首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of amlodipine, a novel calcium channel blocker of the dihydropyridine type, on rabbit platelet aggregation, and the possible antiaggregatory mechanisms of amlodipine, especially on the nitric oxide (NO) guanosine 3',5'-cyclic monophosphate (cyclic GMP)-mediated pathway, were investigated. Other effects of amlodipine on thromboxane B2 (TXB2) formation in platelets also were examined. Amlodipine concentration-dependently inhibited rabbit platelet aggregation induced by collagen (10 microg/mL) or thrombin (0.1 U/mL) with an IC50 range of 32-69 microM. Along with this inhibition, our results also demonstrated that in the presence of L-arginine (100 IM), amlodipine (50 microM) increased nitric oxide synthetase (NOS) activity (from the resting activity of 2.05+/-0.36 to 7.11+/-0.95 pmol/mg protein/min) and NO release (by 80%), accompanied by an elevation of the cyclic GMP level (from the resting platelet level of 1.27+/-0.12 to 6.21+/-0.55 pmol/10(9) platelets) induced by collagen (10 microg/mL). However, the antiaggregatory effect of amlodipine (50 microM) could be attenuated significantly by oxyhemoglobin (5 microM), a NO scavenger, or N(G)-nitro-L-arginine methyl ester (100 microM), a specific NOS inhibitor. In addition, the TXB2 production in platelets induced by collagen or thrombin was concentration-dependently inhibited by amlodipine. Therefore, we propose that the antiaggregatory mechanisms of amlodipine might be mediated, in part, by a NO-cyclic GMP process accompanied by the inhibition of TXB2 formation in platelets.  相似文献   

2.
The antiplatelet effects of a novel guanidine derivative, KR-32570 ([5-(2-methoxy-5-chlorophenyl) furan-2-ylcarbonyl]guanidine), were investigated with an emphasis on the mechanisms underlying its inhibition of collagen-induced platelet aggregation. KR-32570 significantly inhibited the aggregation of washed rabbit platelets induced by collagen (10 microg/mL), thrombin (0.05 U/mL), arachidonic acid (100 microM), a thromboxane (TX) A2 mimetic agent U46619 (9,11-dideoxy-9,11-methanoepoxy-prostaglandin F2, 1 microM) and a Ca2+ ATPase inhibitor thapsigargin (0.5 microM) (IC50 values: 13.8 +/- 1.8, 26.3 +/- 1.2, 8.5 +/- 0.9, 4.3 +/- 1.7 and 49.8 +/- 1.4 microM, respectively). KR-32570 inhibited the collagen-induced liberation of [3H]arachidonic acid from the platelets in a concentration dependent manner with complete inhibition being observed at 50 microM. The TXA2 synthase assay showed that KR-32570 also inhibited the conversion of the substrate PGH2 to TXB2 at all concentrations. Furthermore, KR-32570 significantly inhibited the [Ca2+]i mobilization induced by collagen at 50 microM, which is the concentration that completely inhibits platelet aggregation. KR-32570 also decreased the level of collagen (10 microg/mL)-induced secretion of serotonin from the dense-granule contents of platelets, and inhibited the NHE-1-mediated rabbit platelet swelling induced by intracellular acidification. These results suggest that the antiplatelet activity of KR-32570 against collagen-induced platelet aggregation is mediated mainly by inhibiting the release of arachidonic acid, TXA2 synthase, the mobilization of cytosolic Ca2+ and NHE-1.  相似文献   

