共查询到20条相似文献,搜索用时 15 毫秒
1.
Cobb SR Manuel NA Morton RA Gill CH Collingridge GL Davies CH 《Neuropharmacology》1999,38(11):1723-1732
The role of GABA(B) autoreceptors in the regulation of GABA(A) and GABA(B) receptor-mediated inhibitory post-synaptic potentials (IPSPs) during repetitive synaptic activation has been established. In the present study the role of these receptors in the regulation of depolarising GABA(A) receptor-mediated synaptic potentials (DPSP(A)s) in the CA1 region of the hippocampus is documented. Following blockade of AMPA and NMDA receptor-mediated synaptic excitation, DPSP(A)s could be evoked by a single stimulus. The size of this response was enhanced by increasing the stimulus number (1-10 shocks) or stimulus frequency (10-100 Hz). Conversely, the amplitude of the DPSP(A) was dramatically reduced by a priming pulse (single shock) or priming burst (four shocks) delivered 200 ms beforehand. This activity-dependent depression was eliminated by the GABA(B) receptor antagonist CGP 35348 (1 mM). As such, GABA(B) autoreceptor-mediated regulation of DPSP(A)s prevented a pronounced, potentially epileptogenic, DPSP(A) from occurring during theta burst stimulation. Thus, during repetitive stimulation, activation of GABA(B) autoreceptors not only enables a transient reduction in GABA(A) receptor-mediated synaptic inhibition sufficient to enable NMDA receptor-dependent synaptic plasticity [Davies, C.H., Collingridge, G.L., 1996. J. Physiol. 496.2, 451-470] but also prevents the development of a potentially pathogenic depolarising GABA-mediated synaptic potential. 相似文献
2.
Whole cell voltage clamp recordings were used to investigate the postnatal development of GABA(B) synaptic transmission in CA1 pyramidal cells of rat hippocampal slices. In the presence of antagonists of glutamate and GABA(A) ionotropic receptors, electrical stimulation evoked slow IPSCs in pyramidal cells from mature animals (35-45 days postnatal, P35-45). Brief trains of stimulation evoked slow IPSCs of greater magnitude. I-V relations of slow IPSCs were inwardly rectifying, with a mean equilibrium potential near -75 to -80 mV. Slow IPSCs were completely antagonized by the GABA(B) antagonist CGP55845A (0.5 microM). In cells from young animals (P12-14), similar stimulation evoked either no or very small slow IPSCs (mean conductance approximately 10% of adult). In cells from animals of intermediate age (P22-24), slow IPSCs were more frequent and their mean conductance was approximately 60-80% of adult values. Bath application of 20 microM baclofen evoked outward currents in cells of animals P35-45. I-V relations of baclofen currents showed inward rectification and reversed near -80 mV. Baclofen currents were absent or minimal in animals P12-14, and of intermediate magnitude in animals P22-24. These results indicate that baclofen and GABA(B) postsynaptic currents are virtually absent 2 weeks postnatally, and appear gradually until 35-45 days postnatal. Thus, GABA(B) synaptic transmission appears to mature late in area CA1 of the rat hippocampus. 相似文献
3.
Catechol-substituted phenoxypropanolamines: adrenoceptor activity in the anaesthetized cat. 总被引:1,自引:1,他引:0 下载免费PDF全文
1 The pharmacological actions of racemic noradrenaline, adrenaline, isoprenaline and N-t-butylnoradrenaline have been compared with those of their corresponding derivatives containing an oxymethylene (OXY) link between the ring and ethanolamine side chain. 2 The compounds were tested in the anaesthetized cat for their ability to produce positive chronotropic effects, bronchodilator actions, changes in perfusion pressure in the perfused hind limb and decreases in soleus muscle contractions. 3 All the OXY-derivatives were potent beta-adrenoceptor agonists. The inclusion of the oxymethylene link promotes selectivity for beta1-as opposed to beta2-adrenoceptor activity. 4 In comparison with the parent compounds, the OXY-derivatives of adrenaline and noradrenaline had very weak alpha-adrenoceptor stimulant effects. 相似文献
4.
5.
