首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND PURPOSE: To quantify inter- and intrafraction prostate motion in a standard VacLok (VL) immobilization device or in the BodyFix (BF) system incorporating a compression element which may reduce abdominal movement. MATERIALS AND METHODS: Thirty-two patients were randomly assigned to VL or BF. Interfraction prostate motion >3 mm was corrected pre-treatment. EPIs were taken daily at the start and end of the first and last treatment beams. Interfraction and intrafraction prostate motion were measured for centre of mass (COM) and individual markers. RESULTS: There were no significant differences in interfraction (p0.002) or intrafraction (p0.16) prostate motion with or without abdominal compression. Median intrafraction motion was slightly smaller than interfraction motion in the AP (7.0 mm vs. 7.6 mm) and SI direction (3.2 mm vs. 4.7 mm). The final image captured the maximal intrafraction displacement in only 40% of fractions. Our PTV incorporated >95% of total prostate motion. CONCLUSIONS: Intrafraction motion became the major source of error during radiotherapy after online correction of interfraction prostate motion. The addition of 120 mbar abdominal compression to custom pelvic immobilization influenced neither interfraction nor intrafraction prostate motion.  相似文献   

2.
PURPOSE: To measure the interfraction and intrafraction motion of the prostate during the course of external beam radiotherapy using a video electronic portal imaging device and three-dimensional analysis. METHODS AND MATERIALS: Eighteen patients underwent implantation with two or three gold markers in the prostate before five-angle/11-field conformal radiotherapy. Using CT data as the positional reference, multiple daily sets of portal images, and a three-dimensional reconstruction algorithm, intrafraction translations, as well as interfraction and intrafraction rotations, were analyzed along the three principal axes (left-right [LR], superoinferior [SI], and AP). The overall mean values and standard deviations (SDs), along with random and systematic SDs, were computed for these translations and rotations. RESULTS: For 282 intrafraction translational displacements, the random SD was 0.8 mm (systematic SD, 0.2) in the LR, 1.0 mm (systematic SD, 0.4) in the SI, and 1.4 mm (systematic SD, 0.7) in the AP axes. The analysis of 348 interfraction rotations revealed random SDs of 6.1 degrees (systematic SD, 5.6 degrees ) around the LR axis, 2.8 degrees (systematic SD, 2.4 degrees ) around the SI axis, and 2.0 degrees (systematic SD, 2.2 degrees ) around the AP axis. The intrafraction rotational motion observed during 44 fractions had a random SD of 1.8 degrees (systematic SD, 1.0 degrees ) around the LR, 1.1 degrees (systematic SD, 0.8 degrees ) around the SI, and 0.6 degrees (systematic SD, 0.3 degrees ) around the AP axis. CONCLUSION: The interfraction rotations observed were more important than those reported in previous studies. Intrafraction motion was generally smaller in magnitude than interfraction motion. However, the intrafraction rotations and translations of the prostate should be taken into account when designing planning target volume margins because their magnitudes are not negligible.  相似文献   

3.
Intrafraction prostate motion during IMRT for prostate cancer   总被引:5,自引:0,他引:5  
PURPOSE: Although the interfraction motion of the prostate has been previously studied through the use of fiducial markers, CT scans, and ultrasound-based systems, intrafraction motion is not well documented. In this report, the B-mode, Acquisition, and Targeting (BAT) ultrasound system was used to measure intrafraction prostate motion during 200 intensity-modulated radiotherapy (IMRT) sessions for prostate cancer. METHODS AND MATERIALS: Twenty men receiving treatment with IMRT for clinically localized prostate cancer were selected for the study. Pre- and posttreatment BAT ultrasound alignment images were collected immediately before and after IMRT on 10 treatment days for a total of 400 BAT alignment procedures. Any ultrasound shifts of the prostate borders in relation to the planning CT scan were recorded in 3 dimensions: right-left (RL), anteroposterior (AP), and superior-inferior (SI). Every ultrasound procedure was evaluated for image quality and alignment according to a 3-point grading scale. RESULTS: All the BAT images were judged to be of acceptable quality and alignment. The dominant directions of intrafraction prostate motion were anteriorly and superiorly. The mean magnitude of shifts (+/-SD) was 0.01 +/- 0.4 mm, 0.2 +/- 1.3 mm, and 0.1 +/- 1.0 mm in the left, anterior, and superior directions, respectively. The maximal range of motion occurred in the AP dimension, from 6.8 mm anteriorly to 4.6 mm posteriorly. The percentage of treatments during which prostate motion was judged to be 5 mm. The extent of intrafraction motion was much smaller than that of interfraction motion. Linear regression analysis showed very little correlation between the two types of motion (r = 0.014, 0.029, and 0.191, respectively) in the RL, AP, and SI directions. CONCLUSION: Using an ultrasound-based system, intrafraction prostate motion occurred predominantly in the anterior and superior directions, but was clinically insignificant. Intrafraction motion was much smaller than interfraction motion, and the two types of movement did not correlate.  相似文献   