3.
In previous studies we have reported that NQ301, a synthetic 1,4-naphthoquinone derivative, displays a potent antithrombotic activity, and that this might be due to antiplatelet effect, which was mediated by the inhibition of cytosolic Ca(2+) mobilization in activated platelets. In the present study, the effect of NQ301 on arachidonic acid cascade in activated platelets has been examined. NQ301 concentration-dependently inhibited washed rabbit platelet aggregation induced by collagen (10 microg/ml), arachidonic acid (100 microM) and U46619 (1 microM), a thromboxane A2 receptor agonist, with IC50 values of 0.60+/-0.02, 0.78+/-0.04 and 0.58+/-0.04 microM, respectively. NQ301 also produced a shift to the right of the concentration-effect curve of U46619, indicating a competitive type of antagonism on thromboxane A2/prostaglandin H2 receptor. NQ301 slightly inhibited collagen-induced arachidonic acid liberation. In addition, NQ301 potently suppressed thromboxane B2 formation by platelets that were exposed to arachidonic acid in a concentration-dependent manner, but had no effect on the production of prostaglandin D2, indicating an inhibitory effect on thromboxane A2 synthase. This was supported by thromboxane A2 synthase activity assay that NQ301 concentration-dependently inhibited thromboxane B2 formation converted from prostaglandin H2. Moreover, NQ301 concentration-dependently inhibited 12-hydroxy-5,8,10,14-eicosatetraenoic acid formation by platelets that were exposed to arachidonic acid. Taken together, these results suggest that NQ301 has a potential to inhibit thromboxane A2 synthase activity with thromboxane A2/prostaglandin H2 receptor blockade, and modulate arachidonic acid liberation as well as 12-hydroxy-5,8,10,14-eicosatetraenoic acid formation in platelets. This may also be a convincing mechanism for the antithrombotic action of NQ301.  相似文献   

4.
Because the metabolites of arachidonic acid participate in many physiopathological responses, including inflammation and platelet aggregation, cyclooxygenase inhibitors are important in the treatment of associated diseases. A biologically active compound, 5-ethyl-4-methoxy-2-phenylquinoline (KTC-5), selectively and concentration dependently inhibited aggregation of platelets from man and ATP release caused by arachidonic acid (200 microM) and collagen (10 microg mL(-1)) without affecting the aggregation caused by thrombin (0.1 U mL(-1)) and U46619 (2 microM). The IC50 value (drug concentration inhibiting maximum response by 50%) of KTC-5 for aggregation induced by arachidonic acid and collagen was 0.11+/-0.04 microM and 0.20+/-0.03 microM, respectively. This inhibitory effect of KTC-5 was reversible and time dependent. KTC-5 specifically inhibited intracellular calcium mobilization initiated by arachidonic acid or collagen without affecting that caused by thrombin or U46619 in human platelets. Furthermore, KTC-5 inhibited thromboxane B2 and prostaglandin D2 formation provoked by arachidonic acid. The IC50 value of KTC-5 for arachidonic-acid-induced thromboxane B2 formation was 0.07+/-0.02 microM. Based on these observations, the data indicated that KTC-5 potently inhibited human platelet aggregation and ATP release mainly via the inhibition of the cyclooxygenase-1 activity. Moreover, KTC-5 inhibited lipopolysaccharide-induced prostaglandin E2 formation in RAW264.7 cells in the presence of external arachidonic acid with an IC50 value of 0.17+/-0.06 microM. Immunoblot analysis showed that KTC-5 did not affect the cyclooxygenase-2 expression in the presence of lipopolysaccharide on RAW264.7 cells. This result indicated that KTC-5 affects the activity of cyclooxygenase-2. According to these data, we concluded that KTC-5 is a cyclooxygenase inhibitor for both subtypes.  相似文献   

5.
Curcumin, a dietary spice from turmeric, is known to be anti-inflammatory, anticarcinogenic, and antithrombotic. Here, we studied the mechanism of the antiplatelet action of curcumin. We show that curcumin inhibited platelet aggregation mediated by the platelet agonists epinephrine (200 microM), ADP (4 microM), platelet-activating factor (PAF; 800 nM), collagen (20 microg/mL), and arachidonic acid (AA: 0.75 mM). Curcumin preferentially inhibited PAF- and AA-induced aggregation (IC50; 25-20 microM), whereas much higher concentrations of curcumin were required to inhibit aggregation induced by other platelet agonists. Pretreatment of platelets with curcumin resulted in inhibition of platelet aggregation induced by calcium ionophore A-23187 (IC50; 100 microM), but curcumin up to 250 microM had no inhibitory effect on aggregation induced by the protein kinase C (PKC) activator phorbol myrsitate acetate (1 microM). Curcumin (100 microM) inhibited the A-23187-induced mobilization of intracellular Ca2+ as determined by using fura-2 acetoxymethyl ester. Curcumin also inhibited the formation of thromboxane A2 (TXA2) by platelets (IC50; 70 microM). These results suggest that the curcumin-mediated preferential inhibition of PAF- and AA-induced platelet aggregation involves inhibitory effects on TXA2 synthesis and Ca2+ signaling, but without the involvement of PKC.  相似文献   

