首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systems consolidation is a time‐dependent reorganization process involving neocortical and hippocampal networks underlying memory storage and retrieval. The involvement of the hippocampus during acquisition is well described; however we know much less about the concomitant contribution of cortical activity levels to the formation of stable remote memories. Here, after a reversible pharmacological inhibition of the anterior cingulate cortex (ACC) during the acquisition of a contextual fear conditioning, retrieval of both recent and remote memories were impaired, an effect that was reverted by a single memory reactivation session 48 h after training, through a destabilization‐dependent mechanism interpreted as reconsolidation, that restored the normal course of systems consolidation in order to rescue a remote memory. Next we have shown that the integrity of both the anterior cingulate cortex and the thalamic nucleus reuniens (RE) were required for this reactivation‐induced memory rescue. Because lidocaine infused into the RE inhibited LTP induction in the CA1‐anterior cingulate cortex pathways, it seems that RE is a necessary component of the circuit underlying systems consolidation, mediating communication between dorsal hippocampus and cortical areas. To our notice, this is the first demonstration of the rescue of remote memories disrupted by ACC inhibition during acquisition, via a reconsolidation‐driven mechanism. We have also shown the importance of RE to ensure the interconnection among brain areas that collectively seem to control the natural course of systems consolidation and allow the persistence of relevant emotional engrams. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
The organization of projections from the anterior thalamic nuclei to the cingulate cortex was analyzed in the rat by the anterograde transport of Phaseolus vulgaris-leucoagglutinin. The rostral part of the anteromedial nucleus projects to layers I, V and VI of the anterior cingulate areas 1 and 2, layers I and III of the ventral orbital area, layers I, V and VI of area 29D of the retrosplenial area, and layers I and V of the caudal part of the retrosplenial granular and agranular areas. In contrast, the caudal part of the anteromedial nucleus projects to layer V of the frontal area 2, and layers I and V of the rostral part of the retrosplenial granular and agranular areas. The interanteromedial nucleus projects to layers I, III and V of the frontal area 2, layer V of the agranular insular area, and layers I, V and VI of area 29D. The anteroventral nucleus projects to layers I and IV of the retrosplenial granular area, whereas the anterodorsal nucleus projects to layers I, III and IV of the same area. Projections from the anteroventral and anterodorsal nuclei were, furthermore, organized such that their ventral parts project to the rostral part of the retrosplenial granular area, whereas their dorsal parts project to the more caudal part. The results suggest that the anterior thalamic nuclei project to more widespread areas and laminae of the cingulate cortex than was previously assumed. The projections are organized such that the anteromedial and interanteromedial nuclei project to layer I and the deep layers of the anterior cingulate and retrosplenial cortex, whereas the anteroventral and anterodorsal nuclei project to the superficial layers of the retrosplenial cortex. These thalamocortical projections may play important roles in behavioral learning such as discriminative avoidance behavior.  相似文献   

3.
We investigated whether the expression of the plasticity-associated gene, zif268, was associated with memories retrieved by exposure to a discrete stimulus that had been associated with cocaine, either self-administered or administered noncontingently. In the absence of drug, passive presentation of a cocaine-associated light stimulus induced changes in the expression of zif268 measured by in situ hybridization within a limbic cortical-ventral striatal circuit that was not only regionally selective but related to whether the rats had originally received response-contingent or noncontingent stimulus-drug pairings. In rats that had self-administered drug, the cocaine-conditioned stimulus (CS) increased zif268 expression in neurons of the ventral tegmental area, nucleus accumbens core and shell, and basal nucleus of the amygdala but not hippocampus, prelimbic area of the medial prefrontal cortex or amygdala central nucleus. The same CS that had been associated with cocaine administered noncontingently additionally increased zif268 mRNA levels in area Cg1 of the anterior cingulate cortex, ventral and lateral regions of the orbitofrontal cortex and lateral nucleus of the amygdala. Zif268 induction was related to the predictive relationship between the stimulus and cocaine as no changes were seen in cocaine-experienced rats that had received unpaired light and drug presentations during training. Thus, zif268 expression is increased by appetitively (drug) conditioned stimuli after Pavlovian learning. Zif268 may participate in the molecular mechanisms underlying the reconsolidation or re-encoding of Pavlovian stimulus-drug associations across a distributed limbic cortical-ventral striatal neural network and that may contribute to the basis of the enduring drug-seeking behaviour produced by environmental cues.  相似文献   

