首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diseases owing to defects of oxidative phosphorylation (OXPHOS) affect approximately 1 in 8,000 individuals. Clinical manifestations can be extremely variable and range from single-affected tissues to multisystemic syndromes. In general, tissues with a high energy demand, like brain, heart and muscle, are affected. The OXPHOS system is under dual genetic control, and mutations in both nuclear and mitochondrial genes can cause OXPHOS diseases. The expression and segregation of mitochondrial DNA (mtDNA) mutations is different from nuclear gene defects. The mtDNA mutations can be either homoplasmic or heteroplasmic and in the latter case disease becomes manifest when the mutation exceeds a tissue-specific threshold. This mutation load can vary between tissues and often an exact correlation between mutation load and phenotypic expression is lacking. The transmission of mtDNA mutations is exclusively maternal, but the mutation load between embryos can vary tremendously because of a segregational bottleneck. Diseases by nuclear gene mutations show a normal Mendelian inheritance pattern and often have a more constant clinical manifestation. Given the prevalence and severity of OXPHOS disorders and the lack of adequate therapy, existing and new methods for the prevention of transmission of OXPHOS disorders, like prenatal diagnosis (PND), preimplantation genetic diagnosis (PGD), cytoplasmic transfer (CT) and nuclear transfer (NT), are technically and ethically evaluated.  相似文献   

2.
This study reports clinical, biochemical and histopathological findings associated with a novel homozygous MPV17 mutation in four patients with mitochondrial depletion syndrome. The severe course of the disease, which started in the first weeks of life, was dominated by a failure to thrive, hypotonia and liver dysfunction, with relatively mild neurological involvement. All affected infants died by 1 year of age. Laboratory findings included progressive liver failure (hypertransaminasaemia, icterus, and coagulopathy), recurrent hypoglycaemia, lactic acidaemia, hyperferritinaemia, and increased transferrin saturation. Histological and ultrastructural analyses uncovered significant lipid accumulation in hepatocytes and myocytes. A severe decrease in the mitochondrial/nuclear DNA (mtDNA/nDNA) ratio was found post‐mortem in the livers (and in one muscle specimen) of both examined patients. Oxidative phosphorylation system (OXPHOS) Western blotting revealed low levels of complexes I, III and IV subunits. The highlights of our findings are as follows: (i) The novel p.Pro64Arg mutation is the second recurrent MPV17 mutation reported. The phenotype associated with the p.Pro64Arg mutation differs from the phenotype of the relatively common p.Arg50Gln mutation, suggesting the existence of a genotype–phenotype correlation. (ii) Tissues collected from patients during autopsy may be useful for both mtDNA/nDNA ratio assessment and OXPHOS Western blotting.  相似文献   

3.
Mitochondrial diseases have been shown to result from mutations in mitochondrial genes located in either the nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Mitochondrial OXPHOS complex I has 45 subunits encoded by 38 nuclear and 7 mitochondrial genes. Two male patients in a putative X-linked pedigree exhibiting a progressive neurodegenerative disorder and a severe muscle complex I enzyme defect were analyzed for mutations in the 38 nDNA and seven mtDNA encoded complex I subunits. The nDNA X-linked NDUFA1 gene (MWFE polypeptide) was discovered to harbor a novel missense mutation which changed a highly conserved glycine at position 32 to an arginine, shown to segregate with the disease. When this mutation was introduced into a NDUFA1 null hamster cell line, a substantial decrease in the complex I assembly and activity was observed. When the mtDNA of the patient was analyzed, potentially relevant missense mutations were observed in the complex I genes. Transmitochondrial cybrids containing the patient’s mtDNA resulted in a mild complex I deficiency. Interestingly enough, the nDNA encoded MWFE polypeptide has been shown to interact with various mtDNA encoded complex I subunits. Therefore, we hypothesize that the novel G32R mutation in NDUFA1 is causing complex I deficiency either by itself or in synergy with additional mtDNA variants.  相似文献   

4.
Mitochondria produce adenosine triphosphate (ATP) for energy requirements via the mitochondrial oxidative phosphorylation (OXPHOS) system. One of the hallmarks of cancer is the energy shift toward glycolysis. Low OXPHOS activity and increased glycolysis are associated with aggressive types of cancer. Mitochondria have their own genome (mitochondrial DNA [mtDNA]) encoding for 13 essential subunits of the OXPHOS enzyme complexes. We studied mtDNA in childhood acute lymphoblastic leukemia (ALL) to detect potential pathogenic mutations in OXPHOS complexes. The whole mtDNA from blood and bone marrow samples at diagnosis and follow‐up from 36 ALL patients were analyzed. Novel or previously described pathogenic mtDNA mutations were identified in 8 out of 36 patients. Six out of these 8 patients had died from ALL. Five out of 36 patients had an identified poor prognosis genetic marker, and 4 of these patients had mtDNA mutations. Missense or nonsense mtDNA mutations were detected in the genes encoding subunits of OXPHOS complexes, as follows: MT‐ND1, MT‐ND2, MT‐ND4L and MT‐ND6 of complex I; MT‐CO3 of complex IV; and MT‐ATP6 and MT‐ATP8 of complex V. We discovered mtDNA mutations in childhood ALL supporting the hypothesis that non‐neutral variants in mtDNA affecting the OXPHOS function may be related to leukemic clones.  相似文献   

