首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The magnitude of the blood oxygenation level-dependent (BOLD) signal depends on cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2). Thus, it is difficult to separate CMRO2 changes from CBF and CBV changes. To detect the BOLD signal changes induced only by CMRO2 responses without significant evoked CBF and CBV changes, BOLD and CBV functional magnetic resonance imaging (fMRI) responses to visual stimulation were measured under normal and hypotension conditions in isoflurane-anesthetized cats at 4.7 T. When the mean arterial blood pressure (MABP) decreased from 89+/-10 to 50+/-1 mm Hg (mean+/-standard deviation, n=5) by infusion of vasodilator sodium nitroprusside, baseline CBV in the visual cortex increased by 28.4%+/-8.3%. The neural activity-evoked CBV increase in the visual cortex was 10.8%+/-3.9% at normal MABP, but was negligible at hypotension. Positive BOLD changes of +1.8%+/-0.5% (gradient echo time=25 ms) at normal MABP condition became prolonged negative changes of -1.2%+/-0.3% at hypotension. The negative BOLD response at hypotension starts approximately 1 sec earlier than positive BOLD response, but similar to CBV change at normal MABP condition. Our finding shows that the negative BOLD signals in an absence of CBV changes are indicative of an increase in CMRO2. The vasodilator-induced hypotension model simplifies the physiological source of the BOLD fMRI signals, providing an insight into spatial and temporal CMRO2 changes.  相似文献   

2.
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.  相似文献   

3.
The hemodynamic response to neural activity consists of changes in blood flow, blood volume and oxygen metabolism. Changes in the vascular state after sensory stimulation have different spatial and temporal characteristics in the brain. This has been shown using imaging techniques, such as BOLD functional magnetic resonance imaging (fMRI), which monitor vascular changes once the stimulus is turned on, and the eventual return to baseline levels, once the stimulus is turned off. The BOLD fMRI signal during sensory stimulation has been well characterized and modeled in terms of the spatial and temporal characteristics of the vascular response. However, the return of the signals to baseline levels after sensory stimulation is not as well characterized. During this period, a poststimulus undershoot in the BOLD signal is observed. This poststimulus undershoot has been modeled and investigated to characterize the physiological mechanisms (cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral oxygen consumption) associated with the response. However, the data in the literature, which lack any spatially dependent information, appear to be contradictory in terms of the mechanisms associated with this poststimulus response. With a high spatial resolution cat model at 9.4 T, we show that CBV changes in the tissue persist once the stimulus is turned off, while CBV changes in the surface vessels quickly return to baseline levels, despite a concurrent undershoot in the BOLD signal in both the tissue and surface vessel areas. In addition, the BOLD data alone indicate that different physiological mechanisms regulate the poststimulus response in the tissue versus the surface vessel regions.  相似文献   

4.
Recent reports showed noxious forepaw stimulation in rats evoked an unexpected sustained decrease in cerebral blood volume (CBV) in the bilateral striatum, whereas increases in spike activity and Fos-immunoreactive cells were observed. This study aimed to further evaluate the hemodynamic and metabolic needs in this model and the sources of negative functional magnetic resonance imaging (fMRI) signals by measuring blood oxygenation-level-dependent (BOLD), cerebral-blood-flow (CBF), CBV, and oxygen-consumption (i.e., cerebral metabolic rate of oxygen (CMRO2)) changes using an 11.7-T MRI scanner, and glucose-consumption (i.e., cerebral metabolic rate of glucose (CMRglc)) changes using micro-positron emission tomography. In the contralateral somatosensory cortex, BOLD, CBF, CBV, CMRO2 (n=7, P<0.05), and CMRglc (n=5, P<0.05) increased. In contrast, in the bilateral striatum, BOLD, CBF, and CBV decreased (P<0.05), CMRO2 decreased slightly, although not significantly from baseline, and CMRglc was not statistically significant from baseline (P>0.05). These multimodal functional imaging findings corroborate the unexpected negative hemodynamic changes in the striatum during noxious forepaw stimulation, and support the hypothesis that striatal hemodynamic response is dominated by neurotransmitter-mediated vasoconstriction, overriding the stimulus-evoked fMRI signal increases commonly accompany elevated neuronal activity. Multimodal functional imaging approach offers a means to probe the unique attributes of the striatum, providing novel insights into the neurovascular coupling in the striatum. These findings may have strong implications in fMRI studies of pain.  相似文献   