6.
Platelet activation is involved in serious pathological situations, including atherosclerosis and restenosis. It is important to find efficient antiplatelet medicines to prevent fatal thrombous formation during the course of these diseases. Marchantinquinone, a natural compound isolated from Reboulia hemisphaerica, inhibited platelet aggregation and ATP release stimulated by thrombin (0.1 units mL(-1)), platelet-activating factor (PAF; 2 ng mL(-1)), collagen (10 microg mL(-1)), arachidonic acid (100 microM), or U46619 (1 microM) in rabbit washed platelets. The IC50 values of marchantinquinone on the inhibition of platelet aggregation induced by these five agonists were 62.0 +/- 9.0, 86.0 +/- 7.8, 13.6 +/- 4.7, 20.9 +/- 3.1 and 13.4 +/- 5.3 microM, respectively. Marchantinquinone inhibited thromboxane B2 (TxB2) formation induced by thrombin, PAF or collagen. However, marchantinquinone did not inhibit TxB2 formation induced by arachidonic acid, indicating that marchantinquinone did not affect the activity of cyclooxygenase and thromboxane synthase. Marchantinquinone did inhibit the rising intracellular Ca2+ concentration stimulated by the five platelet-aggregation inducers. The formation of inositol monophosphate induced by thrombin was inhibited by marchantinquinone. Platelet cAMP and cGMP levels were unchanged by marchantinquinone. The results indicate that marchantinquinone exerts antiplatelet effects by inhibiting phosphoinositide turnover.  相似文献   

7.
We investigated the anti-platelet effect of a newly synthesized guanidine derivative KR-32560, a sodium/hydrogen exchanger-1 (NHE-1) inhibitor, together with the elucidation of the possible mode of action. KR-32560 concentration dependently inhibited the aggregation of washed rabbit platelets induced by collagen (10 microg mL(-1)) and arachidonic acid (AA; 100 microM), with IC50 values of 25 and 46 microM, respectively. Whereas, KR-32560 showed weaker potency against aggregation induced by thrombin (0.05 UmL(-1)) and U46619 (1 microM), and had no effect on thapsigargin (0.5 microM)- or A23187 (5 microM)-induced platelet aggregation up to 50 microM. KR-32560 inhibited the collagen-induced [3H]AA liberation in a concentration-dependent manner. In addition, KR-32560 significantly suppressed TXB2 formation in AA-exposed platelets, but had no effect on production of PGD2, indicating an inhibitory effect on TXA2 synthase. This finding was supported by a TXA2 synthase assay that KR-32560 inhibited the conversion of PGH2 into TXB2 with a similar magnitude to suppression of TXB2 formation. Furthermore, KR-32560 significantly inhibited the collagen-induced [Ca2+]i mobilization and serotonin secretion. Taken together, these observations suggest that the anti-platelet activity of KR-32560 may be mediated by the inhibition of cytoplasmic Ca2+ mobilization and AA liberation.  相似文献   

