantation in a rabbit model. Further, the in vivo degradation data of porous PPF/PLGA scaffolds are comparable with earlier obtained in vitro data.  相似文献   

4.
This study investigated the in vitro degradation of porous poly(propylene fumarate) (PPF-based) composites incorporating microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) during a 26-week period in pH 7.4 phosphate-buffered saline at 37 degrees C. Using a fractional factorial design, four formulations of composite scaffolds were fabricated with varying PEG content of the microparticles, microparticle mass fraction of the composite material, and initial leachable porogen content of the scaffold formulations. PPF scaffolds without microparticles were fabricated with varying leachable porogen content for use as controls. The effects of including PLGA/PEG microparticles in PPF scaffolds and the influence of alterations in the composite formulation on scaffold mass, geometry, water absorption, mechanical properties and porosity were examined for cylindrical specimens with lengths of 13 mm and diameters of 6.5 mm. The composite scaffold composition affected the extent of loss of polymer mass, scaffold length, and diameter, with the greatest loss of polymer mass equal to 15+/-5% over 26 weeks. No formulation, however, exhibited any variation in compressive modulus or peak compressive strength over time. Additionally, sample porosity, as determined by both mercury porosimetry and micro-computed tomography did not change during the period of this study. These results demonstrate that microparticle carriers can be incorporated into PPF scaffolds for localized delivery of bioactive molecules without altering scaffold mechanical or structural properties up to 26 weeks in vitro.  相似文献   

5.
背景:乳酸-羟基乙酸共聚物是一种生物可降解高分子材料,以乳酸-羟基乙酸共聚物为原料制备的载药微球和纳米粒既可提高药物的稳定性,又能实现缓释、控释和靶向释放。 目的:分析乳酸-羟基乙酸共聚物缓控释微球的制备方法以及突释的成因、影响因素和改进方法。 方法:应用计算机检索1990/2010中国期刊全文数据库和PubMed数据库与乳酸-羟基乙酸共聚物缓控释微球的制备及突释联系紧密的文章。 结果与结论:目前乳酸-羟基乙酸共聚物缓释微球制备方法主要有单凝聚法、乳化-固化法、喷雾干燥法。造成其突释的原因首先是药物分子和聚合物分子之间的相互作用太弱,导致药物很容易从微球进入释放递质中,其次是在微球释放初期,药物从微球中的孔洞和缝隙中释放出来导致突释。影响突释程度的具体因素有乳酸-羟基乙酸共聚物的相对分子质量、浓度、微球载药量、主药理化性质、微球制备方法及制备参数等。虽然国内外对突释机制以及控制突释措施的研究都还处于初步阶段,通过对各影响因素加以适当优化与控制,可在一定程度上减少微球的突释率,突释问题应该能够得到解决和控制。  相似文献   

6.
Drug Gliclazide (Glz) has limited solubility and low bioavailability. In order to obtain a controlled release of this drug and to improve its bioavailability, the drug has been loaded into poly(caprolactone) (PCL)/poly(acrylic acid) (PAAc) hydrogels, prepared by free radical polymerization of acrylic acid in the presence of poly(caprolactone) in acetone medium using azo-isobutyronitrile as initiator and N,N′ methylene bisacrylamide as cross-linking agent. The swelling behaviour of these hydrogels has been investigated in the physiological gastric and intestinal fluids to obtain an optimum composition suitable for delivery of a biologically active compound. The gels were loaded with anti-diabetic drug Glz and a detailed investigation of release of drug has been carried out. Various kinetic models have been applied on the release data. Finally, the Albino wistar rats were treated for Streptozotocin plus nicotinamide – induced diabetes using a Glz-loaded PCL/PAAc hydrogel. The results indicated a fair reduction in the glucose level of rats.  相似文献   

7.
Polymeric networks of poly(propylene fumarate) (PPF) crosslinked with poly(propylene fumarate)-diacrylate (PPF-DA) are currently being investigated as an injectable, biodegradable bone cement. This study examined the effect of crosslinking density, medium pH, and the incorporation of a beta-tricalcium phosphate (beta-TCP) filler on the in vitro degradation of PPF/PPF-DA. Cylindrical specimens were submerged in buffered saline at 37 degrees C and the change in weight, geometry, and compressive mechanical properties were monitored over a 52-week period. All formulations showed an initial increase in modulus and yield strength over the first 12 weeks, achieving maxima of 1307+/-101 and 51+/-3MPa, respectively, for the beta-TCP composite. PPF/PPF-DA networks with the lower crosslinking density demonstrated the greatest degradation with a 17% mass loss. Samples in the lower buffer pH 5.0 compared to physiological pH 7.4 did not show any differences in mass loss, but exhibited a faster decrease in the compressive strength over time. The beta-TCP composites maintained their mechanical properties at the level following their initial increase. These results show that the degradation of PPF/PPF-DA networks can be controlled by the crosslinking density, accelerated at a lower pH, and prolonged with the incorporation of the beta-TCP filler.  相似文献   