4.
PURPOSE: To evaluate the influence of a dietary protocol on cone beam computed tomography (CBCT) image quality, which is an indirect indicator for short-term (intrafraction) prostate motion, and on interfraction motion. Image quality is affected by motion (e.g., moving gas) during imaging and influences the performance of automatic prostate localization on CBCT scans. METHODS AND MATERIALS: Twenty-six patients (336 CBCT scans) followed the dietary protocol and 23 patients (240 CBCT scans) did not. Prostates were automatically localized by using three dimensional (3D) gray-value registration (GR). Feces and (moving) gas occurrence in the CBCT scans, the success rate of 3D-GR, and the statistics of prostate motion data were assessed. RESULTS: Feces, gas, and moving gas significantly decreased from 55%, 61%, and 43% of scans in the nondiet group to 31%, 47%, and 28% in the diet group (all p < 0.001). Since there is a known relation between gas and short-term prostate motion, intrafraction prostate motion probably also decreased. The success rate of 3D-GR improved from 83% to 94% (p < 0.001). A decrease in random interfraction prostate motion also was found, which was not significant after Bonferroni's correction. Significant deviations from planning CT position for rotations around the left-right axis were found in both groups. CONCLUSIONS: The dietary protocol significantly decreased the incidence of feces and (moving) gas. As a result, CBCT image quality and the success rate of 3D-GR significantly increased. A trend exists that random interfraction prostate motion decreases. Using a dietary protocol therefore is advisable, also without CBCT-based image guidance.  相似文献   

5.
Radiotherapy of mobile tumors   总被引:1,自引:0,他引:1  
In this overview, we discuss some major issues related to the management of mobile tumors and gating in radiotherapy. For most types of organ motion, there are both interfraction and intrafraction components. For respiratory motion, the magnitudes of these 2 components can be comparable and therefore both should be handled carefully. The motion artifacts in computed tomography (CT) simulation are discussed and the 4-dimensional CT scan technique is recommended for treatment simulation of patients with mobile tumors. There are various methods for handling organ motion in treatment delivery. Caution should be exercised when using patient-specific motion information for treatment planning because motion characteristics may vary from the treatment simulation time to the treatment delivery sessions. Respiratory gating is potentially accurate, easy to implement, and may be widely adopted in clinical practice in the near future, if existing technical problems can be resolved.  相似文献   

6.
Purpose: To evaluate the intrafraction and interfraction reproducibility of liver immobilization using active breathing control (ABC).

Methods and Materials: Patients with unresectable intrahepatic tumors who could comfortably hold their breath for at least 20 s were treated with focal liver radiation using ABC for liver immobilization. Fluoroscopy was used to measure any potential motion during ABC breath holds. Preceding each radiotherapy fraction, with the patient setup in the nominal treatment position using ABC, orthogonal radiographs were taken using room-mounted diagnostic X-ray tubes and a digital imager. The radiographs were compared to reference images using a 2D alignment tool. The treatment table was moved to produce acceptable setup, and repeat orthogonal verification images were obtained. The positions of the diaphragm and the liver (assessed by localization of implanted radiopaque intra-arterial microcoils) relative to the skeleton were subsequently analyzed. The intrafraction reproducibility (from repeat radiographs obtained within the time period of one fraction before treatment) and interfraction reproducibility (from comparisons of the first radiograph for each treatment with a reference radiograph) of the diaphragm and the hepatic microcoil positions relative to the skeleton with repeat breath holds using ABC were then measured. Caudal-cranial (CC), anterior-posterior (AP), and medial-lateral (ML) reproducibility of the hepatic microcoils relative to the skeleton were also determined from three-dimensional alignment of repeat CT scans obtained in the treatment position.