4.
Although the retrosplenial granular b cortex (Rgb) is situated in a critical position between the hippocampal formation and the neocortex, surprisingly few studies have examined its connections carefully. The present experiments use both anterograde and retrograde tracing techniques to characterize the connections of Rgb. The main cortical projections from Rgb are to the caudal part of the anterior cingulate cortex, area 18b, retrosplenial granular a cortex (Rga), and postsubiculum, and less dense terminal fields are present in the prelimbic and caudal occipital cortices. The major subcortical projections are to the anterior thalamic nuclei and the rostral pontine nuclei, and very small terminal fields are present in the caudal dorsomedial part of the striatum, the reuniens and reticular nuclei of the thalamus, and the mammillary bodies. Contralaterally, Rgb primarily projects to itself, i.e., homotypically, and more sparsely projects to Rga and postsubiculum. In general, the axons from Rgb terminate ipsilaterally in cortical layers I and III-V and contralaterally in layer V, with a smaller number of terminals in layers I and VI. Thalamic projections from Rgb target the anteroventral and laterodorsal nuclei of the thalamus, with only a few axons terminating in the anterodorsal nucleus, the reticular nucleus, and the nucleus reuniens of the thalamus. Rgb is innervated by the anterior cingulate cortex, precentral agranular cortex, cortical area 18b, dorsal subiculum, and postsubiculum. Subcortical projections to Rgb originate mainly in the claustrum, the horizontal limb of the diagonal band of Broca, and the anterior thalamic nuclei. These data demonstrate that, in the rat, Rgb is a major nodal point for the integration and subsequent distribution of information to and from the hippocampal formation, the midline limbic and visual cortices, and the thalamus. Thus, similarly to the entorhinal cortex, Rgb in the rat is a prominent gateway for information exchange between the hippocampal formation and other limbic areas of the brain.  相似文献   

5.
The retrosplenial cortex is situated at the crossroads between the hippocampal formation and many areas of the neocortex, but few studies have examined the connections between the hippocampal formation and the retrosplenial cortex in detail. Each subdivision of the retrosplenial cortex projects to a discrete terminal field in the hippocampal formation. The retrosplenial dysgranular cortex (Rdg) projects to the postsubiculum, caudal parts of parasubiculum, caudal and lateral parts of the entorhinal cortex, and the perirhinal cortex. The retrosplenial granular b cortex (Rgb) projects only to the postsubiculum, but the retrosplenial granular a cortex (Rga) projects to the postsubiculu, rostral presubiculum, parasubiculum, and caudal medial entorhinal cortex. Reciprocating projections from the hippocampal formation to Rdg originate in septal parts of CA1, postsubiculum, and caudal parts of the entorhinal cortex, but these are only sparse projections. In contrast, Rgb and Rga receive dense projections from the hippocampal formation. The hippocampal projection to Rgb originates in area CA1, dorsal (septal) subiculum, and post-subiculum. Conversely, Rga is innervated by ventral (temporal) subiculum and postsubiculum. Further, the connections between the retrosplenial cortex and the hippocampal formation are topographically organized. Rostral retrosplenial cortex is connected primarily to the septal (rostrodorsal) hippocampal formation, while caudal parts of the retrosplenial cortex are connected with temporal (caudoventral) areas of the hippocampal formation. Together, the elaborate connections between the retrosplenial cortex and the hippocampal formation suggest that this projection provides an important pathway by which the hippocampus affects learning, memory, and emotional behavior.  相似文献   

6.
The neural correlates of successful retrieval on tests of word stem recall and recognition memory were compared. In the recall test, subjects viewed word stems, half of which were associated with studied items and half with unstudied items, and for each stem attempted to recall a corresponding study word. In the recognition test, old/new judgments were made on old and new words. The neural correlates of successful retrieval were identified by contrasting activity elicited by correctly endorsed test items. Old > new effects common to the two tasks were found in medial and lateral parietal and right entorhinal cortex. Common new > old effects were identified in medial and left frontal cortex, and left anterior intra-parietal sulcus. Greater old > new effects were evident for cued recall in inferior parietal regions abutting those demonstrating common effects, whereas larger new > old effects were found for recall in left frontal cortex and the anterior cingulate. New > old effects were also found for the recall task in right lateral anterior prefrontal cortex, where they were accompanied by old > new effects during recognition. It is concluded that successful recall and recognition are associated with enhanced activity in a common set of recollection-sensitive parietal regions, and that the greater activation in these regions during recall reflects the greater dependence of that task on recollection. Larger new > old effects during recall are interpreted as reflections of the greater opportunity for iterative retrieval attempts when retrieval cues are partial rather than copy cues.  相似文献   