8.
1. CS-747 is a novel thienopyridine-type platelet ADP inhibitor which lacks in vitro activity. This study examined pharmacological profiles of R-99224, a hepatic metabolite of CS-747. 2. R-99224 produced a concentration-dependent inhibition of in vitro platelet aggregation in washed human platelets (0.03 - 1 microg ml(-1)), which was relatively specific to ADP compared to collagen and thrombin. 3. R-99224 (0.1 - 3 microg ml(-1)) also elicited a similar inhibition of ADP-induced aggregation in rat platelets. The inhibition by R-99224 (10 microg ml(-1)) persisted even after platelets were washed three times. Intravenous injection of R-99224 (0.1 - 3 mg kg(-1)) to rats resulted in a dose-dependent inhibition of ex vivo ADP-induced platelet aggregation. 4. R-99224 (0.1 - 100 microM) decreased binding of [(3)H]-2-methylthio-ADP ([(3)H]-2-MeS-ADP), a stable ligand for platelet ADP receptors, to washed human platelets. The inhibition by R-99224 reached a plateau at a concentration of 3 microM (1.4 microg ml(-1)), but complete inhibition was not achieved even at the highest concentration used (100 microM). 5. R-99224 (10 microM) in combination with ARL-66096 (0.3 microM), an ATP analogue-type G(i)-linked P2T receptor antagonist, produced no additional inhibition of [(3)H]-2-MeS-ADP binding. In contrast, [(3)H]-2-MeS-ADP binding was completely abolished by R-99224 (10 microM) in combination with A3P5PS (300 microM), a selective P2Y(1) antagonist, suggesting that R-99224 selectively binds to the G(i)-linked P2T receptor. 6. R-99224 (0.01 - 3 microg ml(-1)) inhibited ADP-induced [(125)I]-fibrinogen binding to human platelets in a concentration-dependent manner. R-99224 (0.1 - 1 microg ml(-1)) also inhibited the ADP-induced decrease in cyclic AMP levels in PGE(1)-stimulated platelets, whereas the agent did not affect ADP (10 microM)-induced Ca(2+) mobilization. 7. These findings suggest that R-99224 is a selective and irreversible antagonist of G(i)-linked P2T receptors and that R-99224 is a responsible molecule for in vivo actions of CS-747.  相似文献   

9.
This study was designed to investigate the effect of surfactin C, which is derived from Bacillus subtilis, on platelet aggregation and homotypic leucocyte aggregation. Surfactin C strongly and dose-dependently inhibited platelet aggregation, which was stimulated both by thrombin (0.1 U mL(-1)), a potent agonist that activates the G protein-coupled protease receptor, and by collagen (5 microg mL(-1)), a potent ligand that activates alpha(IIb)beta(3) with IC50 values (concentration inhibiting platelet aggregation by 50%) of 10.9 and 17.0 microM, respectively. Moreover, surfactin C significantly suppressed the intracellular Ca(2+) mobilization in thrombin-activated platelets. Surfactin C, however, did not affect various integrin-mediated U937 cell aggregation, implying that the anti-platelet activity of surfactin C was not due to its detergent effect but by its action on the downstream signalling pathway. Therefore, the results suggest that surfactin C may have a beneficial therapeutic effect on aberrant platelet aggregation-mediated cardiovascular diseases.  相似文献   

10.
By means of Sephadex G-75 and CM-Sephadex C-50 column chromatography and reverse-phase HPLC, a low molecular weight (Mr = 7500), cysteine-rich peptide, halysin, was purified from Agkistrodon halys (mamushi) snake venom. Halysin is a potent platelet aggregation inhibitor that concentration-dependently inhibited human platelet aggregation stimulated by ADP, thrombin and collagen (IC50 = 0.16 to 0.36 microM) without affecting platelet secretion. It was active in inhibiting platelet aggregation of platelet-rich plasma and whole blood. Halysin had no effect on thromboxane B2 formation of platelets or intracellular Ca2+ mobilization of Quin 2-AM loaded platelets stimulated by thrombin. It inhibited the fibrinogen-induced aggregation of elastase-treated platelets. Halysin concentration-dependently inhibited the 125I-fibrinogen binding to ADP-stimulated platelets in a competitive manner (IC50 = 0.16 microM). 125I-Halysin bound to resting platelets (Kd = 1.6 x 10(-7) M) and to ADP-stimulated platelets (Kd = 3.4 x 10(-8) M) in a saturable manner. EDTA, the Arg-Gly-Asp (RGD)-containing snake venom peptides trigamin and rhodostomin, Arg-Gly-Asp-Ser (RGDS), and Gly-Gln-Gln-His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val blocked both 125I-fibrinogen binding and 125I-halysin binding to ADP-stimulated platelets. The monoclonal antibody, 7E3, raised against glycoprotein IIb-IIIa complex blocked both 125I-fibrinogen and 125I-halysin binding, whereas 10E5 had no significant effect on halysin binding to ADP-stimulated platelets, indicating that 7E3 and halysin bind to an epitope which is different from that of 10E5. RGDS concentration-dependently inhibited 125I-halysin binding in a competitive manner. We determined the primary structure of halysin which is a single peptide chain of 71 amino acid residues. An RGD sequence appeared in the carboxy-terminal domain of halysin. Halysin showed about an 85% identical sequence with trigamin which is a specific antagonist of fibrinogen receptor associated with glycoprotein IIb-IIIa complex. In conclusion, halysin inhibited platelet aggregation by interfering with fibrinogen binding to the fibrinogen receptor of the activated platelets. The RGD sequence of halysin plays an important role in the expression of its biological activity.  相似文献   