Results: A total of 262 fractions of radiation were delivered using ABC breath holds in 8 patients. No motion of the diaphragm or hepatic microcoils was observed on fluoroscopy during ABC breath holds. From analyses of 158 sets of positioning radiographs, the average intrafraction CC reproducibility (σ) of the diaphragm and hepatic microcoil position relative to the skeleton using ABC repeat breath holds was 2.5 mm (range 1.8–3.7 mm) and 2.3 mm (range 1.2–3.7 mm) respectively. However, based on 262 sets of positioning radiographs, the average interfraction CC reproducibility (σ) of the diaphragm and hepatic microcoils was 4.4 mm (range 3.0–6.1 mm) and 4.3 mm (range 3.1–5.7 mm), indicating a change of diaphragm and microcoil position relative to the skeleton over the course of treatment with repeat breath holds at the same phase of the respiratory cycle. The average population absolute intrafraction CC offset in diaphragm and microcoil position relative to skeleton was 2.4 mm and 2.1 mm respectively; the average absolute interfraction CC offset was 5.2 mm. Analyses of repeat CT scans demonstrated that the average intrafraction excursion of the hepatic microcoils relative to the skeleton in the CC, AP, and ML directions was 1.9 mm, 0.6 mm, and 0.6 mm respectively and the average interfraction CC, AP, and ML excursion of the hepatic microcoils was 6.6 mm, 3.2 mm, and 3.3 mm respectively.

Conclusion: Radiotherapy using ABC for patients with intrahepatic cancer is feasible, with good intrafraction reproducibility of liver position using ABC. However, the interfraction reproducibility of organ position with ABC suggests the need for daily on-line imaging and repositioning if treatment margins smaller than those required for free breathing are a goal.  相似文献   


7.
PURPOSE: The aim of this study was to compare setup accuracy of NovalisBody stereoscopic X-ray positioning using implanted markers in the prostate vs. bony structures in patients treated with dynamic conformal arc radiotherapy for prostate cancer. METHODS AND MATERIALS: Random and systematic setup errors (RE and SE) of the isocenter with regard to the center of gravity of three fiducial markers were measured by means of orthogonal verification films in 120 treatment sessions in 12 patients. Positioning was performed using NovalisBody semiautomated marker fusion. The results were compared with a control group of 261 measurements in 15 patients who were positioned with NovalisBody automated bone fusion. In addition, interfraction and intrafraction prostate motion was registered in the patients with implanted markers. RESULTS: Marker-based X-ray positioning resulted in a reduction of RE as well as SE in the anteroposterior, craniocaudal, and left-right directions compared with those in the control group. The interfraction prostate displacements with regard to the bony pelvis that could be avoided by marker positioning ranged between 1.6 and 2.8 mm for RE and between 1.3 and 4.3 mm for SE. Intrafraction random and systematic prostate movements ranged between 1.4 and 2.4 mm and between 0.8 and 1.3 mm, respectively. CONCLUSION: The problem of interfraction prostate motion can be solved by using implanted markers. In addition, the NovalisBody X-ray system performs more accurately with markers compared with bone fusion. Intrafraction organ motion has become the limiting factor for margin reduction around the clinical target volume.  相似文献   