5.
Quantifying both arterial cerebral blood volume (CBV(a)) changes and total cerebral blood volume (CBV(t)) changes during neural activation can provide critical information about vascular control mechanisms, and help to identify the origins of neurovascular responses in conventional blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI). Cerebral blood flow (CBF), CBV(a), and CBV(t) were quantified by MRI at 9.4 T in isoflurane-anesthetized rats during 15-s duration forepaw stimulation. Cerebral blood flow and CBV(a) were simultaneously determined by modulation of tissue and vessel signals using arterial spin labeling, while CBV(t) was measured with a susceptibility-based contrast agent. Baseline versus stimulation values in a region centered over the somatosensory cortex were: CBF=150+/-18 versus 182+/-20 mL/100 g/min, CBV(a)=0.83+/-0.21 versus 1.17+/-0.30 mL/100 g, CBV(t)=3.10+/-0.55 versus 3.41+/-0.61 mL/100 g, and CBV(a)/CBV(t)=0.27+/-0.05 versus 0.34+/-0.06 (n=7, mean+/-s.d.). Neural activity-induced absolute changes in CBV(a) and CBV(t) are statistically equivalent and independent of the spatial extent of regional analysis. Under our conditions, increased CBV(t) during neural activation originates mainly from arterial rather than venous blood volume changes, and therefore a critical implication is that venous blood volume changes may be negligible in BOLD fMRI.  相似文献   

6.
One of the characteristics of the blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) response to functional challenges of the brain is the poststimulation undershoot, which has been suggested to originate from a delayed recovery of either cerebral blood volume (CBV) or cerebral metabolic rate of oxygen to baseline. Using bolus-tracking MRI in humans, we recently showed that relative CBV rapidly normalizes after the end of stimulation. As this observation contradicts at least part of the blood-pool contrast agent studies performed in animals, we reinvestigated the CBV contribution by dynamic T1-weighted three-dimensional MRI (8 seconds temporal resolution) and Vasovist at 3 T (12 subjects). Initially, we determined the time constants of individual BOLD responses. After injection of Vasovist, CBV-related T1-weighted signal changes revealed a signal increase during visual stimulation (1.7%±0.4%), but no change relative to baseline in the poststimulation phase (0.2%±0.3%). This finding renders the specific nature of the contrast agent unlikely to be responsible for the discrepancy between human and animal studies. With the assumption of normalized cerebral blood flow after stimulus cessation, a normalized CBV lends support to the idea that the BOLD MRI undershoot reflects a prolonged elevation of oxidative metabolism.  相似文献   

7.
Alterations within cerebral hemodynamics are the intrinsic signal source for a wide variety of neuroimaging techniques. Stimulation of specific functions leads due to neurovascular coupling, to changes in regional cerebral blood flow, oxygenation and volume. In this study, we investigated the temporal characteristics of cortical hemodynamic responses following electrical, tactile, visual, and speech activation for different stimulation paradigms using Intraoperative Optical Imaging (IOI). Image datasets from a total of 22 patients that underwent surgical resection of brain tumors were evaluated. The measured reflectance changes at different light wavelength bands, representing alterations in regional cortical blood volume (CBV), and deoxyhemoglobin (HbR) concentration, were assessed by using Fourier‐based evaluation methods. We found a decrease of CBV connected to an increase of HbR within the contralateral primary sensory cortex (SI) in patients that were prolonged (30 s/15 s) electrically stimulated. Additionally, we found differences in amplitude as well as localization of activated areas for different stimulation patterns. Contrary to electrical stimulation, prolonged tactile as well as prolonged visual stimulation are provoking increases in CBV within the corresponding activated areas (SI, visual cortex). The processing of the acquired data from awake patients performing speech tasks reveals areas with increased, as well as areas with decreased CBV. The results lead us to the conclusion, that the CBV decreases in connection with HbR increases in SI are associated to processing of nociceptive stimuli and that stimulation type, as well as paradigm have a nonnegligible impact on the temporal characteristics of the following hemodynamic response.  相似文献   