Prenatal stress exposure causes long-lasting impairments of the behavioral and neuroendocrine responses to later stressors of the offspring. Although mechanisms underlying these effects remain largely unknown, abnormalities in the neuronal plasticity might be responsible for neurobiological alterations. This study used the whisker-to-barrel pathway as a model system to investigate the effects of prenatal stress on lesion-induced plasticity of neurons. Pregnant rats were subjected to immobilization stress during the trigeminal neurogenesis period, corresponding to gestational days 12 to 17, for three hours a day. After birth, the middle row (C) whisker follicles of pups from the control and stressed groups were electrocauterized. Ten days later, tangentially sectioned cortical hemispheres were stained with cytochrome oxidase histochemistry to calculate the volumes of each barrel row (A-E) in both lesioned and intact sides of the cortex, using stereological methods. The adrenal to body weight ratios were significantly increased in stressed animals, when compared to the controls. The pattern and total volume of the barrel subfield remained unaltered, but the lesion-induced map plasticity index, calculated as the D/C ratio, decreased in stressed animals. In addition, the BDNF (Brain Derived Neurotrophic Factor), NT-3 (neurotrophin-3) and the cyclic AMP response element binding protein (CREB) phosphorylation levels in tissue homogenates of the barrel cortices were measured using the ELISA method. In prenatally stressed animals, the BDNF and NT-3 levels were reduced on the lesioned side, but significant CREB activation was observed on the intact side of the barrel cortex. Taken together, the results show that prenatal stress exposure negatively affects critical period plasticity by reducing the expansion of active barrels following peripheral whisker lesion. These changes arise independent of CREB phosphorylation and appear to be mediated by reduced levels of neurotrophins. 相似文献
6.
Spontaneous synaptic inhibition plays an important role in regulating the excitability of cortical networks. Here we have investigated the role of GABA(B) autoreceptors in regulating spontaneous GABA release in the entorhinal cortex (EC), a region associated with temporal lobe epilepsies. We have previously shown that the level of spontaneous inhibition in superficial layers of the EC is much greater than that seen in deeper layers. In the present study, using intracellular and whole cell patch clamp recordings in rat EC slices, we have demonstrated that evoked GABA responses are controlled by feedback inhibition via GABA(B) autoreceptors. Furthermore, recordings of spontaneous, activity-independent inhibitory postsynaptic currents in layer II and layer V neurones showed that the GABA(B) receptor agonist, baclofen, reduced the frequency of GABA-mediated currents indicating the presence of presynaptic GABA(B) receptors in both layers. Application of the antagonist, CGP55845, blocked the effects of baclofen and also increased the frequency of GABA-mediated events above baseline, but the latter effect was restricted to layer V. This demonstrates that GABA(B) autoreceptors are tonically activated by synaptically released GABA in layer V, and this may partly explain the lower level of spontaneous GABA release in the deep layer. 相似文献
7.
8.
Dimitrijevic N Dzitoyeva S Satta R Imbesi M Yildiz S Manev H 《European journal of pharmacology》2005,519(3):246-252
Gamma-hydroxybutyric acid (GHB) can be synthesized in the brain but is also a known drug of abuse. Although putative GHB receptors have been cloned, it has been proposed that, similar to the behavior-impairing effects of ethanol, the in vivo effects of pharmacological GHB may involve metabotropic gamma-aminobutyric acid (GABA) GABA(B) receptors. We developed a fruitfly (Drosophila melanogater) model to investigate the role of these receptors in the behavioral effects of exogenous GHB. Injecting GHB into male flies produced a dose-dependent motor impairment (measured with a computer-assisted automated system), which was greater in ethanol-sensitive cheapdate mutants than in wild-type flies. These effects of pharmacological concentrations of GHB require the presence and activation of GABA(B) receptors. The evidence for this was obtained by pharmacological antagonism of GABA(B) receptors with CGP54626 and by RNA interference (RNAi)-induced knockdown of the GABA(B(1)) receptor subtype. Both procedures inhibited the behavioral effects of GHB. GHB pretreatment diminished the behavioral response to subsequent GHB injections; i.e., it triggered GHB tolerance, but did not produce ethanol tolerance. On the other hand, ethanol pretreatment produced both ethanol and GHB tolerance. It appears that in spite of many similarities between ethanol and GHB, the primary sites of their action may differ and that recently cloned putative GHB receptors may participate in actions of GHB that are not mediated by GABA(B) receptors. These receptors do not have a Drosophila orthologue. Whether Drosophila express a different GHB receptor should be explored. 相似文献
9.