8.
BACKGROUND AND PURPOSE: This study aimed at quantifying the breathing variations among lung cancer patients over full courses of fractionated radiotherapy. The intention was to relate these variations to the margins assigned to lung tumours, to account for respiratory motion, in fractionated radiotherapy. MATERIALS AND METHODS: Eleven lung cancer patients were included in the study. The patients' chest wall motions were monitored as a surrogate measure for breathing motion during each fraction of radiotherapy by use of an external optical marker. The exhale level variations were evaluated with respect to exhale points and fraction-baseline, defined for intra- and interfraction variations respectively. The breathing amplitude was evaluated as breathing cycle amplitudes and fraction-max-amplitudes defined for intra- and interfraction breathing, respectively. RESULTS: The breathing variations over a full treatment course, including both intra- and interfraction variations, were 15.2mm (median over the patient population), range 5.5-26.7mm, with the variations in exhale level as the major contributing factor. The median interfraction span in exhale level was 14.8mm, whereas the median fraction-max-amplitude was 6.1mm (median of patient individual SD 1.4). The median intrafraction span in exhale level was 1.6mm, and the median breathing cycle amplitude was 4.0mm (median of patient individual SD 1.4). CONCLUSIONS: The variations in externally measured exhale levels are larger than variations in breathing amplitude. The interfraction variations in exhale level are in general are up to 10 times larger than intrafraction variations. Margins to account for respiratory motion cannot safely be based on one planning session, especially not if relying on measuring external marker motion. Margins for lung tumours should include interfraction variations in breathing.  相似文献   

9.
PURPOSE: To measure the intrabreath-hold liver motion and the intrafraction and interfraction reproducibility of liver position relative to vertebral bodies using an active breathing coordinator (ABC) in patients with unresectable liver cancer treated with hypofractionated stereotactic body radiation therapy (SBRT). METHODS: Tolerability of ABC and organ motion during ABC was assessed using kV fluoroscopy in 34 patients. For patients treated with ABC, repeat breath-hold CT scans in the ABC breath-hold position were acquired at simulation to estimate the volumetric intrafraction reproducibility of the liver relative to the vertebral bodies. In addition, preceding each radiation therapy fraction, with the liver immobilized using ABC, repeat anteroposterior (AP) megavoltage verification images were obtained. Off-line alignments were completed to determine intrafraction reproducibility (from repeat images obtained before one treatment) and interfraction reproducibility (from comparisons of the final image for each fraction with the AP) of diaphragm position relative to vertebral bodies. For each image set, the vertebral bodies were aligned, and the resultant craniocaudal (CC) offset in diaphragm position was measured. Liver position during ABC was also evaluated from kV fluoroscopy acquired at the time of simulation, kV fluoroscopy at the time of treatment, and from MV beam's-eye view movie loops acquired during treatment. RESULTS: Twenty-one of 34 patients were screened to be suitable for ABC. The average free breathing range of these patients was 13 mm (range, 5-1 mm). Fluoroscopy revealed that the average maximal diaphragm motion during ABC breath-hold was 1.4 mm (range, 0-3.4 mm). The MV treatment movie loops confirmed diaphragm stability during treatment. For a measure of intrafraction reproducibility, an analysis of 36 repeat ABC computed tomography (CT) scans in 14 patients was conducted. The average mean difference in the liver surface position was -0.9 mm, -0.5 mm, and 0.2 mm in the CC, AP, and medial-lateral (ML) directions, with a standard deviation of 1.5 mm, 1.5 mm, and 1.5 mm, respectively. Ninety-five percent of the liver surface had an absolute differences in position between repeat ABC CT scans of less than 4.1 mm, 3.3 mm, and 3.3 mm in the CC, AP, and ML directions, respectively. Analysis of 257 MV AP images from patients treated using ABC revealed an average intrafraction CC reproducibility (sigma) of diaphragm relative to vertebral bodies of 1.5 mm (range, 0.6-3.9 mm). The average interfraction CC reproducibility (sigma) was 3.4 mm (range, 1.5-7.9 mm), indicating less day-to-day reproducibility of diaphragm position relative to vertebral bodies. The average absolute intra and interfraction CC offset in diaphragm position relative to vertebral bodies was 1.7 and 3.7 mm, respectively, with 86% of intrafraction and 54% of interfraction absolute offsets 3.0 mm or less. CONCLUSIONS: Intrafraction reproducibility of liver position using ABC is good in the majority of screened patients. However, interfraction reproducibility is worse, suggesting a need for image guidance.  相似文献   