8.
Previous studies showed noxious unilateral forepaw electrical stimulation surprisingly evoked negative blood-oxygenation-level-dependent (BOLD), cerebral blood flow (CBF), and cerebral blood volume (CBV) fMRI responses in the bilateral striatum whereas the local neuronal spike and c-Fos activities increased. These negative responses are associated with vasoconstriction and appeared to override the increased hemodynamic responses that typically accompanied with increased neural activity. The current study aimed to investigate the role of μ-opioid system in modulating vasoconstriction in the striatum associated with noxious stimulation on a 4.7-Tesla MRI scanner. Specifically, we investigated: i) how morphine (a μ-opioid receptor agonist) affects the vasoconstriction in the bilateral striatum associated with noxious electrical forepaw stimulation in rats, and ii) how naloxone (an opioid receptor antagonist) and eticlopride (a dopamine D(2)/D(3) receptor antagonist) modulates the morphine effects onwards. Injection of morphine enhanced the negative striatal CBV responses to noxious stimulation. Sequential injection of naloxone in the same animals abolished the stimulus-evoked vasoconstriction. In a separate group of animals, injection of eticlopride following morphine also reduced the vasoconstriction. Our findings suggested that noxious stimulation endogenously activated opioid and dopamine receptors in the striatum and thus leading to vasoconstriction.  相似文献   

9.
The hemodynamic mechanism of increase in cerebral blood flow (CBF) during neural activation has not been elucidated in humans. In the current study, changes in both regional CBF and cerebral blood volume (CBV) during visual stimulation in humans were investigated. Cerebral blood flow and CBV were measured by positron emission tomography using H(2)(15)O and (11)CO, respectively, at rest and during 2-Hz and 8-Hz photic flicker stimulation in each of 10 subjects. Changes in CBF in the primary visual cortex were 16% +/- 16% and 68% +/- 20% for the visual stimulation of 2 Hz and 8 Hz, respectively. The changes in CBV were 10% +/- 13% and 21% +/- 5% for 2-Hz and 8-Hz stimulation, respectively. Significant differences between changes in CBF and CBV were observed for visual stimulation of 8 Hz. The relation between CBF and CBV values during rest and visual stimulation was CBV = 0.88CBF(0.30). This indicates that when the increase in CBF during neural activation is great, that increase is caused primarily by the increase in vascular blood velocity rather than by the increase in CBV. This observation is consistent with reported findings obtained during hypercapnia.  相似文献   

10.
Nonlinear temporal dynamics of the cerebral blood flow response   总被引:4,自引:0,他引:4  
The linearity of the cerebral perfusion response relative to stimulus duration is an important consideration in the characterization of the relationship between regional cerebral blood flow (CBF), cerebral metabolism, and the blood oxygenation level dependent (BOLD) signal. It is also a critical component in the design and analysis of functional neuroimaging studies. To study the linearity of the CBF response to different duration stimuli, the perfusion response in primary motor and visual cortices was measured during stimulation using an arterial spin labeling technique with magnetic resonance imaging (MRI) that allows simultaneous measurement of CBF and BOLD changes. In each study, the perfusion response was measured for stimuli lasting 2, 6, and 18 sec. The CBF response was found in general to be nonlinearly related to stimulus duration, although the strength of nonlinearity varied between the motor and visual cortices. In contrast, the BOLD response was found to be strongly nonlinear in both regions studied, in agreement with previous findings. The observed nonlinearities are consistent with a model with a nonlinear step from stimulus to neural activity, a linear step from neural activity to CBF change, and a nonlinear step from CBF change to BOLD signal change.  相似文献   

11.
Functional neuroimaging was used to investigate the effect of cerebral blood flow (CBF) adjustments on the blood oxygenation level dependent (BOLD) signal during visual stimulation. Temporal responses from both oxygenation- and perfusion-sensitized MRI revealed almost identical features during onset and ongoing activation, i.e. an activation-induced signal rise, and a gradual signal decrease during prolonged activation (overshoot). However, the post-stimulus responses exhibited a pronounced BOLD signal drop below prestimulus baseline (undershoot), but a rather rapid normalisation of the related CBF signal. Thus, an activation-induced initial BOLD signal rise and a gradual signal decrease reflect a coarse upregulation of CBF, which is followed by fine-tuning adjustments of flow. Regulations of other involved physiological parameters, including blood volume and oxidative metabolism give rise to a negative post-stimulus BOLD signal response.  相似文献   