7.
8.
The present study characterized the projections of the anterodorsal (AD) and the anteroventral (AV) thalamic nuclei to the limbic cortex. Both AD and AV project to the full extent of the retrosplenial granular cortex in a topographic pattern. Neurons in caudal parts of both nuclei project to rostral retrosplenial cortex, and neurons in rostral parts of both nuclei project to caudal retrosplenial cortpx. Within AV, the magnocellular neurons project primarily to the retrosplenial granular a cortex, whereas the parvicellular neurons project mainly to the retrosplenial granular b cortex. AD projections to retrosplenial cortex terminate in very different patternsthan do AV projections: The AD projection terminates with equal density in layers I, III, and IV of the retrosplenial granular cortex, whereas, in contrast, the AV projections terminate very densely in layer Ia and less densely in layer IV. Further, both AD and AV project densely to the postsubicular, presubicular, and parasubicular cortices and lightly to the entorhinal (only the most caudal part) cortex and to the subiculum proper (only the most septal part). Rostral parts of AD project equally to all three subicular cortices, whereas neurons in caudal AD project primarily to the postsubicular cortex. Compared to AD, neurons in AV have a less extensive projection to the subicular cortex, and this projection terminates primarily in the postsubicular and presubicular cortices. Further, the AD projection terminates in layers I, II/III, and V of postsubiculum, whereas the AV projection terminates only in layers I and V. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Paradoxical facilitation of olfactory learning following entorhinal cortex (EC) lesion has been described, which may result from widespread functional alterations taking place within the olfactory system. To test this hypothesis, expression of the immediate early genes c-fos, junB, and zif 268 was studied in response to an olfactory stimulation in several brain areas in control and in EC-lesioned rats. Olfactory stimulation in control rats induced the expression of the three genes in the granular/mitral and glomerular layers of the olfactory bulb, as well as c-fos and junB expression in the piriform cortex. However EC lesion was devoid of effects in nonstimulated animals; it significantly amplified the odor-induced expression of the three genes in these areas, as well as in the amygdala, hippocampus, and parietal-temporal cortices. The data suggest that EC lesion modifies the neural processing of odor by suppressing an inhibitory influence on brain areas connected to this cortex.  相似文献   

10.
11.
The effect of stimulation of the frontal lobe cortex on the release of luteinizing hormone (LH) and ovulation was studied in female rats. Electrochemical stimulation (anodic DC) was applied through monopolar stainless-steel electrodes chronically implanted in the non-anesthetized freeely-behaving animals bearing plastic cannula inserted into the jugular vein for blood sampling.In rats, on the day of proestrus, stimulation (100 uA/30 sec) of the medical cortical surface in the superficial and deep layers of the medial precentral area and of the anterior cingulate area blocked ovulation in about 80% of the animals. A similar effect was seen when the stimulus was applied in the deep layers of the prelimbic and infralimbic areas. On the contrary, stimulation in the superficial layers of these latter two areas, as well as in the superficial and deep layers of the restrospenial cortex, did not affect normal ovulation. The preovulatory discharge of LH was blocked in the animals which failed to ovulate. The degree of inhibition exerted by the anterior cingulate area and the prelimbic area on ovulation and LH surge was proportional to the amount of current applied.Stimulation of the anterior cingulate area also blocked the release of LH induced by the injection of progesterone into ovariectomized estrogen-primed rats. Furthermore, electrochemical stimulation of the anterior cingulate area inhibited the rise of LH in the serum induced by electrical stimulation of the medial preoptic area of ovariectomized estrogen-injected rats, but it failed to affect that resulting from electrical stimulation of the medial basal hypothalamus.On the other hand, stimulation of the lateral cortical surface and the ventral cortex of the frontal lobe on the day of proestrus affected normal ovulation and LH surge only when the stimulus was applied in the agranular insular area which also exhibited an inhibitory action.It is concluded that certain areas of the frontal lobe cortex related to limbic structures exert an inhibitory influence on ovulation and LH secretion.  相似文献   