8.
目的 合成新型可注射性生物降解材料聚丙烯延胡索酸酯[poly(propylene fumarate), PPF],检测其交联温度、交联时间、生物力学性能和体外降解过程。方法 合成PPF,将PPF和N-乙烯基吡咯烷酮(N-vinyl pyrrolidinone,N-VP)在过氧化苯甲酰(benzoyl peroxide,BP)催化下交联,并且加入β-磷酸三钙(β-TCP)和氯化钠(NaCl),检测交联温度、时间、生物力学性能,和PMMA骨水泥进行比较。将PPF交联后浸泡于PBS。检测体外降解时质量和力学强度的变化。结果 交联温度在41.2±2.2℃和47.5±1.7℃间,交联时间从8.1±0.8min到63.7±4.4min,PPF的压应力为2.6±0.5MPa到12.0±2.3Mpa,压缩模量为26.6±8.7MPa到252.8±57.6Mpa,体外降解后4周PPF压应力为8.4±1.6Mpa。结论 PPF有合适的交联温度、交联时间和生物力学强度,体外降解过程中力学强度可以维持4周以上,是一个有应用前景的新型可注射生物高分子聚合材料。  相似文献   

9.
Wei G  Pettway GJ  McCauley LK  Ma PX 《Biomaterials》2004,25(2):345-352
Poly(lactic-co-glycolic acid) (PLGA) microspheres containing bovine serum albumin (BSA) or human parathyroid hormone (PTH)(1-34) were prepared using a double emulsion method with high encapsulation efficiency and controlled particle sizes. The microspheres were characterized with regard to their surface morphology, size, protein loading, degradation and release kinetics, and in vitro and in vivo assessments of biological activity of released PTH. PLGA5050 microspheres degraded rapidly after a 3-week lag time and were degraded completely within 4 months. In vitro BSA release kinetics from PLGA5050 microspheres were characterized by a burst effect followed by a slow release phase within 1-7 weeks and a second burst release at 8 weeks, which was consistent with the degradation study. The PTH incorporated PLGA5050 microspheres released detectable PTH in the initial 24h, and the released PTH was biologically active as evidenced by the stimulated release of cAMP from ROS 17/2.8 osteosarcoma cells as well as increased serum calcium levels when injected subcutaneously into mice. Both in vitro and in vivo assays demonstrated that the bioactivity of PTH was maintained largely during the fabrication of PLGA microspheres and upon release. These studies illustrate the feasibility of achieving local delivery of PTH to induce a biologically active response in bone by a microsphere encapsulation technique.  相似文献   

10.
Biodegradable networks of poly(propylene fumarate) (PPF) and the crosslinking reagent poly(propylene fumarate)-diacrylate (PPF-DA) were prepared with thermal- and photo-initiator systems. Thermal-crosslinking was performed with benzoyl peroxide (BP), which is accelerated by N,N-dimethyl-p-toluidine (DMT) and enables injection and in situ polymerization. Photo-crosslinking was accomplished with bis(2,4,6-trimethylbenzoyl) phenylphosphine oxide (BAPO), which is activated by long-wavelength UV light and facilitates material processing with rapid manufacturing techniques, such as stereolithography. Networks were evaluated to assess the effects of the initiators and the PPF/PPF-DA double bond ratio on the mechanical properties. Regardless of the initiator system, the compressive properties of the PPF/PPF-DA networks increased as the double bond ratio decreased from 2 to 0.5. BAPO/UV-initiated networks were significantly stronger than those formed with BP/DMT. The compressive modulus of the photo- and thermal-crosslinked PPF/PPF-DA networks ranged from 310 +/- 25 to 1270 +/- 286 MPa and 75 +/- 8 to 332 +/- 89 MPa, respectively. The corresponding fracture strengths varied from 58 +/- 7 to 129 +/- 17 MPa and 31 +/- 13 to 105 +/- 12 MPa. The mechanical properties were not affected by the initiator concentration. Characterization of the network structures indicated that BAPO was a more efficient initiator for the crosslinking of PPF/PPF-DA, achieving a higher double bond conversion and crosslinking density than its BP counterpart. Estimated average molecular weights between crosslinks (Mc) confirmed the effects of the initiators and PPF/PPF-DA double bond ratio on the mechanical properties. This work demonstrates the capability to control the properties of PPF/PPF-DA networks as well as their versatility to be used as an injectable material or a prefabricated implant.  相似文献   