11.
Morphine dose-dependently (0.6, 1, and 5 microM) potentiated platelet aggregation and ATP release stimulated by agonists (i.e., collagen and U46619) in washed human platelets. Furthermore, morphine (1 and 5 microM) markedly potentiated collagen (1 microg/ml) evoked an increase of intracellular Ca2+ mobilization in fura 2-AM loading human platelets. Morphine (1 and 5 microM) did not influence the binding of fluorescein isothiocyanate-triflavin to platelet glycoprotein IIb/IIIa complex. Yohimbine (0.1 microM), a specific alpha2-adrenoceptor antagonist, markedly abolished the potentiation of morphine in platelet aggregation stimulated by collagen. Moreover, morphine (0.6-5 microM) markedly inhibited prostaglandin E1 (10 microM)-induced cAMP formation in human platelets, and yohimbine (0.1 microM) significantly reversed the inhibition of cAMP by morphine (0.6 and 1 microM) in this study. Morphine (1 and 5 microM) significantly potentiated thromboxane B2 formation stimulated by collagen in human platelets, and yohimbine also reversed this effect of morphine in this study. In addition, morphine (1 and 5 microM) did not significantly affect nitrate production in human platelets. Morphine may exert its potentiation in platelet aggregation by binding to alpha2-adrenoceptors in human platelets, which leads to reduced cAMP formation and subsequently to increased intracellular Ca2+ mobilization; this, in turn, is followed by increased thromboxane A formation and finally potentiates platelet aggregation and ATP release.  相似文献   

12.
The antiplatelet effect of the pyridazinone analogue, 4, 5-dihydro-6-[4-[2-hydroxy-3-(3,4 dimethoxybenzylamino)propoxy]naphth-1-yl]-3(2H)-pyridazinone (HCL-31D), was investigated in vitro with rabbit platelets. HCL-31D dose-dependently inhibited the platelet aggregation and ATP release induced by collagen (10 microg/ml), arachidonic acid (100 microM) or thrombin (0.1 U/ml) with an IC(50) of about 0.95-5.41 microM. HCL-31D (0.5-5 microM) increased the platelet cyclic AMP level in a dose-dependent manner. Furthermore, HCL-31D potentiated cyclic AMP formation caused by prostaglandin E(1) but not that caused by 3-isobutyl-1-methylxanthine (IBMX). HCL-31D also attenuated phosphoinositide breakdown and intracellular Ca(2+) elevation induced by collagen, arachidonic acid or thrombin. HCL-31D inhibited the formation of thromboxane B(2) induced by collagen or thrombin but not by arachidonic acid. In addition, HCL-31D did not affect platelet cylooxygenase and thromboxane synthase activity. These data indicate that HCL-31D is an inhibitor of phosphodiesterase and that its antiplatelet effect is mainly mediated by elevation of cyclic AMP levels.  相似文献   

13.
To evaluate in vitro inhibitory effects of four types of histamine H2-receptor antagonist (H2-receptor antagonists), famotidine, roxatidine, cimetidine and ranitidine, on platelet function, we examined aggregating potency and P-selectin levels with agonist-induced aggregation. Ranitidine and cimetidine inhibited, in concentration of 0.35 mM, the secondary aggregation induced by 5 microM adenosine diphosphate (ADP), the aggregation induced by 1 microg/mL collagen and 3 microM arachidonic acid. All of H2-receptor antagonists inhibited, in concentration of 1.4 mM, the aggregation induced by ADP, collagen and arachidonic acid. Ranitidine and cimetidine reduced markedly, in same concentration, P-selectin levels after induction of aggregation by 5 microm ADP, 1 microg/mL collagen and 3 microM arachidonic acid. When classified by the strength of inhibitory action, ranitidine and cimetidine were strong, followed by famotidine and roxatidine. It is considered that inhibitory effects of H2-receptor antagonists on platelet function are weaker than those of acetylsalicylic acid (ASA), since ASA inhibited platelet aggregation in concentration of 100 microM. No relationship was observed between inhibitory effects of H2-receptor antagonists on platelet aggregation induced by above agonists and the presence or absence of imidazole ring in the chemical structure.  相似文献   

