首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dyskeratosis congenita (DC) is an inherited multi-system disorder characterised by muco-cutaneous abnormalities, bone marrow failure and a predisposition to malignancy. Bone marrow failure is the principal cause of mortality and is thought to be the result of premature cell death in the haematopoietic compartment because DC cells age prematurely and tend to have short telomeres. DC is genetically heterogeneous and patients have mutations in genes that encode components of the telomerase complex ( DKC1, TERC , TERT , NOP10 and NHP2 ), and telomere shelterin complex ( TINF2 ), both important in telomere maintenance. Here, we transduced primary T lymphocytes and B lymphocyte lines established from patients with TERC and DKC1 mutations with wild type TERC -bearing lentiviral vectors. We found that transduction with exogenous TERC alone was capable of increasing telomerase activity in mutant T lymphocytes and B lymphocyte lines and improved the survival and thus overall growth of B-lymphocyte lines over a prolonged period, regardless of their disease mutation. Telomeres in TERC -treated lines were longer than in the untreated cultures. This is the first study of its kind in DC lymphocytes and the first to demonstrate that transduction with TERC alone can improve cell survival and telomere length without the need for exogenous TERT .  相似文献   

2.
Given the constitutive expression of telomerase in the majority of human tumors, telomerase inhibition is an attractive, broad-spectrum therapeutic target for cancer treatment. Therapeutic strategies for inhibiting telomerase activity have included both targeting components of telomerase (the protein component, TERT, or the RNA component, TERC) or by directly targeting telomere DNA structures. Recently a combination telomerase inhibition therapy has been studied also. The TERT promoter has been used to selectively express cytotoxic gene(s) in cancer cells and a TERT vaccine for immunization against telomerase has been tested. The 10% to 15% of immortalized cancer cells that do not express telomerase use a recombination-based mechanism for maintaining telomere structures that has been called the alternative lengthening of telomeres (ALT). In view of the increasing study of telomerase inhibitors as anticancer treatments, it will be crucial to determine whether inhibition of telomerase will select for cancer cells that activate ALT mechanisms of telomere maintenance.  相似文献   

3.
Telomeres protect chromosome ends from end-to-end fusion and degradation. Loss of telomere function causes cell-cycle arrest or cell death. Autosomal dominant dyskeratosis congenita (AD DC), a rare inherited bone marrow failure syndrome, is caused by mutations in TERC, the RNA component of telomerase. Here, we studied the telomere dynamics over three generations in a 32-member extended family with AD DC due to a TERC gene deletion. Our analysis shows that peripheral blood cells from family members haploinsufficient for TERC have very short telomeres. Telomeres are equally short in all individuals carrying the TERC gene deletion irrespective of their age. Chromosome-specific telomere analysis distinguishing the parental origin of telomeres showed that in gene deletion carriers, paternal and maternal telomeres are similarly short and similar in length to those of the affected parent. In children of affected parents who have normal TERC genes, parental telomeres are again similar in length, but two generations appear to be necessary to fully restore normal telomere length. These results are consistent with a model in which telomerase preferentially acts on the shortest telomeres. When TERC is limiting, this preference leads to the accelerated shortening of longer telomeres. The limited amount of active telomerase in TERC RNA haploinsufficiency may not be able to maintain the minimal length of the increasing number of short telomeres. Thus, the number of cells with excessively short telomeres and the degree of residual telomerase activity may determine the onset of disease in patients with AD DC.  相似文献   

4.
Heterozygous mutations of the human telomerase RNA template gene (TERC) have been described in patients with acquired aplastic anemia and the autosomal dominant form of dyskeratosis congenita (DKC). Patients with mutations in both TERC alleles have not yet been reported. Here, we report a patient with DKC who inherited 2 distinct TERC sequence variants from her parents; a deletion (216_229del) in one and a point mutation (37A>G) in the other allele of the TERC gene. Her marrow was hypocellular and showed an abnormal clone [46, XX t(7;21)(q34;q22)]. The telomere lengths in leukocytes of the patient and her relatives were shorter than those of the age-matched controls and were progressively shorter in subsequent generations of family members with the 216_229del allele. Telomerase enzymatic levels in lymphocytes from the patient were approximately half of those measured in healthy controls. The 216_229del mutation failed to reconstitute telomerase activity in transfected cells, but, when coexpressed with the 37A>G variant, telomerase activity was only modestly suppressed. These clinical and laboratory findings support the concept that telomerase levels in human hematopoietic stem cells are tightly controlled as even moderately reduced levels result in accelerated telomere shortening and eventual marrow failure.  相似文献   