12.
To investigate the developmental changes of cerebral blood flow (CBF) and hemodynamic responses to changing neural activity, we used the arterial spin label (ASL) technique to measure resting CBF and simultaneous CBF / blood-oxygen-level dependent (BOLD) signal changes during visual stimulation in 97 typically developing children and young adults (age 13.35 [6.02, 25.25] (median [min, max]) years old at the first time point). The longitudinal study protocol included three MRIs (2.7 ± 0.06 obtained), one year apart, for each participant. Mixed-effect linear and non-linear statistical models were used to analyze age effects on CBF and BOLD signals. Resting CBF decreased exponentially with age (p = 0.0001) throughout the brain, and developmental trajectories differed across brain lobes. The absolute CBF increase in visual cortex during stimulation was constant over the age range, but the fractional CBF change increased with age (p = 0.0001) and the fractional BOLD signal increased with age (p = 0.0001) correspondingly. These findings suggest that the apparent neural hemodynamic coupling in visual cortex does not change after age six years, but age-related BOLD signal changes continue through adolescence primarily due to the changes with age in resting CBF.  相似文献   

13.
Theta burst stimulation (TBS) is a protocol of subthreshold repetitive transcranial magnetic stimulation (rTMS) inducing changes in cortical excitability. From functional imaging studies with conventional subthreshold rTMS protocols, it remains unclear what type of modulation occurs (direction and dependency to neural activity) and whether putative effects are bound to unspecific changes in cerebral perfusion or require a functional challenge. In a within-subjects (n = 17) repeated measurement design including real TBS and a control session without stimulation, we examined neural activation in a choice-reaction task after application of intermittent TBS, a protocol, which enhances cortical excitability over the left motor cortex (M1). Brain activity was monitored by blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging interleaved with measuring regional cerebral blood flow (rCBF) at rest using MR-based perfusion imaging. On a separate day, TMS-induced compound muscle action potentials (cMAPs) amplitude of the right hand was measured after excitatory TBS. Compared to control, a significant decrease in BOLD signal due to right hand motor activity during the choice-reaction task was observed mainly in the stimulated M1 and motor-related remote areas after stimulation. This decrease might represent a facilitating effect, because cMAPs amplitude increased upon TBS compared to control. No changes in rCBF at rest were observed. The data demonstrate that subthreshold intermittent TBS targets both the stimulated cortical area as well as remote areas. The facilitation changing the efficacy of neural signal transmission seems to be reflected by a BOLD signal decrease, whereas the network at rest does not appear to be affected.  相似文献   

14.
The poststimulus blood oxygenation level-dependent (BOLD) undershoot has been attributed to two main plausible origins: delayed vascular compliance based on delayed cerebral blood volume (CBV) recovery and a sustained increased oxygen metabolism after stimulus cessation. To investigate these contributions, multimodal functional magnetic resonance imaging was employed to monitor responses of BOLD, cerebral blood flow (CBF), total CBV, and arterial CBV (CBVa) in human visual cortex after brief breath hold and visual stimulation. In visual experiments, after stimulus cessation, CBVa was restored to baseline in 7.9±3.4 seconds, and CBF and CBV in 14.8±5.0 seconds and 16.1±5.8 seconds, respectively, all significantly faster than BOLD signal recovery after undershoot (28.1±5.5 seconds). During the BOLD undershoot, postarterial CBV (CBVpa, capillaries and venules) was slightly elevated (2.4±1.8%), and cerebral metabolic rate of oxygen (CMRO2) was above baseline (10.6±7.4%). Following breath hold, however, CBF, CBV, CBVa and BOLD signals all returned to baseline in ∼20 seconds. No significant BOLD undershoot, and residual CBVpa dilation were observed, and CMRO2 did not substantially differ from baseline. These data suggest that both delayed CBVpa recovery and enduring increased oxidative metabolism impact the BOLD undershoot. Using a biophysical model, their relative contributions were estimated to be 19.7±15.9% and 78.7±18.6%, respectively.  相似文献   