14.
1. The aim of this study was to identify the presence of matrix metalloproteinase-9 (MMP-9) in human platelets and systematically examine its inhibitory mechanisms of platelet activation. 2. In this study, we report on an efficient method for the quantitative analysis of pro-MMP-9 in human platelets using capillary zone electrophoresis (CZE). To elucidate subcellular localization of MMP-9 in human platelets, we investigated intraplatelet MMP-9 by immunogold labeling and visualized it using electron microscopy. In an in vivo thrombotic study, platelet thrombus formation was induced by irradiation of mesenteric venules with filtered light in mice pretreated with fluorescein sodium. 3. MMP-9-gold labeling was observed on the plasma membrane, alpha-granules, open canalicular system, and within the cytoplasma both in resting and activated platelets. Furthermore, activated MMP-9 concentration-dependently (15-90 ng ml(-1)) inhibited platelet aggregation stimulated by agonists. Activated MMP-9 (21 and 90 ng ml(-1)) inhibited phosphoinositide breakdown, intracellular Ca(2+) mobilization, and thromboxane A(2) formation in human platelets stimulated by collagen (1 microg ml(-1)). In addition, activated MMP-9 (21 and 90 ng ml(-1)) significantly increased the formation of nitric oxide/cyclic GMP. 4. Rapid phosphorylation of a platelet protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by phorbol-12, 13-dibutyrate (PDBu) (60 nm). This phosphorylation was markedly inhibited by activated MMP-9 (21 and 90 ng ml(-1)). Activated MMP-9 (1 microg g(-1)) significantly prolonged the latency period of inducing platelet plug formation in mesenteric venules. 5. These results indicate that the antiplatelet activity of activated MMP-9 may be involved in the following pathways. (1) Activated MMP-9 may inhibit the activation of phospholipase C, followed by inhibition of phosphoinositide breakdown, protein kinase C activation, and thromboxane A(2) formation, thereby leading to inhibition of intracellular Ca(2+) mobilization. (2) Activated MMP-9 also activated the formation of nitric oxide/cyclic GMP, resulting in inhibition of platelet aggregation. These results strongly indicate that MMP-9 is a potent inhibitor of aggregation. It may play an important role as a negative feedback regulator during platelet activation.  相似文献   

15.
PMC, a potent alpha-tocopherol derivative, dose-dependently (5-25 microM) inhibited the ATP-release reaction and platelet aggregation in washed human platelets stimulated by agonists (collagen and ADP). PMC also dose-dependently inhibited the intracellular Ca2+ mobilization, whereas it did not inhibit phosphoinositide breakdown in human platelets stimulated by collagen. PMC (10 and 25 microM) significantly inhibited collagen-stimulated thromboxane A2 (TxA2) formation in human platelets. On the other hand, PMC (25 and 100 microM) did not increase the formation of cyclic AMP or cyclic GMP in platelets. Moreover, PMC (25, 100, and 200 microM) did not affect the thromboxane synthetase activity of aspirin-treated platelet microsomes. PMC (10 and 25 microM) markedly inhibited the exogenous arachidonic acid (100 microM)-induced prostaglandin E2 (PGE2) formation in the presence of imidazole (600 microM) in washed human platelets, indicating that PMC inhibits cyclo-oxygenase activity. We conclude that PMC may exert its anti-platelet aggregation activity by inhibiting cyclooxygenase activity, which leads to reduced prostaglandin formation; this, in turn, is followed by a reduction of TxA2 formation, and finally inhibition of [Ca2+]i mobilization and ATP-release.  相似文献   