5.
Dyskeratosis congenita (DC) is a rare multisystem bone marrow failure syndrome that displays marked clinical and genetic heterogeneity. X-linked recessive, autosomal dominant and autosomal recessive forms of the disease are recognized. The gene that is mutated in the X-linked form of the disease is DKC1. The DKC1-encoded protein, dyskerin, is a component of small nucleolar ribonucleoprotein particles, which are important in ribosomal RNA processing, and of the telomerase complex. The autosomal dominant form of DC is due to mutations in the gene for the RNA component of telomerase (TERC). Because both dyskerin and TERC are components of the telomerase complex and all patients with DC have short telomeres, the principal pathology of DC appears to relate to telomerase dysfunction, although defects in ribosomal processing via dyskerin's involvement in pseudouridylation cannot be completely ruled out. The gene or genes involved in autosomal recessive DC remain elusive, although genes whose products are required for telomere maintenance remain strong candidates. The study of DC highlights the importance of telomerase in humans and how its deficiency results in multiple abnormalities, including premature aging, bone marrow failure, and cancer.  相似文献   

6.
7.
8.
Knudson M  Kulkarni S  Ballas ZK  Bessler M  Goldman F 《Blood》2005,105(2):682-688
Dyskeratosis congenita (DC) is an inherited bone marrow failure disorder characterized by abnormal skin pigmentation and nail dystrophy. We have recently described, in 10 members of a large 3-generation family, an autosomal-dominant form of DC (AD DC) that is due to a mutation in the gene-encoding human telomerase RNA (TERC), resulting in telomere shortening. In studying the immunologic consequences of TERC mutations, severe B lymphopenia and decreased immunoglobulin M (IgM) levels were noted. T cells were found to overexpress senescent markers, including CD57 and Fas receptor, and were moderately reduced in cell number. To determine whether these in vivo findings were related to cellular replicative defects, short-term cultures of AD DC lymphocytes were established to measure proliferation, mitoses, and apoptosis. AD DC lymphocytes displayed a markedly reduced proliferative capacity and increased basal apoptotic rate. Finally, telomere shortening was most prominent in third-generation subjects, and there appeared to be a correlation between telomere length and in vivo and in vitro immune findings. In summary, the observed lymphopenia and hypogammaglobulinemia in AD DC is likely a consequence of replicative failure and premature senescence of lymphocytes, supporting a role of telomerase activity in immune homeostasis.  相似文献   

9.
10.
11.
Primitive human hematopoietic cells have low endogenous telomerase activity, yet telomeres are not maintained. In contrast, ectopic telomerase expression in fibroblasts and other cells leads to telomere length maintenance or elongation. It is unclear whether this disparity can be attributed to telomerase level or stems from fundamentally different telomere biology. Here, we show that telomerase overexpression does not prevent proliferation-associated telomere shortening in human hematopoietic cells, pointing to the existence of cell type-specific differences in telomere dynamics. Furthermore, we observed eventual stabilization of telomere length without detectable changes in telomerase activity during establishment of two leukemic cell lines from normal cord blood cells, indicating that additional cooperating events are required for telomere maintenance in immortalized human hematopoietic cells.  相似文献   

12.
AIM: To search for the biomarker of cellular immortalization, the telomere length, telomerase activity and its subunits in cultured epithelial cells of human fetal esophagus in the process of immortalization. METHODS: The transgenic cell line of human fetal esophageal epithelium (SHEE) was established with E(6)E(7) genes of human papillomavirus (HPV) type 18 in our laboratory. Morphological phenotype of cultured SHEE cells from the 6th to 30th passages, was examined by phase contrast microscopy, the telomere length was assayed by Southern blot method, and the activity of telomerase was analyzed by telomeric repeat amplification protocol (TRAP). Expressions of subunits of telomerase, hTR and hTERT, were assessed by RT-PCR. DNA content in cell cycle was detected by flow cytometry. The cell apoptosis was examined by electron microscopy (EM) and TUNEL label. RESULTS: SHEE cells from the 6th to 10th passages showed cellular proliferation with a good differentiation. From the 12th to the 16th passages, many senescent and apoptotic cells appeared, and the telomere length sharply shortened from 23kb to 17kb without expression of hTERT and telomerase activity. At the 20th passage, SHEE cells overcame the senescence and apoptosis and restored their proliferative activity with expression of telomerase and hTERT at low levels, but the telomere length shortened continuously to the lowest of 3kb. After the 30th passage cells proliferation was restored by increment of cells at S and G2M phase in the cell cycle and telomerase activity expressed at high levels and with maintenance of telomere length. CONCLUSION: At the early stage of SHEE cells, telomeres are shortened without expression of telomerase and hTERT causing cellular senescence and cell death. From the 20th to the 30th passages, the activation of telomerase and maintenance of telomere length show a progressive process for immortalization of esophageal epithelial cells. The expression of telomerase may constitute a biomarker for detection of immortalization of cells.  相似文献   