10.
4-dimensional computed tomography imaging and treatment planning   总被引:16,自引:0,他引:16  
In the era of conformal therapy and intensity-modulated therapy, there is an increased desire to raise tumor dose to facilitate improved survival and decrease normal tissue dose to reduce treatment-related complications. Setup accuracy and internal motion limit our ability to reduce margins. Internal motion has both interfraction and intrafraction components, although only the intrafraction component will be addressed here. Intrafraction motion is significant for lung, liver, and pancreatic radiotherapy and to a lesser extent breast and prostate radiotherapy. A method to explicitly account for intrafraction motion is to temporally adjust the treatment beam based on the tumor position with time such that the motion of the radiation beam is synchronized with the tumor motion. This addition of time into the 3-dimensional treatment process is termed 4-dimensional (4D) radiotherapy. Four-dimensional radiotherapy may allow safe clinical target volume-planning target volume margin reduction to achieve the goals of raised tumor dose and decreased normal tissue dose. This article discusses methodology for 4D CT imaging and 4D treatment planning, with some comments on 4D radiation delivery.  相似文献   

11.
PURPOSE: To validate a correlation coefficient template-matching algorithm applied to the supervised automated quantification of abdominal-pelvic organ motion captured on time-resolved magnetic resonance imaging. METHODS AND MATERIALS: Magnetic resonance images of 21 patients across four anatomic sites were analyzed. Representative anatomic points of interest were chosen as surrogates for organ motion. The point of interest displacements across each image frame relative to baseline were quantified manually and through the use of a template-matching software tool, termed "Motiontrack." Automated and manually acquired displacement measures, as well as the standard deviation of intrafraction motion, were compared for each image frame and for each patient. RESULTS: Discrepancies between the automated and manual displacements of > or =2 mm were uncommon, ranging in frequency of 0-9.7% (liver and prostate, respectively). The standard deviations of intrafraction motion measured with each method correlated highly (r = 0.99). Considerable interpatient variability in organ motion was demonstrated by a wide range of standard deviations in the liver (1.4-7.5 mm), uterus (1.1-8.4 mm), and prostate gland (0.8-2.7 mm). The automated algorithm performed successfully in all patients but 1 and substantially improved efficiency compared with manual quantification techniques (5 min vs. 60-90 min). CONCLUSION: Supervised automated quantification of organ motion captured on magnetic resonance imaging using a correlation coefficient template-matching algorithm was efficient, accurate, and may play an important role in off-line adaptive approaches to intrafraction motion management.  相似文献   

12.
The aim of this study was to assess the set-up uncertainties and the possible CTV-PTV margin reduction when adopting daily IGRT. Further, to identify any intrafraction time trends in the prostate movements to ensure the margin reduction gained from IGRT. Fifteen prostate cancer patients treated with IMRT using daily IG of three implanted fiducial markers were included. The interfraction uncertainties were assessed by statistically evaluating the daily prostate marker displacement. The intrafraction uncertainties were represented by the difference in prostate marker displacement before and after beam delivery. To evaluate any intrafraction time trends, the data points were divided into two groups with respect to time duration and statistically analysed. This study confirmed that daily IG considerably reduces the set-up uncertainties. Our results implied that if IGRT is performed on a daily basis, both systematic and random set-up errors will be reduced to a minimum, leading to a required set-up margin of only 1.5 mm. Results from measurements of intrafraction motions in time durations ranging from 2 to 27 min, indicated that a margin enlargement of 1 mm was required to account for the intrafraction uncertainties. The results did not suggest any significant time trends in the intrafraction uncertainties.  相似文献   