Sanger GJ Munonyara ML Dass N Prosser H Pangalos MN Parsons ME 《Autonomic & autacoid pharmacology》2002,22(3):147-154
1. GABA(B1) receptor subunit knockout mice were generated and the effects of the GABA(B) receptor agonist, baclofen, were evaluated within the peripheral nervous system (PNS) of wildtype (+/+), heterozygote (+/-) and knockout (-/-) animals. For this purpose, neuronally-mediated responses were evoked in both the isolated ileum and urinary bladder, using selective electrical field stimulation (EFS). 2. In ileum resected from 4-8-week-old-mice, low frequencies of EFS (0.5 Hz) evoked irregular muscle contractions which were prevented by atropine 1 microM and reduced by baclofen (33.4 +/- 5.6%, 100 microm). The latter effect was antagonized by the GABA(B) receptor antagonist CGP54626 0.2 microm. Baclofen 100 microm did not affect contractions of similar amplitude induced by carbachol, indicating that the ability of baclofen to inhibit cholinergic function in mouse ileum may be due to an action at prejunctional GABA(B) receptors. 3. To avoid the development of grand mal seizure by GABA(B1) (-/-) mice, a behaviour observed when the mice were greater than 3 weeks old, it was necessary to study the effects of this knockout in 1-3-week-old-animals. However, at this age, EFS at 0.5 Hz did not evoke robust muscle contractions. Consequently we used EFS at 5 Hz, which did evoke cholinergically mediated contractions, found to be of similar amplitude in (+/+) and (+/-) mice, of both 1-3 weeks and 4-8 weeks of age. At this frequency of EFS, baclofen reduced the amplitude of the evoked contractions [n = 6 (+/+) and n = 5 (+/-), IC50 19.2 +/- 4.8 microm) and this effect was greatly reduced in the presence of CGP54626 0.2 microm. 4. In urinary bladder from 1-3-week-old-mice, using higher frequencies of EFS to evoke clear, nerve-mediated contractions (10 Hz), baclofen 10-300 microm concentration-dependently inhibited contractions in (+/+) mice (IC50 9.6 +/- 3.8 microm). This effect was inhibited by CGP54626 (0.2 microm, 46.2 +/- 13.6% inhibition, 300 microm baclofen n = 7) a concentration which, by itself, had no effect on the EFS-evoked contractions. 5. The effects of baclofen in both ileum and urinary bladder were absent in the GABA(B1) receptor subunit (-/-) mice; however, responses to EFS were unaffected in (-/-) when compared to the (+/+) mice. 6. Our data suggest that, as in the central nervous system (CNS), the GABA(B1) receptor subunit is an essential requirement for GABA(B) receptor function in the enteric and PNS. As such, these data do not provide a structural explanation for the existence of putative subtypes of GABA(B) receptor, suggested by studies such as those in which different rank-orders of GABA(B) agonist affinity have been reported in different tissues. 相似文献
10.
Efficient transfection of NG108-15 cells with GABA(B) receptor subunits was achieved using polyethylenimine. Baclofen modulated high voltage-activated Ca(2+) current in differentiated cells transfected with GABA(B1) and GABA(B2) receptor subunits or with the GABA(B2) subunit alone, but not with the GABA(B1) subunit alone. Characteristics of the current modulation were very similar for cells transfected with GABA(B1/2) and GABA(B2) subunits. Using antisense oligonucleotides against GABA(B1) subunits and also western immunoblotting, we are able to show that NG108-15 cells contain endogenous GABA(B1) subunits. Therefore, functional receptors can be formed by the combination of native GABA(B1) subunits with transfected GABA(B2) subunits, in agreement with the proposed heteromeric structure of GABA(B) receptors. Finally, we used selective channel blockers to identify the subtypes of Ca(2+) channels that are modulated by GABA(B) receptors. In fact, in differentiated NG108-15 cells, the recombinant GABA(B) receptors couple only to N-type Ca(2+) channels. 相似文献
11.