13.
Telomere maintenance is essential for organisms with linear chromosomes and is carried out by telomerase during cell cycle. The precise mechanism by which cell cycle controls telomeric access of telomerase and telomere elongation in mammals remains largely unknown. Previous work has established oligonucleotide/oligosaccharide binding (OB) fold-containing telomeric protein TPP1, formerly known as TINT1, PTOP, and PIP1, as a key factor that regulates telomerase recruitment and activity. However, the role of TPP1 in cell cycle-dependent telomerase recruitment is unclear. Here, we report that human TPP1 is phosphorylated at multiple sites during cell cycle progression and associates with higher telomerase activity at late S/G2/M. Phosphorylation of Ser111 (S111) within the TPP1 OB fold appears important for cell cycle-dependent telomerase recruitment. Structural analysis indicates that phosphorylated S111 resides in the telomerase-interacting domain within the TPP1 OB fold. Mutations that disrupt S111 phosphorylation led to decreased telomerase activity in the TPP1 complex and telomere shortening. Our findings provide insight into the regulatory pathways and structural basis that control cell cycle-dependent telomerase recruitment and telomere elongation through phosphorylation of TPP1.  相似文献   

14.
Telomeres are the composite of short DNA element tandem arrays and heterotypic protein components that protect and maintain chromosomal termini. As proper telomere maintenance requires a multitude of DNA extension events, it is important to understand the factors that modulate telomerase DNA association. Here, we show that the endogenous levels of the yeast p23 molecular chaperone Sba1p are required for telomere length maintenance and that Sba1p can modulate telomerase DNA binding and extension activities in vitro. Notably, telomere occupancy by telomerase and the extension rate of a shortened telomere fluctuated with changing Sba1 protein levels in vivo. In addition, we found that Sba1p displayed a cell cycle-dependent telomere interaction that paralleled telomerase binding; telomere association by Sba1p depended on its inherent chaperone activity. Taken together, our results support a model in which Sba1p modulates telomerase DNA binding activity for optimal function in vitro and in vivo.  相似文献   

15.
16.
Telomerase plays an important role in cellular proliferation capacity and survival under conditions of stress. A large part of this protective function is due to telomere capping and maintenance. Thus it contributes to cellular immortality in stem cells and cancer. Recently, evidence has accumulated that telomerase can contribute to cell survival and stress resistance in a largely telomere-independent manner. Telomerase has been shown to shuttle dynamically between different cellular locations. Under increased oxidative stress telomerase is excluded from the nucleus and can be found within the mitochondria. This phenotype correlates with decreased oxidative stress within telomerase expressing cells and improved mitochondrial function by currently largely unknown mechanisms. Our data suggest that mitochondrial protection could be an important non-canonical function for telomerase in cell survival and ageing. This review summarises briefly our knowledge about extra-telomeric functions of telomerase and discusses the potential significance of its mitochondrial localisation.  相似文献   

17.
Marrone A  Stevens D  Vulliamy T  Dokal I  Mason PJ 《Blood》2004,104(13):3936-3942
Mutations in TERC, encoding the RNA component of telomerase, have been found in autosomal dominant dyskeratosis congenita (DC) and aplastic anemia (AA). Several polymorphisms also exist in the TERC gene, making functional testing of potential pathogenic mutations essential. Here, we have tested normal and mutant TERC molecules in 2 telomerase reconstitution assays, 1 in vitro and 1 in transfected telomerase-negative cells. We find that 2 polymorphic mutations G58A and G228A have no effect on telomerase activity in these assays, whereas 6 mutations found in DC and AA cause reduction or abolition of telomerase activity. Mutations in the pseudoknot region of the TERC molecule, C72G, 96-7DeltaCT, GC107-8AG and 110-3DeltaGACT reduce the catalytic activity of reconstituted telomerase, whereas mutations in the 3' portion of the molecule C408G and a deletion of the 3' 74 bases have normal activity in vitro but reduced intracellular activity. By analyzing second site mutations that recreate regions of secondary structure but retain the pathogenic mutations we show that mutations C72G, GC107-8AG, and C408G act by disrupting the secondary structure or folding of TERC. Finally, experiments reconstituting telomerase with both normal and mutant TERC molecules suggest the mutations act via haploinsufficiency rather than by a dominant-negative mechanism.  相似文献   