15.
Reductions in blood oxygenation level dependent (BOLD)-functional magnetic resonance imaging (fMRI) signals below baseline levels have been observed under several conditions as negative activation in task-activation studies or anticorrelation in resting-state experiments. Converging evidence suggests that negative BOLD signals (NBSs) can generally be explained by local reductions in neural activity. Here, we report on NBSs that accompany hemodynamic changes in regions devoid of neural tissue. The NBSs were investigated with high-resolution studies of the visual cortex (VC) at 7 T. Task-activation studies were performed to localize a task-positive area in the VC. During rest, robust negative correlation with the task-positive region was observed in focal regions near the ventricles and dispersed throughout the VC. Both positive and NBSs were dependent on behavioral condition. Comparison with high-resolution structural images showed that negatively correlated regions overlapped with larger pial and ependymal veins near sulcal and ventricular cerebrospinal fluid (CSF). Results from multiecho fMRI showed that NBSs were consistent with increases in local blood volume. These findings confirm theoretical predictions that tie neural activity to blood volume increases, which tend to counteract positive fMRI signal changes associated with increased blood oxygenation. This effect may be more salient in high-resolution studies, in which positive and NBS may be more often spatially distinct.  相似文献   

16.
The blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) method, which is sensitive to vascular paramagnetic deoxyhemoglobin, is dependent on regional values of cerebral metabolic rate of oxygen utilization (CMR(O2)), blood flow (CBF), and volume (CBV). Induced changes in deoxyhemoglobin function as an endogenous contrast agent, which in turn affects the transverse relaxation rates of tissue water that can be measured by gradient-echo and spin-echo sequences in BOLD fMRI. The purpose here was to define the quantitative relation between BOLD signal change and underlying physiologic parameters. To this end, magnetic resonance imaging and spectroscopy methods were used to measure CBF, CMR(O2), CBV, and relaxation rates (with gradient-echo and spin-echo sequences) at 7 Tesla in rat sensorimotor cortex, where cerebral activity was altered pharmacologically within the autoregulatory range. The changes in tissue transverse relaxation rates were negatively and linearly correlated with changes in CBF, CMR(O2), and CBV. The multiparametric measurements revealed that CBF and CMR(O2) are the dominant physiologic parameters that modulate the BOLD fMRI signal, where the ratios of (deltaCMR(O2)/CMR(O2)/(deltaCBF/ CBF) and (deltaCBV/CBV)/(deltaCBF/CBF) were 0.86 +/- 0.02 and 0.03 +/- 0.02, respectively. The calibrated BOLD signals (spatial resolution of 48 microL) from gradient-echo and spin-echo sequences were used to predict changes in CMR(O2) using measured changes in CBF, CBV, and transverse relaxation rates. The excellent agreement between measured and predicted values for changes in CMR(O2) provides experimental support of the current theory of the BOLD phenomenon. In gradient-echo sequences, BOLD contrast is affected by reversible processes such as static inhomogeneities and slow diffusion, whereas in spin-echo sequences these effects are refocused and are mainly altered by extravascular spin diffusion. This study provides steps by which multiparametric MRI measurements can be used to obtain high-spatial resolution CMR(O2) maps.  相似文献   

17.
The blood oxygenation level-dependent (BOLD) contrast mechanism can be modeled as a complex interplay between CBF, cerebral blood volume (CBV), and CMRO2. Positive BOLD signal changes are presumably caused by CBF changes in excess of increases in CMRO2. Because this uncoupling between CBF and CMRO2 may not always be present, the magnitude of BOLD changes may not be a good index of CBF changes. In this study, the relation between BOLD and CBF was investigated further. Continuous arterial spin labeling was combined with a single-shot, multislice echo-planar imaging to enable simultaneous measurements of BOLD and CBF changes in a well-established model of functional brain activation, the electrical forepaw stimulation of alpha-chloralose-anesthetized rats. The paradigm consisted of two 18- to 30-second stimulation periods separated by a 1-minute resting interval. Stimulation parameters were optimized by laser Doppler flowmetry. For the same cross-correlation threshold, the BOLD and CBF active maps were centered within the size of one pixel (470 microm). However, the BOLD map was significantly larger than the CBF map. Measurements taken from 15 rats at 9.4 T using a 10-millisecond echo-time showed 3.7 +/- 1.7% BOLD and 125.67 +/- 81.7% CBF increases in the contralateral somatosensory cortex during the first stimulation, and 2.6 +/- 1.2% BOLD and 79.3 +/- 43.6% CBF increases during the second stimulation. The correlation coefficient between BOLD and CBF changes was 0.89. The overall temporal correlation coefficient between BOLD and CBF time-courses was 0.97. These results show that under the experimental conditions of the current study, the BOLD signal changes follow the changes in CBF.  相似文献   