16.
5-Lipoxygenase/cyclooxygenase inhibitors, possessing anti-inflammatory action and gastric safety due to cyclooxygenase-2 and 5-lipoxygenase inhibition and antiplatelet activity due to cyclooxygenase-1 blockade, would be beneficial in the treatment of ischemic disease because they may reduce, at the same time, inflammation, underlying the atherosclerotic process, and platelet activation, responsible for acute thrombotic events. In this study, we characterized the antiplatelet effects of the new 5-lipoxygenase/cyclooxygenase inhibitor licofelone ([2,2-dimethyl-6-(4-chlorophenyl)-7-phenyl-2,3,dihydro-1H-pyrrolizine-5-yl]-acetic acid. Licofelone completely prevented platelet aggregation induced in platelet-rich plasma by threshold aggregating concentrations of arachidonic acid (0.87+/-0.14 mM) at threshold inhibitory concentrations of 0.75+/-0.35 microM (n=5). Platelet-rich plasma aggregation induced by threshold aggregating concentrations of collagen/adrenalin (0.3+/-0.05 microg/ml and 0.4+/-0.1 microM, respectively) was reduced to 3.2+/-2% of control at licofelone 100 microM, (P<0.05, n=6). Washed platelet aggregation induced by threshold aggregating concentrations of thrombin (0.07+/-0.01 U/ml) was only partially affected by licofelone at concentrations one or two order of magnitude higher than those fully preventing arachidonic acid-induced aggregation (44+/-11% of control at 100 microM, P<0.05, n=7). Failure to prevent aggregation triggered by high concentrations of collagen/adrenalin in aspirin-treated platelets supports cyclooxygenase-1 as a specific target of licofelone. In fact, licofelone inhibited thromboxane B(2) (TxB(2)) production by all the agonists tested at concentrations between 0.5 and 50 microM. At this concentration, TxB(2) production was reduced at values similar to those of unstimulated platelets. These results indicate that, at clinically relevant concentrations, licofelone exerts a potent antiplatelet effect mediated by the inhibition of cyclooxygenase-1 activity.  相似文献   

17.
1. Zooxanthellatoxin-A (ZT-A), a novel polyhydroxylated long chain compound, isolated from a symbiotic marine alga Simbiodinium sp., caused aggregation in rabbit washed platelets in a concentration-dependent manner (1-4 microM), accompanied by an increase in cytosolic Ca2+ concentration ([Ca2+]i). 2. ZT-A did not cause platelet aggregation or increase [Ca2+]i in a Ca(2+)-free solution, and Cd2+ (0.1-1 mM), Co2+ (1-10 mM) and Mn2+ (1-10 mM) inhibited ZT-A-induced aggregation. SK&F96365 (1-100 microM), a receptor operated Ca2+ channel antagonist, and mefenamic acid (0.1-10 microM), a non-specific divalent cation channel antagonist, inhibited platelet aggregation and the increase in [Ca2+]i induced by ZT-A. 3. Indomethacin (0.1-10 microM), a cyclo-oxygenase inhibitor, and SQ-29548 (0.1-10 microM), a thromboxane A2 (TXA2) receptor antagonist, inhibited platelet aggregation and the increase in [Ca2+]i induced by ZT-A. 4. Methysergide (0.01-1 microM), a 5-HT2 receptor antagonist, inhibited ZT-A-induced platelet aggregation but did not affect the increase in [Ca2+]i induced by ZT-A. 5. Tetrodotoxin (1 microM), a Na+ channel blocker and chlorpheniramine (1 microM), a H1-histamine receptor antagonist, neither affected ZT-A-induced platelet aggregation nor the increase in [Ca2+]i induced by ZT-A. 6. Genistein (1-100 microM), a protein tyrosine kinase inhibitor, and staurosporine (0.01-1 microM), a protein kinase C inhibitor, also inhibited ZT-A-induced platelet aggregation. 7. The present results suggest that ZT-A elicits Ca(2+)-influx from platelet plasma membranes. The resulting increase in [Ca2+]i subsequently stimulates the secondary release of TXA2 from platelets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Shen MY  Liu CL  Hsiao G  Liu CY  Lin KH  Chou DS  Sheu JR 《Planta medica》2008,74(10):1240-1245
Aristolochic acid (AsA) is produced from Aristolochia fangchi, and has been used as a Chinese herbal medicine. AsA possesses various biological activities including antiplatelet, antifungal, and anti-inflammatory properties. The aim of this study was to examine the mechanisms of AsA in inhibiting platelet aggregation. AsA (75 - 150 microM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen (1 microg/mL) than other agonists. AsA (115 and 150 microM) inhibited collagen-induced platelet activation accompanied by [Ca+2)]i mobilization, thromboxane A2 (TxA2) formation and phosphoinositide breakdown. On the other hand, AsA also markedly increased levels of NO/cyclic GMP, and cyclic GMP-induced vasodilator-stimulated phosphoprotein phosphorylation. AsA inhibited p38 MAPK but not ERK1/2 phosphorylation in washed platelets. In conclusion, the most important findings of this study suggest that the inhibitory effects of AsA possibly involve the (1) inhibition of the p38 MAPK-cytosolic phospholipase A2-arachidonic acid-TxA2-[Ca+2)]i cascade, and (2) activation of NO/cyclic GMP, resulting in inhibition of phospholipase C. These results imply that Aristolochia fangchi treatment alone or in combination with other antiplatelet drugs, may result in alteration of hemostasis in vivo.  相似文献   