18.
Dyskeratosis congenita is a premature aging syndrome characterized by muco-cutaneous features and a range of other abnormalities, including early greying, dental loss, osteoporosis, and malignancy. Dyskeratosis congenita cells age prematurely and have very short telomeres. Patients have mutations in genes that encode components of the telomerase complex (dyskerin, TERC, TERT, and NOP10), important in the maintenance of telomeres. Many dyskeratosis congenita patients remain uncharacterized. Here, we describe the analysis of two other proteins, NHP2 and GAR1, that together with dyskerin and NOP10 are key components of telomerase and small nucleolar ribonucleoprotein (snoRNP) complexes. We have identified previously uncharacterized NHP2 mutations that can cause autosomal recessive dyskeratosis congenita but have not found any GAR1 mutations. Patients with NHP2 mutations, in common with patients bearing dyskerin and NOP10 mutations had short telomeres and low TERC levels. SiRNA-mediated knockdown of NHP2 in human cells led to low TERC levels, but this reduction was not observed after GAR1 knockdown. These findings suggest that, in human cells, GAR1 has a different impact on the accumulation of TERC compared with dyskerin, NOP10, and NHP2. Most of the mutations so far identified in patients with classical dyskeratosis congenita impact either directly or indirectly on the stability of RNAs. In keeping with this effect, patients with dyskerin, NOP10, and now NHP2 mutations have all been shown to have low levels of telomerase RNA in their peripheral blood, providing direct evidence of their role in telomere maintenance in humans.  相似文献   

19.
The telomere and the telomerase in human esophageal cancer are not yet completely understood. The regulatory mechanism of telomerase activity and telomere dynamics has drawn considerable attention. It is generally assumed that when telomerase has been activated, no further telomere shortening should ensue; however, a much more complex pattern of telomere dynamics may exist in telomerase-positive cancer cells. A novel human esophageal cancer cell line (KAN-ES) was established and characterized. Using KAN-ES and its serially passaged subclones up to the 55th generation, we determined the alteration of telomere length (TRF), telomerase activity (TA), telomerase RNA expression (hTR), population doubling time, karyotype, and cytokeratin 14 expression during the process of establishing a cancer cell line. We found that the TRF was maintained between 4.0 and 5.0 kb during the serial passages, despite sustained high TA (assessed by an in vitro TRAP assay). No close relationships were found among TRF, TA, and hTR expression. TA and telomere dynamics were not associated with cellular growth ability and differentiation. However, the number of population doublings showed significant correlations with both the TA and doubling times. In conclusion, these dissociations between telomere dynamics and TA support the existence of additional controls on TRF in cancer cells. KAN-ES and its restored subclones should prove a valuable resourse for esophageal cancer research.  相似文献   

20.
Telomerase activity in normal leukocytes and in hematologic malignancies   总被引:90,自引:0,他引:90  
Counter  CM; Gupta  J; Harley  CB; Leber  B; Bacchetti  S 《Blood》1995,85(9):2315-2320
Telomeres are essential for function and stability of eukaryotic chromosomes. In the absence of telomerase, the enzyme that synthesizes telomeric DNA, telomeres shorten with cell division, a process thought to contribute to cell senescence and the proliferative crisis of transformed cells. We reported telomere stabilization concomitant with detection of telomerase activity in cells immortalized in vitro and in ovarian carcinoma cells, and suggested that telomerase is essential for unlimited cell proliferation. We have now examined the temporal pattern of telomerase expression in selected hematologic malignancies. We found that, unlike other somatic tissues, peripheral, cord blood, and bone marrow leukocytes from normal donors expressed low levels of telomerase activity. In leukocytes from chronic lymphocytic leukemia (CLL) patients, activity was lower than in controls in early disease, and comparable with controls in late disease. Relative to bone marrow, telomerase activity was enhanced in myelodysplastic syndrome (MDS) and more significantly so in acute myeloid leukemia (AML). Regardless of telomerase levels, telomeres shortened with progression of the diseases. Our results suggest that early CLL and MDS cells lack an efficient mechanism of telomere maintenance and that telomerase is activated late in the progression of these cancers, presumably when critical telomere loss generates selective pressure for cell immortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号