Chronic pain is induced by tissue or nerve damage and is accompanied by pain hypersensitivity (i.e., allodynia and hyperalgesia). Previous studies using in vivo two-photon microscopy have shown functional and structural changes in the primary somatosensory (S1) cortex at the cellular and synaptic levels in inflammatory and neuropathic chronic pain. Furthermore, alterations in local cortical circuits were revealed during the development of chronic pain. In this review, we summarize recent findings regarding functional and structural plastic changes of the S1 cortex and alteration of the S1 inhibitory network in chronic pain. Finally, we discuss potential neuromodulators driving modified cortical circuits and suggest further studies to understand the cortical mechanisms that induce pain hypersensitivity. 相似文献
12.
Galvez T Urwyler S Prézeau L Mosbacher J Joly C Malitschek B Heid J Brabet I Froestl W Bettler B Kaupmann K Pin JP 《Molecular pharmacology》2000,57(3):419-426
The gamma-aminobutyric acid (GABA) receptor type B (GABA(B)R) is constituted of at least two homologous proteins, GABA(B)R1 and GABA(B)R2. These proteins share sequence and structural similarity with metabotropic glutamate and Ca(2+)-sensing receptors, both of which are sensitive to Ca(2+). Using rat brain membranes, we report here that the affinity of GABA and 3-aminopropylphosphinic acid for the GABA(B)R receptor is decreased by a factor >10 in the absence of Ca(2+). Such a large effect of Ca(2+) is not observed with baclofen or the antagonists CGP64213 and CGP56999A. In contrast to baclofen, the potency of GABA in stimulating GTPgammaS binding in rat brain membranes is also decreased by a factor >10 upon Ca(2+) removal. The potency for Ca(2+) in regulating GABA affinity was 37 microM. In cells expressing GABA(B)R1, the potency of GABA, but not of baclofen, in displacing bound (125)I-CGP64213 was similarly decreased in the absence of Ca(2+). To identify residues that are responsible for the Ca(2+) effect, the pharmacological profile and the Ca(2+) sensitivity of a series of GABA(B)R1 mutants were examined. The mutation of Ser269 into Ala was found to decrease the affinity of GABA, but not of baclofen, and the GABA affinity was found not to be affected upon Ca(2+) removal. Finally, the effect of Ca(2+) on the GABA(B) receptor function is no longer observed in cells coexpressing this GABA(B)R1-S269A mutant and the wild-type GABA(B)R2. Taken together, these results show that Ser269, which is conserved in the GABA(B)R1 protein from Caenorhabditis elegans to mammals, is critical for the Ca(2+)-effect on the heteromeric GABA(B) receptor. 相似文献
13.
1. In order to ascertain whether both GABA(A) and GABA(B), or only GABA(B) receptors, directly modulate thermoregulation in conscious rabbits, GABA(A)/GABA(B) agonist and antagonist agents were injected intracerebroventricularly in conscious rabbits while monitoring changes in rectal temperature (RT), gross motor behaviour (GMB) and electrocorticogram (ECoG) power spectra (ps) from sensorimotor cortices. 2. GABA (48 micromol), nipecotic acid (50 nmol), THIP (60 nmol), muscimol (18 nmol) and baclofen (8 nmol) induced hypothermia (-deltaRTmax values of 1.70+/-0.1, 1.4+/-0.2, 1.0+/-0.4, 1.1+/-0.2 and 1.6+/-0.3 degrees C, respectively), accompanied by inhibition of GMB and ECoG synchronization. THIP increased ps at delta frequency band (1.1-3.3 Hz), while GABA, nipecotic acid, muscimol and baclofen did the same at both delta and (4.6-6.5 Hz) frequency bands. ECoG ps changes were concomitant or even preceded hypothermia. 3. Bicuculline (1.8 nmol) induced hyperthermia (deltaRTmax 1.2+/-0.5 degrees C) and slight excitation of GMB, while CGP35348 (1.2 micromol) did not affect RT nor GMB. Both compounds did not affect ECoG ps. 4. Bicuculline potentiated muscimol-induced hypothermia, inhibition of GMB and synchronization of ECoG, while CGP35348 fully antagonized these effects. 5. In conclusion, the present results, while confirming the prevailing role of GABA(B), also outline a direct involvement of GABA(A) receptors in the central mechanisms of thermoregulation. Ascending inhibition towards discrete cortical areas controlling muscular activity and thermogenesis may result from GABA receptor activation in neurones proximal to the ventricles, thus contributing to hypothermia, although hypothermia-induced reduction of neuronal activity of these cortical areas cannot be ruled out. 相似文献
14.