12.
The infralimbic cortex (ILc) in cat is the ventralmost part of the anterior cingulate gyrus. The ILc, together with the amygdala, bed nucleus of the stria terminalis and lateral hypothalamus, is involved in the regulation of fear behavior. The latter three structures are thought to take part in triggering the fear response by means of their projections to the pontine and medullary lateral tegmental field (LTF). The LTF is a large region extending from the parabrachial nuclei rostrally to the spinal cord caudally. It contains almost all the premotor interneurons for the brainstem and for some upper spinal cord motoneurons innervating the muscles of face, head and throat. The question is whether ILc also projects to the LTF. Such a pathway would allow the ILc to influence the fear response by acting directly on these premotor interneurons. Anterograde tracer injections were made in the medial surface of the cortex in four cats. Only when the injection sites involved ILc were anterogradely labeled fibers observed throughout the rostrocaudal extent of the LTF. To verify whether these projections indeed originated from ILc, in two other cases retrograde tracer injections were made in the pontomedullary LTF. The results showed many retrogradely labeled neurons in ILc, but none in adjacent cortical regions. These results show that the ILc projects to the LTF in cat and can possibly modulate the fear response not only via indirect but also via direct routes to the premotor interneurons in the brainstem.  相似文献   

13.
The insular cortex (IC) has been reported to be involved in the modulation of memory and autonomic and defensive responses. However, there is conflicting evidence about the role of the IC in fear conditioning. To explore the IC involvement in both behavioral and autonomic responses induced by contextual fear conditioning, we evaluated the effects of the reversible inhibition of the IC neurotransmission through bilateral microinjections of the non‐selective synapse blocker CoCl2 (1 mm ) 10 min before or immediately after the conditioning session or 10 min before re‐exposure to the aversive context. In the conditioning session, rats were exposed to a footshock chamber (context) and footshocks were used as the unconditioned stimulus. Forty‐eight hours later, the animals were re‐exposed to the aversive context for 10 min, but no shock was given. Behavioral (freezing) as well as cardiovascular (arterial pressure and heart rate increases) responses induced by re‐exposure to the aversive context were analysed. It was observed that the local IC neurotransmission inhibition attenuated freezing and the mean arterial pressure and heart rate increase of the groups that received the CoCl2 either immediately after conditioning or 10 min before re‐exposure to the aversive context, but not when the CoCl2 was injected before the conditioning session. These findings suggest the involvement of the IC in the consolidation and expression of contextual aversive memory. However, the IC does not seem to be essential for the acquisition of memory associated with aversive context.  相似文献   

14.
Noguchi T  Yoshida Y  Chiba S 《Brain research》2001,916(1-2):91-100
We investigated the effects of two types of psychological stress, novelty stress and psychological stress using the communication box, on dopamine and serotonin systems in subregions of the frontal cortex and nucleus accumbens of rats. Placement of rats into a compartment of the communication box (novelty stress) increased both dopamine and serotonin metabolism in medial precentral, anterior cingulate, and prelimbic subregions of the frontal cortex as evaluated by the levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid for dopamine, and 5-hydroxyindoleacetic acid for serotonin. In contrast, novelty stress had no effect on these monoamine systems in infralimbic and sulcal subregions of the frontal cortex. In the nucleus accumbens, novelty stress increased both dopamine and serotonin metabolism in the shell, but decreased dopamine metabolism in the core. On the other hand, psychological stress using the communication box augmented dopamine metabolism in the anterior cingulate and prelimbic subregions. This stress, however, failed to affect the dopamine system in the medial precentral, infralimbic and sulcal subregions. In the nucleus accumbens, the stress selectively decreased dopamine metabolism in the shell but showed no effect in the core. The serotonin system showed little change due to the stress. These results demonstrate that psychological stress causes distinct changes in both the dopamine and serotonin systems in the frontal cortex and the nucleus accumbens. These changes vary with the subregions of these areas, suggesting that the region-specific responsiveness to psychological stress reflects the functional differences among these subregions. In addition, our results also suggest that changes in brain monoamine systems induced by psychological stress are quite different from those induced by physical stress.  相似文献   

15.
Posttraumatic stress disorder (PTSD) is known to be associated with altered medial prefrontal activation in response to threatening stimuli and with behavioural deficits in prefrontal functions such as working memory and attention. Given the importance of these areas and processes for decision-making, this functional magnetic resonance imaging study investigated whether decision-making is altered in patients with PTSD. In particular, the neural response to gain and loss feedback was evaluated in a decision-making task in which subjects could maximise their number of points total by learning a particular response pattern. Behaviourally, controls learned the correct response pattern faster than patients. Functionally, patients and controls differed in their neural response to gains, but not in their response to losses. During the processing of gains in the late phase of learning, PTSD patients as compared to controls showed lower activation in the nucleus accumbens and the mesial PFC, critical structures in the reward pathway. This reduced activation was not due to different rates of learning, since it was similarly present in patients with unimpaired learning performance. These findings suggest that positive outcome information lost its salience for patients with PTSD. This may reflect decreasing motivation as the task progressed.  相似文献   