11.
Chen X  Ooi CP 《Acta biomaterialia》2008,4(4):1046-1056
The in vitro hydrolytic degradation of ganciclovir (GCV)-loaded biodegradable microspheres of poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) polymers were studied. Microspheres of size 120+/-40 microm were prepared using an oil-in-water emulsification/solvent evaporation technique. The effects of polymer molecular weight, lactide (LA) to glycolide (GA) ratio and GCV payload on the degradation and drug release profiles were investigated in vitro in phosphate-buffered solution (pH 7.0) at 37 degrees C. GCV accelerated the hydrolysis process of the low (5-7 wt.%) GCV-loaded microspheres due to a basic catalytic effect, giving a larger degradation rate, k', compared with blank and high (18-20 wt.%) GCV-loaded microspheres. In the high GCV-loaded microspheres, hydrolysis of the polymer backbone occurred with little and/or no autocatalytic effect, resulting in a smaller k' compared with low GCV-loaded microspheres. This was due to pores and microchannels created at the surface following the initial burst release, which increased water uptake and the dissolution and diffusion of GCV and degradation products from the matrix. The rate of hydrolytic degradation was also affected by the LA to GA ratio. For polymers of similar LA to GA ratio, those with a higher degree of blockiness had faster hydrolytic degradation rates irrespective of the initial molecular weight. The release profile had a biphasic pattern, which closely followed the degradation profile of the polymer. The time taken for the complete release of GCV was controlled by the diffusion phase and was dependent on the hydrolytic degradation rate of the polymers.  相似文献   

12.
背景:突释问题是限制多肽蛋白类微球广泛应用的一个关键技术问题,已经成为PLGA微球控释系统面临的一个亟待解决的问题。 目的:分析近年来国内外对乳酸-羟基乙酸共聚物多肽蛋白类药物微球的突释与控制的研究,对突释的原因、影响突释的因素以及减少突释的方法与措施进行了详细的介绍。 方法:应用计算机检索CNKI和PubMed数据库中1999-01/2010-12关于乳酸-羟基乙酸共聚物多肽蛋白类药物微球控释系统研究的文章,在标题和摘要中以“聚乳酸-羟基乙酸;多肽;蛋白;微球;突释;控制”或“PLGA; peptide; protein ; microspheres; burst release; control”为检索词进行检索。通过阅读标题和摘要进行初选,排出较陈旧和重复研究文献,保留符合纳入标准的文献24篇。 结果与结论:对乳酸-羟基乙酸共聚物多肽蛋白类药物微球突释机制的理解,可以更好地实现对微球突释的控制,以扩大多肽蛋白类药物在临床上的应用。PLGA的性质、微球的制备方法、微球的制备参数都在不同程度上影响微球的突释,并且可能是多因素协同作用。通过对上述各种因素加以适当控制,可在一定程度上减少微球的突释率。通过该方面的机制研究对指导新药开发具有重要意义。  相似文献   

13.
Peter SJ  Lu L  Kim DJ  Mikos AG 《Biomaterials》2000,21(12):1207-1213
The objective of this study was to assess the osteoconductivity of a poly(propylene fumarate)/beta-tricalcium phosphate (PPF/beta-TCP) composite in vitro. We examined whether primary rat marrow stromal cells would attach, proliferate, and express differentiated osteoblastic function when seeded on PPF/beta-TCP substrates. Attachment studies showed that a confluent monolayer of cells had adhered to the substrates within an 8 h time frame for marrow stromal cells seeded at confluent numbers. Proliferation and differentiated function of the cells were then investigated for a period of 4 weeks for an initial seeding density of 42,000 cells/cm2. Rapid proliferation during the first 24 h as determined by 3H-thymidine incorporation was mirrored by an initial rapid increase in total cell number by DNA assay. A lower proliferation rate and a gradual increase in cell number persisted for the remainder of the study, resulting in a final cell number of 128,000 cells/cm2. Differentiated cell function was assessed by measuring alkaline phosphatase (ALP) activity and osteocalcin (OC) production throughout the time course. Both markers of osteoblastic differentiation increased significantly over a 4-week period. By day 28, cells grown on PPF/beta-TCP reached a maximal ALP activity of 11 (+/- 1) x 10(-7) micromol/min/cell, while the OC production reached 40 (+/- 1) x 10(-6) ng/cell. These data show that a PPF/beta-TCP composite exhibits in vitro osteoconductivity similar to or better than that of control tissue culture polystyrene.  相似文献   