19.
Ginsenoside Rg3, a single ginseng saponin, is known to be a major anti-platelet component of protopanaxadiol that is isolated from Korean red ginseng. In this study, we investigated whether dihydroginsenoside Rg3, a stable chemical derivative of ginsenoside Rg3, also demonstrated anti-platelet activity. Dihydroginsenoside Rg3 inhibited thrombin-induced platelet aggregation in a concentration-dependent manner with an IC50 (concentration producing 50% inhibition) of 18.8 +/- 0.4 microM. Ginsenoside Rg3 inhibited platelet aggregation which was induced by thrombin (0.1 U mL(-1)) with an IC50 of 40.2 +/- 0.9 microM. We next determined whether dihydroginsenoside Rg3 affected different types of ligand-induced platelet aggregation. We found that dihydroginsenoside Rg3 inhibited collagen-induced platelet aggregation with an IC50 of 20.0 +/- 0.9 microM. To elucidate the inhibitory mechanism of dihydroginsenoside Rg3 on aggregation, we analysed its downstream signalling pathway. It was interesting to note that dihydroginsenoside Rg3 elevated cyclic AMP production in resting platelets, but did not affect cyclic GMP production. In addition, we found that dihydroginsenoside Rg3 potently suppressed phosphorylation of extracellular signal-regulated kinase 2 (ERK2), which was stimulated by collagen (2.5 microg mL(-1)), but not of p38 mitogen-activated protein kinase. Taken together, our results indicate that dihydroginsenoside Rg3 potently inhibited platelet aggregation via the modulation of downstream signalling components such as cAMP and ERK2.  相似文献   

20.
1 The lysophospholipids, lysophosphatidic acid and sphingosine 1-phosphate, have been reported to activate platelets. Here we examined effects of the naturally occurring related sphingosylphosphorylcholine (SPC) on human platelet function. 2 Platelet activation was determined as aggregation, elevation of intracellular Ca(2+) concentrations, surface expression of P-selectin, GP 53, and GP IIb/IIIa neoepitope PAC-1, and of fibrinogen binding to the platelet surface. 3 Platelets were activated by ADP (5 and 20 micro M), the thrombin receptor-activating peptide TRAP-6 (5 and 20 micro M), the thromboxane A(2) mimetic U-46619 (1 micro M) and collagen (20 and 50 micro g ml(-1)) but not by SPC (up to 20 micro M). 4 SPC concentration-dependently (IC(50) approximately 1-10 micro M) inhibited activation of washed human platelets in response to all of the above agonists, with almost complete inhibition occurring at 20 micro M SPC. 5 The SPC stereoisomers, D-erythro SPC and L-threo SPC, exhibited similar concentration-response curves in inhibiting 20 micro M ADP-induced platelet aggregation, suggesting that SPC did not act via specific lysophospholipid receptors. 6 Although SPC slightly activated platelet protein kinase A (as assessed by VASP phosphorylation), this effect could not explain the marked platelet inhibition. Possible protein kinase C inhibition also did not explain the inhibition of platelet activation by SPC. On the other hand, SPC suppressed agonist-induced Ca(2+) mobilization and phospholipase C stimulation. 7 These results indicate that the lysophospholipid SPC is an effective inhibitor of human platelet activation, apparently primarily by uncoupling agonist-activated receptors from their effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号