The effect of GABA receptor agonists and antagonists on anxiety behavior in rats in the elevated-plus-maze has been investigated. The increase in two parameters of %open arm entries (%OAE) and %time spent in the open arms (%OAT) and decrease in the %time spent in closed arm (%CAT) was considered as antianxiety effects. Intracerebroventricular (i.c.v.) injection of different doses of the GABA(A) receptor agonist muscimol (0.25, 0.5, and 1 microg/rat) increased %OAE and %OAT and decreased %CAT in rats dose-dependently. The higher response was obtained with 1 microg/rat of the drug. Neither icv (0.05, 0.1, and 0.2 microg/rat) nor intraperitoneal (i.p.) (1, 2, and 4 mg/kg) injection of the GABA(B) receptor agonist baclofen altered %OAE, %OAT, and %CAT. However, the GABA(B) receptor antagonist CGP35348 (5, 10, and 30 microg/rat i.c.v.) increased %OAE and %OAT and decreased %CAT in the animals. The response induced by injection of muscimol (0.5 microg/rat i.c.v.) or administration of CGP35348 (10 microg/rat i.c.v.) was reduced by i.c.v. (1, 2, and 4 microg/rat) or i.p. (0.25, 0.5, and 0.75 mg/kg) injection of the GABA(A) receptor antagonist bicuculline, except the effect of CGP35348 on %CAT which was not significantly altered by i.p. administration of bicuculline. Ip but not i.c.v. administration of bicuculline by itself reduced both %OAE and %OAT but did not alter %CAT. None of the drugs altered the locomotor activity of the animals. The current findings support our hypothesis that the anxiolytic effects of GABA(B) antagonist are mediated by autoreceptor blockade-induced release of endogenous GABA, which in turn activates postsynaptic GABA(A) receptors. 相似文献
15.
16.
Raval P Bingham S Aiyar N Elliott JD Hunter AJ Ohlstein EH Parsons AA 《British journal of pharmacology》1999,126(2):485-493
1. The effects of intravenous administration of endothelin (ET) receptor antagonists SB-209670 (0.001-10.0 mg kg(-1)), SB-217242, SB-234551 (0.01-10.0 mg kg(-1)) and BQ-788 (0.001-1.0 mg kg(-1)) were investigated on trigeminal nerve ganglion stimulation-induced neurovascular reflexes in the carotid vasculature of the anaesthetized cat. Comparisons were made with sumatriptan (0.003-3.0 mg kg(-1)) and alpha-CGRP8-37 (0.001-0.1 mg kg(-1)). 2. Trigeminal nerve ganglion stimulation produced frequency related increases in carotid blood flow, reductions in carotid vascular resistance and non-frequency related increases in blood pressure. Guanethidine (3 mg kg(-1), i.v.) blocked trigeminal nerve ganglion-induced increases in blood pressure but had no effect on changes in carotid flow or resistance. Maximal reductions in carotid vascular resistance was observed at 10 Hz, and this frequency was selected to investigate the effects of drugs on trigeminal nerve ganglion stimulation-induced responses in guanethidine treated cats. 3. Saline, alpha-CGRP8-37 SB-209670 and BQ-788 had little or no effect on resting haemodynamic parameters. SB-217242 (10 mg kg(-1), n=3) produced a 56% reduction in arterial blood pressure whereas SB-233451 (10 mg kg(-1), n=3) produced a 30% reduction in carotid vascular resistance. Sumatriptan produced dose-related reductions in resting carotid flow and increases (max. 104% at 0.3 mg kg(-1), n = 5) in vascular resistance. 4. SB-209670 (n=6-7), SB-217242 (n=3) and BQ-788 (n=3) produced inhibition of trigeminal nerve ganglion stimulation-induced reductions in carotid vascular resistance. Saline, SB-234551, alpha-CGRP8-37 and sumatriptan had no effect. 5. These data demonstrate ET(B) receptor blockade attenuates the vasodilator effects of trigeminal nerve ganglion stimulation in the carotid vascular bed of guanethidine pretreated anaesthetized cats. 相似文献
17.
A three-dimensional model of the extracellular domain of the GABA(B) receptor has been built by homology with the leucine/isoleucine/valine-binding protein. The complete putative GABA-binding site in the extracellular domain is described in both the open and closed states. The dynamics of the "Venus flytrap" mechanism has been studied, suggesting that the molecular dipole moments play a key role in GABA binding and receptor activation. Important residues putatively implicated either in ligand binding or in the dynamics of the receptor are pinpointed, thus highlighting target residues for mutagenesis experiments and model validation. 相似文献
18.