14.
背景:虽然国内外有很多制备利福平/聚乳酸-聚羟基乙酸共聚物(poly lactic acid-glycolic acid copolymer,PLGA)微球的报道,但这些微球粒径多在10 μm左右,不适合与磷酸钙骨水泥复合制备成具有良好降解性的抗结核修复材料。 目的:制备大粒径利福平/PLGA缓释微球,观察其理化特性和体外缓释特性。 方法:以PLGA为载体,将利福平分散于PLGA的有机溶剂中,采用复乳溶剂挥发法制备利福平/ PLGA缓释微球。光镜和扫描电镜下观察微球的形态特征,测定微球平均直径和跨距,高效液相色谱法测定载药量和包封率,以溶出法和高效液相色谱法观察其体外释药特性,并拟合药物体外释放曲线建立曲线方程。 结果与结论:利福平/PLGA微球电镜观察呈圆球形,分散性好,粘连少,粒径分布集中,平均粒径(80.0±9.4) μm。载药量、包封率分别为(33.18±1.36)%,(54.79±1.13)%。体外缓释试验显示突释期内微球释放度为(14.66±0.18)%,前3 d累计释放度(18.09±0.45)%,到42 d体外累积释放度达到(92.17±1.23)%。提示利福平/PLGA微球具有良好的缓释效果,是一种较为理想的抗结核药物的载体材料和释放系统;PLGA是良好的药物缓释载体,可以用来制备载药缓释微球。  相似文献   

15.
Song B  Wu C  Chang J 《Acta biomaterialia》2012,8(5):1901-1907
The aim of this study was to fabricate dual drug-loaded poly(lactic-co-glycolic acid) (PLGA)/mesoporous silica nanoparticles (MSNs) electrospun composite mat, with the two model drugs (fluorescein (FLU) and rhodamine B (RHB)) releasing in separate and distinct release kinetics. The PLGA-based electrospun mat loading with the same amount of FLU (5%, with respect to the weight of PLGA) and different amounts of RHB-loaded MSNs (5, 15 and 25%, with respect to the weight of PLGA) were prepared and studied for their releasing properties. The morphology of the composite mats was characterized by scanning electron microscopy and transmission electron microscopy. Finally, the release profiles of the dual drug-loaded electrospun mats were measured, and the results indicated that the FLU and RHB released from the PLGA/FLU/RHB-loaded MSNs electrospun mats showed separate and distinct profiles. Most of the FLU was released rapidly during the 324 h of the trial; however, RHB showed a sustained release behavior, and the release rate could be controlled by the content of the RHB-loaded MSNs in the electrospun mat.  相似文献   

16.
Oh SH  Kang SG  Kim ES  Cho SH  Lee JH 《Biomaterials》2003,24(22):4011-4021
Porous PLGA/PVA scaffolds were fabricated by blending poly(lactic-co-glycolic acid) (PLGA) with polyvinyl alcohol (PVA) to improve the hydrophilicity and cell compatibility of the scaffolds for tissue engineering applications. PLGA/PVA blend scaffolds with different PVA compositions up to 20wt% were fabricated by a melt-molding particulate-leaching method (non-solvent method). The prepared scaffolds were investigated by scanning electron microscopy (SEM), mercury intrusion porosimetry, the measurements of water contact angles and bi-axial tensile strengths, etc. for their surface and bulk characterizations. The scaffolds exhibited highly porous and open-cellular pore structures with almost same surface and interior porosities (pore size, 200-300 microm; porosity, about 90%). The PLGA/PVA blend scaffolds with PVA compositions more than 5% were easily wetted in cell culture medium without any prewetting treatments, which is highly desirable for tissue engineering applications. In vitro cell compatibility of the control hydrophobic PLGA and hydrophilized PLGA/PVA (5wt%) blend scaffolds was compared by the culture of human chondrocytes in the scaffolds and the following analyses by MTT assay and SEM observation. It was observed that the PLGA/PVA blend scaffold had better cell adhesion and growth than the control PLGA scaffold. For in vivo evaluation of tissue compatibility, the scaffolds were implanted into the skull defects of rabbits. The results were evaluated by histology examinations. The PLGA/PVA (5wt%) blend scaffold showed better bone ingrowth into the scaffold and new bone formation inside the scaffold than the PLGA scaffold. It seems that 5% addition of PVA to PLGA to fabricate PLGA/PVA blend scaffolds is enough for improving the hydrophilicity and cell compatibility of the scaffolds.  相似文献   