18.
Takashima I  Kajiwara R  Iijima T 《Neuroreport》2001,12(13):2889-2894
Using intrinsic and voltage-sensitive dye optical imaging methods, somatosensory-evoked neural activity and the consequent metabolic activity were visualized in the barrel cortex at high temporal and spatial resolution. We compared maps of neural and metabolic activity from the perspective of spatial distribution in the cortex. There was good agreement between the two functional maps, if the extent of metabolic activity before a prominent increase in cerebral blood volume (CBV) was assessed. This result indicates that oxygen consumption occurs before CBV changes, in approximately the same cortical area as that in which the preceding neural activity was evoked. This also suggests that the intrinsic signal reflects subthreshold synaptic activity, as well as spiking activity, which is similar to the dye-related signals.  相似文献   

19.
Local changes in cerebral blood flow are thought to match changes in neuronal activity, a phenomenon termed neurovascular coupling. Hypoxia increases global resting cerebral blood flow, but regional cerebral blood flow (rCBF) changes are non-uniform. Hypoxia decreases baseline rCBF to the default mode network (DMN), which could reflect either decreased neuronal activity or altered neurovascular coupling. To distinguish between these hypotheses, we characterized the effects of hypoxia on baseline rCBF, task performance, and the hemodynamic (BOLD) response to task activity. During hypoxia, baseline CBF increased across most of the brain, but decreased in DMN regions. Performance on memory recall and motion detection tasks was not diminished, suggesting task-relevant neuronal activity was unaffected. Hypoxia reversed both positive and negative task-evoked BOLD responses in the DMN, suggesting hypoxia reverses neurovascular coupling in the DMN of healthy adults. The reversal of the BOLD response was specific to the DMN. Hypoxia produced modest increases in activations in the visual attention network (VAN) during the motion detection task, and had no effect on activations in the visual cortex during visual stimulation. This regional specificity may be particularly pertinent to clinical populations characterized by hypoxemia and may enhance understanding of regional specificity in neurodegenerative disease pathology.  相似文献   

20.
Functional magnetic resonance imaging (fMRI) is among the foremost methods for mapping human brain function but provides only an indirect measure of underlying neural activity. Recent findings suggest that the neurophysiological correlates of the fMRI blood oxygenation level-dependent (BOLD) signal might be regionally specific. We examined the neurophysiological correlates of the fMRI BOLD signal in the hippocampus and neocortex, where differences in neural architecture might result in a different relationship between the respective signals. Fifteen human neurosurgical patients (10 female, 5 male) implanted with depth electrodes performed a verbal free recall task while electrophysiological activity was recorded simultaneously from hippocampal and neocortical sites. The same patients subsequently performed a similar version of the task during a later fMRI session. Subsequent memory effects (SMEs) were computed for both imaging modalities as patterns of encoding-related brain activity predictive of later free recall. Linear mixed-effects modeling revealed that the relationship between BOLD and gamma-band SMEs was moderated by the lobar location of the recording site. BOLD and high gamma (70–150 Hz) SMEs positively covaried across much of the neocortex. This relationship was reversed in the hippocampus, where a negative correlation between BOLD and high gamma SMEs was evident. We also observed a negative relationship between BOLD and low gamma (30–70 Hz) SMEs in the medial temporal lobe more broadly. These results suggest that the neurophysiological correlates of the BOLD signal in the hippocampus differ from those observed in the neocortex.SIGNIFICANCE STATEMENT The BOLD signal forms the basis of fMRI but provides only an indirect measure of neural activity. Task-related modulation of BOLD signals are typically equated with changes in gamma-band activity; however, relevant empirical evidence comes largely from the neocortex. We examined neurophysiological correlates of the BOLD signal in the hippocampus, where the differing neural architecture might result in a different relationship between the respective signals. We identified a positive relationship between encoding-related changes in BOLD and gamma-band activity in the frontal and parietal cortices. This effect was reversed in the hippocampus, where BOLD and gamma-band effects negatively covaried. These results suggest regional variability in the transfer function between neural activity and the BOLD signal in the hippocampus and neocortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号