Pibiri F Carboni G Carai MA Gessa GL Castelli MP 《European journal of pharmacology》2005,515(1-3):94-98
Chronic treatment of mice with the specific gamma-aminobutyric acid(B) (GABA(B)) receptor antagonist (2S)(+)-5,5-dimethyl-2-morpholineacetic acid (SCH 50,911) increased both the number of GABA(B) receptors in the whole brain (measured as [3H]CGP 54626 [S-(R,R)]-3-[[1-(3,4-dichlorophenyl)amino]-2-hydroxypropyl](cyclohexylmethyl)phosphinic acid hydrochloride binding) and the ability of baclofen to activate GABA(B) receptor coupled G-protein (measured as % reduction of the EC50 of baclofen to activate [35S]GTP(gamma)S binding). The results indicate that persistent blockade of GABA(B) receptors leads to their compensatory up-regulation and suggest that GABA(B) receptors are tonically activated by endogenous GABA. 相似文献
19.
Lee HH Koh HC Chae SL Kang JS Lee CH Paik DJ Shin IC 《Journal of autonomic pharmacology》2001,21(5-6):249-254
1 Injection of N(6)-cyclohexyladenosine (CHA; 1, 5 and 10 nmol), an adenosine A1 receptor agonist, into the posterior hypothalamus of rats produced a dose-dependent decrease in blood pressure (BP) and heart rate (HR). 2 Pretreatment with 8-cyclopentyl-1,3-dimethylxanthine (CPDX; 50 nmol), an adenosine A1 receptor antagonist, blocked the depressor and bradycardic effects of CHA (10 nmol). 3 Pretreatment with 8-bromo-cyclic adenosine monophosphate (AMP) (10 nmol), a cAMP analogue, attenuated the depressor and bradycardic effect of CHA (10 nmol); 8-bromo-cyclic guanosine monophosphate (GMP) (10 nmol), a cGMP analogue, did not modify those effects of CHA. 4 In addition, pretreatment with 5-aminovaleric acid (25 nmol), a gamma-aminobutyric acid (GABA)(B) receptor antagonist, attenuated the depressor and bradycardic effects of CHA (10 nmol). 5 These results suggest that adenosine A1 receptors in the posterior hypothalamus have an inhibitory role in the central cardiovascular regulation and that these vasodepressive and bradycardic actions are modified by raised cAMP and by GABA(B) receptor inhibition. 相似文献
20.
Electrical stimulation of the superior sagittal sinus in the cat activated neurones in the trigeminal nucleus caudalis. The mean latency of these responses (10.1 ms) was consistent with activation of Adelta-fibres. Microiontophoretic ejection of either the selective serotonin(1A) (5-HT(1A)) agonist (+)8-OH-DPAT or the 5-HT(1B/1D) agonist alniditan resulted in the reversible suppression of the response to superior sagittal sinus stimulation of 29/46 and 18/20 trigeminal neurones, respectively. The response to sagittal sinus stimulation was suppressed by 39+/-5% (n=46) by (+)8-OH-DPAT and 65+/-5% (n=20) by alniditan. Microiontophoretic ejection of the selective 5-HT(1A) receptor antagonist WAY-100635 significantly antagonised the effect of (+)8-OH-DPAT (effect reduced by 30%, P<0.05). The ejection of GR-127935, a selective 5-HT(1B/1D), antagonist, significantly antagonised the effect of alniditan (effect reduced by 52%, P<0.02). In eight neurones the response to convergent facial receptive field stimulation was also tested in the presence of alniditan. Only 4/8 receptive field responses were suppressed by alniditan (compared to 8/8 sagittal sinus responses) and alniditan had significantly less quantitative effect on the response to receptive field stimulation than on the response to sagittal sinus stimulation in the same neurones (mean reduction 36+/-14% and 66+/-8%, respectively, P<0.05). These results suggest that pharmacological modulation of the trigeminovascular system can occur at the first central synapse and that, in addition to 5-HT(1B/1D) receptors, 5-HT(1A) receptors may be involved in the modulation of sensory neurotransmission in the trigeminovascular system. 相似文献