16.
As revealed by the changes in dihydroxyphenylacetic acid (DOPAC) levels and in the DOPAC/Dopamine (DA) ratio, DA utilization was markedly enhanced in the nucleus accumbens and reduced in the prefrontal cortex of rats five days after the electrolytic lesion of the median raphe. These opposite effects were not seen any more seventeen days after the lesion. These results suggest that neurones originating from the median raphe and projecting to the ventral tegmental area exert an opposite effect on the activity of DA cells innervating the nucleus accumbens and on those projecting to the prefrontal cortex.  相似文献   

17.
Behavioral sensitization to the locomotor activating effects of amphetamine refers to the progressive, long lasting increase in locomotor activity that occurs with repeated injections. This phenomenon is thought to result from neuroadaptations occurring in the projection fields of mesocorticolimbic dopaminergic neurons. In the present study, we investigated the effects of amphetamine sensitization on Fos immunoreactivity (Fos-IR) in subterritories of the nucleus accumbens (core and shell) and medial prefrontal cortex (mPFC; dorsal and ventral) using stereology. Rats received five daily injections of amphetamine (1.5 mg/kg, i.p.) or saline. Behavioral sensitization was measured 48 h following the last injection, in response to a challenge injection of 1.5 mg/kg amphetamine. Sensitized rats showed a greater enhancement of locomotor activity upon drug challenge compared with their saline counterparts. Densities of Fos-positive nuclei were enhanced more in the dorsal than the ventral mPFC subterritory, whereas in the nucleus accumbens, densities of Fos-positive nuclei were increased more in the core than the shell of amphetamine-sensitized rats compared to controls. These results represent, to our knowledge, the first published report using stereological methods to quantify Fos-IR in the brain and suggest functional specialization of cortical and limbic regions in the expression of behavioral sensitization to amphetamine.  相似文献   

18.
Physiological and pharmacological studies indicate that descending projections from the prefrontal cortex modulate dopaminergic transmission in the nucleus accumbens septi and ventral tegmental area. We investigated the ultrastructural bases for these interactions in rat by examining the synaptic associations between prefrontal cortical terminals labeled with anterograde markers (lesion-induced degeneration or transport of Phaseolus vulgaris leucoagglutinin; PHA-L) and neuronal processes containing immunoreactivity for the catecholamine synthesizing enzyme, tyrosine hydroxylase. Prefrontal cortical terminals in the nucleus accumbens and ventral tegmental area contained clear, round vesicles and formed primarily asymmetric synapses on spines or small dendrites. In the ventral tegmental area, these terminals also formed asymmetric synapses on large dendrites and a few symmetric axodendritic synapses. In the nucleus accumbens septi, degenerating prefrontal cortical terminals synapsed on spiny dendrites which received convergent input from terminals containing peroxidase immunoreactivity for tyrosine hydroxylase, or from unlabeled terminals. In single sections, some tyrosine hydroxylase-labeled terminals formed thin and punctate symmetric synapses with dendritic shafts, or the heads and necks of spines. Close appositions, but not axo-axonic synapses, were frequently observed between degenerating prefrontal cortical afferents and tyrosine hydroxylase-labeled or unlabeled terminals. In the ventral tegmental area, prefrontal cortical terminals labeled with immunoperoxidase for PHA-L were in synaptic contact with dendrites containing immunogold reaction product for tyrosine hydroxylase, or with unlabeled dendrites. These results suggest that: (1) catecholaminergic (mainly dopaminergic) and prefrontal cortical terminals in the nucleus accumbens septi dually synapse on common spiny neurons; and (2) dopaminergic neurons in the ventral tegmental area receive monosynaptic input from prefrontal cortical afferents. This study provides the first ultrastructural basis for multiple sites of cellular interaction between prefrontal cortical efferents and mesolimbic dopaminergic neurons.  相似文献   

19.
20.
These experiments were designed to test the effect of procaine injection into the paraventricular nucleus on the sympathetic and thermogenic changes induced by frontal cortex stimulation. Oxygen consumption, firing rate of the sympathetic nerves to interscapular brown adipose tissue (IBAT), along with IBAT and colonic temperatures (T(IBAT) and T(C)) were monitored in fasted male Sprague-Dawley rats before and 25 min after an electrical stimulation of the frontal cortex. The same variables were monitored in rats with administration of procaine into the paraventricular nucleus. The results show that cortical stimulation raises oxygen consumption, sympathetic neuron firing rates, T(IBAT), and T(C). This increase is reduced by procaine injection. These findings suggest that the paraventricular nucleus plays a key role in the sympathetic and thermogenic changes induced by cortical stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号