13.
PURPOSE: To quantify prostate motion during a radiation therapy treatment using cine-magnetic resonance imaging (cine-MRI) for time frames comparable to that expected in an image-guided radiation therapy treatment session (20-30 min). MATERIALS AND METHODS: Six patients undergoing radiation therapy for prostate cancer were imaged on 3 days, over the course of therapy (Weeks 1, 3, and 5). Four hundred images were acquired during the 1-h MRI session in 3 sagittal planes through the prostate at 6-s intervals. Eleven anatomic points of interest (POIs) have been used to characterize prostate/bony pelvis/abdominal wall displacement. Motion traces and standard deviation for each of the 11 POIs have been determined. The probability of displacement over time has also been calculated. RESULTS: Patients were divided into 2 groups according to rectal filling status: full vs. empty rectum. The displacement of POIs (standard deviation) ranged from 0.98 to 1.72 mm for the full-rectum group and from 0.68 to 1.04 mm for the empty-rectum group. The low standard deviations in position (2 mm or less) would suggest that these excursions have a low frequency of occurrence. The most sensitive prostate POI to rectal wall motion was the mid-posterior with a standard deviation of 1.72 mm in the full-rectum group vs. 0.79 mm in the empty-rectum group (p = 0.0001). This POI has a 10% probability of moving more than 3 mm in a time frame of approximately 1 min if the rectum is full vs. approximately 20 min if the rectum is empty. CONCLUSION: Motion of the prostate and seminal vesicles during a time frame similar to a standard treatment session is reduced compared to that reported in interfraction studies. The most significant predictor for intrafraction prostate motion is the status of rectal filling. A prostate displacement of <3 mm (90%) can be expected for the 20 min after the moment of initial imaging for patients with an empty rectum. This is not the case for patients presenting with full rectum. The determination of appropriate intrafraction margins in radiation therapy to accommodate the time-dependent uncertainty in positional targeting is a topic of ongoing investigations for the on-line image guidance model.  相似文献   

14.
PURPOSE: To investigate the effect of an endorectal balloon (ERB) and an off-line correction protocol on the day-to-day, interfraction prostate gland motion, in patients receiving external beam radiotherapy for prostate cancer. METHODS AND MATERIALS: In 22 patients, irradiated with an ERB in situ (ERB group) and in 30 patients without an ERB (No-ERB group), prostate displacements were measured daily in three orthogonal directions with portal images. Implanted gold markers and an off-line electronic portal imaging correction protocol were used for prostate position verification and correction. Movie loops were analyzed to evaluate prostate motion and rectal filling variations. RESULTS: The off-line correction protocol reduced the systematic prostate displacements, equally for the ERB and No-ERB group, to 1.3-1.8 mm (1 SD). The mean 3D displacement was reduced to 2.8 mm and 2.4 mm for the ERB and No-ERB group, respectively. The random interfraction displacements, relative to the treatment isocenter, were not reduced by the ERB and remained nearly unchanged in all three directions: 3.1 mm (1 SD) left-right, 2.6 mm (1 SD) superior-inferior, and 4.7 mm (1 SD) for the anterior-posterior direction. These day-to-day prostate position variations can be explained by the presence of gas and stool beside the ERB. CONCLUSIONS: The off-line corrections on the fiducial markers are effective in reducing the systematic prostate displacements. The investigated ERB does not reduce the interfraction prostate motion. Although the overall mean displacement is low, the day-to-day interfraction motion, especially in anterior-posterior direction, remains high compared with the systematic displacements.  相似文献   

15.
PURPOSE: To evaluate an online image-guidance strategy for conformal treatment of prostate cancer and to estimate margin-reduction benefits. METHODS AND MATERIALS: Twenty-eight patients with at least 16 helical computed tomography scans were each used in this study. Two prostate soft-tissue registration methods, including sagittal rotation, were evaluated. Setup errors and rigid organ motion were corrected online; non-rigid and intrafraction motion were included in offline analysis. Various clinical target volume-planning target volume (CTV-PTV) margins were applied. Geometrical evaluations included analyses of isocenter shifts and rotations and overlap index. Dosimetric evaluations included minimum dose and equivalent uniform dose (EUD) for prostate and gEUD for rectum. RESULTS: Average isocenter shift and rotation were (dX,dY,dZ,theta) = (0.0 +/- 0.7,-1.1 +/- 4.0,-0.1 +/- 2.5,0.7 degrees +/- 2.0 degrees ) mm. Prostate motion in anterior-posterior (AP) direction was significantly higher than superior-inferior and left-right (LR) directions. This observation was confirmed by isocenter shift in perspectives AP (1.8 +/- 1.8 mm) and RL (3.7 +/- 3.0 mm). Organ motion degrades target coverage and reduces doses to rectum. If 2% dose reduction on prostate D(99) is allowed for 90% patients, then minimum 3 mm margins are necessary with ideal image registration. CONCLUSIONS: Significant margin reduction can be achieved through online image guidance. Certain margins are still required for nonrigid and intrafraction motion. To further reduce margin, a strategy that combines online geometric intervention and offline dose replanning is necessary.  相似文献   