17.
This study investigated the in vitro degradation of poly(propylene fumarate)/beta-tricalcium phosphate (PPF/beta-TCP) scaffolds in pH 7.4 phosphate-buffered saline at 37 degrees C. Scaffold design consisted of three layers: two solid layers about a central layer of porous PPF foam. Solid PPF with molecular weights of 810 and 1450 Da was crosslinked under UV light. PPF foam was prepared by a photocrosslinking, porogen-leaching method with an initial porogen content of 80 wt % and two sizes, 150-300 and 300-500 microm. Comparison of initial and residual weights demonstrated a 14.3 +/- 2.0% loss of mass at 3 weeks and a 16.6 +/- 1.8% loss of mass at 6 weeks. Observed pH values for all constructs remained stable (7.15-7.40) throughout the 3 to 6 weeks. Scanning electron micrographs of these scaffolds revealed some loss of foam material between 3 and 6 weeks; however, foam microarchitecture was intact. Solid PPF fracture toughness was tested for high and low molecular weight PPF, 0.376 +/- 0.004 and 0.134 +/- 0.015 MPa(m)1/2, respectively. These values are roughly one magnitude less than human cortical bone.  相似文献   

18.
BACKGROUND:So far there is a lack of reliable biomedical evidence about the effects of three-dimensionally (3D) printed porous β-tricalcium phosphate (β-TCP) scaffold loading poly(lactic-co-glycolic acid) (PLGA)/anti-tuberculosis drug control-release microspheres on the growth and proliferation of cells, especially osteoblasts.  相似文献   

19.
He S  Yaszemski MJ  Yasko AW  Engel PS  Mikos AG 《Biomaterials》2000,21(23):2389-2394
New injectable, in situ crosslinkable biodegradable polymer composites were investigated consisting of poly(propylene fumarate) (PPF), poly(ethylene glycol)-dimethacrylate (PEG-DMA), and beta-tricalcium phosphate (beta-TCP). We examined the effects of the PEG-DMA/PPF double-bond ratio and beta-TCP content on the crosslinking characteristics of the composites including the maximum crosslinking temperature and the gel point, as well as the properties of the crosslinked composites such as the compressive strength and modulus, and the water-holding capacity. The maximum crosslinking temperature was constant averaging 39.7 degrees C for the composite formulations tested. The gel points varied from 8.0 +/- 1.0 to 12.6 +/- 2.5 min and were not affected by the relative amounts of PEG-DMA. The compressive strength at yield of PEG-DMA/PPF composites without beta-TCP increased from 5.9 +/- 1.0 to 11.2 +/- 2.2 MPa as the double-bond ratio of PEG-DMA/PPF increased from 0.38 to 1.88. An increase in compressive modulus was also observed from 30.2 +/- 3.5 to 58.4 +/- 6.2 MPa for the same range of the PEG-DMA/PPF double-bond ratio. Also, the addition of beta-TCP (33 wt%) enhanced the mechanical properties of all composites. The equilibrium water content of networks without beta-TCP increased from 21.7 +/- 0.2 to 30.6 +/- 0.2% for a double-bond ratio of PEG-DMA/PPF ranging from 0.38 to 1.88. However, the mechanical properties of the swollen composites under compression were smaller than the dry ones. These data demonstrate the feasibility of fabricating injectable biodegradable polymer composites with engineered mechanical properties for orthopedic tissue engineering.  相似文献   

20.
目的制备一种载羟基喜树碱的聚乳酸-羟基乙酸(PLGA)缓释微球,并考察其相关性能。方法采用乳化-溶剂挥发法制备羟基喜树碱PLGA微球,用扫描电子显微镜观察载药微球表面形态,测定平均粒径及跨距,高效液相色谱检测包封率、载药率及体外释放情况,改良寇氏法计算小鼠半数致死量。结果制备的载药PLGA微球呈圆球形,表面光滑,无粘连,平均粒径30.8μm,跨距0.9,包封率为85.5%、载药率4.28%,在体外28 d累积释放药物81.4%。羟基喜树碱小鼠静脉注射的半数致死量为18.4 mg/kg,肌内注射半数致死量为71.3 mg/kg,而羟基喜树碱PLGA微球肌内注射的半数致死量为138.5 mg/kg。结论乳化-溶剂挥发法制备的羟基喜树碱PLGA微球粒径适宜,包封率、载药率高,缓释效果好,毒性低,具有潜在的临床应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号