16.
PURPOSE: To analyze characteristics of intrafraction prostate motion, monitored using the Calypso system, and investigate dosimetric consequences of the motion for different clinical target volume (CTV) to planning target volume (PTV) margins. METHODS AND MATERIALS: Motion characteristics were analyzed for 1,267 tracking sessions and 35 patients. Using prostate-PTV margins of 0, 1, 2, 3, and 5 mm, dose metrics for the prostate gland, bladder, and rectum were evaluated for scenarios including patient population, individual patients showing the greatest motion during the course of treatment, and the individual session with the largest overall movement. Composite dose distributions incorporating motion blurring were calculated by convolving static intensity-modulated radiotherapy plans with corresponding motion probability functions. RESULTS: For prostate-PTV margins of 2 mm or greater, intrafraction motion did not compromise prostate dose coverage for either the patient population or individual patients. For the patient showing the largest overall movement, the prostate equivalent uniform dose was reduced by only 17.4 cGy (0.23%), and the minimum prostate dose remained greater than 95% of the nominal dose. For margins less than 2 mm, the prostate dose-volume histogram in the same patient was slightly compromised, and the equivalent uniform dose was reduced by 38.5 cGy (0.51%). Sparing of the bladder and rectum was improved substantially by reducing margins. CONCLUSIONS: Although significant motion can be observed during individual fractions, the dosimetric consequences are insignificant during a typical course of radiotherapy (30-40 fractions) with CTV-PTV margins of 2 mm or greater provided that the Calypso system is applied for pretreatment localization. Further reduction of the margin is possible if intrafraction realignment is performed.  相似文献   

17.
AimsIt has been suggested that large rectal filling is associated with an increased risk of prostate motion in radiotherapy. The aim of the present study was to determine if there is a correlation between rectal distension on planning computed tomography and the intrafraction and interfraction stability of the prostate gland during a course of radical radiotherapy for prostate cancer if a protocol was used to rescan patients with excessive rectal diameter during planning.Materials and methodsThe computed tomography planning scans of 89 patients with adenocarcinoma of the prostate treated with conformal radiotherapy were reviewed. All patients had three gold seed fiducial markers implanted into the prostate before planning computed tomography. About one in five patients had repeat computed tomography because their rectum was judged to be too large at the time of the first planning computed tomography. Rectal distension was assessed on planning computed tomography using outlines following European Organization for Research and Treatment of Cancer guidelines by measuring the rectal volume, the average cross-sectional area and the mean anterior–posterior diameter of the rectum. Daily kV images were obtained before and after treatment delivery to determine positional matching of the fiducial markers in the superior–inferior, anterior–posterior and right–left dimensions.ResultsIn total, 2860 pre- and post-treatment daily kV image pairs were obtained of 89 patients (average 32.1 image pairs per patient). The median rectal cross-sectional area was 7.3 cm2 (range 2.8–17.1), the median rectal volume was 54.8 cm3 (range 20.9–128.2), and the median anterior–posterior rectal diameter was 3.03 cm (range 1.58–8.30). Unifactor linear regression models showed no statistically significant relationship between intra- and interfraction prostate stability and rectal volume on planning computed tomography.ConclusionsNo statistically significant relationship between rectal distension on planning computed tomography and the intra- and interfraction stability of the prostate gland was identified if patients with a large rectal volume were rescanned for planning.  相似文献   

18.
PURPOSE: To evaluate the effectiveness of a commercial system(1) in reducing respiration-induced treatment uncertainty by gating the radiation delivery. METHODS AND MATERIALS: The gating system considered here measures respiration from the position of a reflective marker on the patient's chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device. RESULTS: The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8 +/- 1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6 +/- 1.7 mm. With no gating, this intrafraction excursion became 6.9 +/- 2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0 +/- 3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was due to patient setup errors rather than to respiratory motion. CONCLUSIONS: The gating system evaluated here reduces the intra- and interfraction variability of anatomy due to respiratory motion. However, systematic displacements were observed in some cases between the location of an anatomic feature at simulation and its location during treatment. Frequent monitoring is advisable with film or portal imaging.  相似文献   

19.
BACKGROUND: The effectiveness of ABC has been traditionally measured as the reduction in internal margin (IM) within the planning target volume (PTV). Not to overestimate the benefit of ABC, the effect of patient movement during treatment also needs to be taken into account. We determined the IM and set-up error with ABC and the effect on physical lung parameters compared to standard margins used with free breathing. We also assessed interfraction oesophageal movement to determine a planning organ at risk volume (PRV). MATERIALS AND METHODS: Two sequential studies were performed using ABC in NSCLC patients suitable for radical radiotherapy (RT). Twelve out of 14 patients in Study 1 had tumours visible fluoroscopically and had intrafraction tumour movement assessed with and without ABC. Sixteen patients were recruited to Study 2 and had interfraction tumour movement measured using ABC in a moderate deep inspiration breath-hold, of these 7 patients also had interfraction oesophageal movement recorded. Interfraction movement was assessed by CT scan prior to and in the middle and final week of RT. Displacement of the tumour centre of mass and oesophageal borders relative to the first scan provided a measure of movement. Set-up error was measured in 9 patients treated with an in-house lung board adapted for the ABC device. Combining movement and set-up errors determined PTV and PRV margins with ABC. The effect of ABC on mean lung dose (MLD), lung V20 and V13 was calculated. RESULTS: ABC in a moderate deep inspiration breath-hold was tolerated in 25 out of 30 patients (83%) in Study 1 and 2. The random contribution of periodic tumour motion was reduced by 90% in the y direction with ABC compared to free-breathing. The magnitude of motion reduction was less in the x and z direction. Combining the systematic and random set-up error in quadrature with the systematic and random intrafraction and interfraction tumour variations with ABC results in a PTV margin of 8.3mm in the x direction, 12.0mm in the y direction and 9.8mm in the z direction. There was a relative mean reduction in MLD, lung V20 and V13 of 25%, 21% and 18% with the ABC PTV compared to a free-breathing PTV. Oesophageal movement combined with set-up error resulted in an isotropic PRV of 4.7 mm. CONCLUSIONS: The reduction in PTV size with ABC resulted in an 18-25% relative reduction in physical lung parameters. PTV margin reduction has the potential to spare normal lung and allow dose-escalation if coupled with image-guided RT. The oesophageal PRV needs to be considered when irradiating central disease and is of increasing importance with altered RT fractionation and concomitant chemoradiation schedules. Further reductions in PTV and PRV may be possible if patient set-up error was minimised, confirming that attention to patient immobilisation is as important as attempts to control tumour motion.  相似文献   

20.
PURPOSE: To analyze the intrafraction motion of the prostate during external-beam radiation therapy of patients with prostate cancer. METHODS AND MATERIALS: Between August 2001-December 2005, 427 patients with Stage T3Nx/0Mx/0 prostate carcinoma received intensity-modulated radiation therapy treatment combined with position verification with fiducial gold markers. For a total of 11,426 treatment fractions (average, 27 per patient), portal images were taken of the first segment of all five beams. The irradiation time of the technique varied between 5-7 min. From these data, the location of gold markers could be established within every treatment beam under the assumption of minimal marker movement. RESULTS: In 66% of treatment fractions, a motion outside a range of 2 mm was observed, with 28% outside a range of 3 mm. The intrafraction marker movements showed that motion directions were often reversed. However, the effect was small. Even with perfect online position-correction at the start of irradiation, intrafraction motion caused position uncertainty, but systematic errors (Sigma) were limited to <0.6 mm, and random errors (sigma) to <0.9 mm. This would result in a lower limit of 2 mm for margins, in the absence of any other uncertainties. CONCLUSIONS: Intrafraction motion of the prostate occurs frequently during external-beam irradiation on a time scale of 5-7 min. Margins of 2 mm account for these intrafraction motions. However, larger margins are required in practice to accommodate other uncertainties in the treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号