5.
Non‐alcoholic fatty liver disease (NAFLD) is associated with mitochondrial dysfunction, a decreased liver mitochondrial DNA (mtDNA) content, and impaired energy metabolism. To understand the clinical implications of mtDNA diversity in the biology of NAFLD, we applied deep‐coverage whole sequencing of the liver mitochondrial genomes. We used a multistage study design, including a discovery phase, a phenotype‐oriented study to assess the mutational burden in patients with steatohepatitis at different stages of liver fibrosis, and a replication study to validate findings in loci of interest. We also assessed the potential protein‐level impact of the observed mutations. To determine whether the observed changes are tissue‐specific, we compared the liver and the corresponding peripheral blood entire mitochondrial genomes. The nuclear genes POLG and POLG2 (mitochondrial DNA polymerase‐γ) were also sequenced. We observed that the liver mtDNA of patients with NAFLD harbours complex genomes with a significantly higher mutational (1.28‐fold) rate and degree of heteroplasmy than in controls. The analysis of liver mitochondrial genomes of patients with different degrees of fibrosis revealed that the disease severity is associated with an overall 1.4‐fold increase in mutation rate, including mutations in genes of the oxidative phosphorylation (OXPHOS) chain. Significant differences in gene and protein expression patterns were observed in association with the cumulative number of OXPHOS polymorphic sites. We observed a high degree of homology (~98%) between the blood and liver mitochondrial genomes. A missense POLG p.Gln1236His variant was associated with liver mtDNA copy number. In conclusion, we have demonstrated that OXPHOS genes contain the highest number of hotspot positions associated with a more severe phenotype. The variability of the mitochondrial genomes probably originates from a common germline source; hence, it may explain a fraction of the ‘missing heritability’ of NAFLD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

6.
7.
Leber hereditary optic neuropathy (LHON) is caused by point mutations in mitochondrial DNA (mtDNA), and is characterized by bilateral, painless sub-acute visual loss that develops during the second decade of life. Here we report the case of a five year old girl who presented with clinical and neuroradiological findings reminiscent of Leigh syndrome but carried a mtDNA mutation m.11778G>A (p.R340H) in the MTND4 gene usually observed in patients with LHON. This case is unusual for age of onset, gender, associated neurological findings and evolution, further expanding the clinical spectrum associated with primary LHON mtDNA mutations.  相似文献   

8.
9.
Defects of the mitochondrial respiratory chain are associated with a diverse spectrum of clinical phenotypes, and may be caused by mutations in either the nuclear or the mitochondrial genome (mitochondrial DNA (mtDNA)). Isolated complex I deficiency is the most common enzyme defect in mitochondrial disorders, particularly in children in whom family history is often consistent with sporadic or autosomal recessive inheritance, implicating a nuclear genetic cause. In contrast, although a number of recurrent, pathogenic mtDNA mutations have been described, historically, these have been perceived as rare causes of paediatric complex I deficiency. We reviewed the clinical and genetic findings in a large cohort of 109 paediatric patients with isolated complex I deficiency from 101 families. Pathogenic mtDNA mutations were found in 29 of 101 probands (29%), 21 in MTND subunit genes and 8 in mtDNA tRNA genes. Nuclear gene defects were inferred in 38 of 101 (38%) probands based on cell hybrid studies, mtDNA sequencing or mutation analysis (nuclear gene mutations were identified in 22 probands). Leigh or Leigh-like disease was the most common clinical presentation in both mtDNA and nuclear genetic defects. The median age at onset was higher in mtDNA patients (12 months) than in patients with a nuclear gene defect (3 months). However, considerable overlap existed, with onset varying from 0 to >60 months in both groups. Our findings confirm that pathogenic mtDNA mutations are a significant cause of complex I deficiency in children. In the absence of parental consanguinity, we recommend whole mitochondrial genome sequencing as a key approach to elucidate the underlying molecular genetic abnormality.  相似文献   

10.

Background

Enzyme deficiencies of the oxidative phosphorylation (OXPHOS) system may be caused by mutations in the mitochondrial DNA (mtDNA) or in the nuclear DNA.

Objective

To analyse the sequences of the mtDNA coding region in 25 patients with OXPHOS system deficiency to identify the underlying genetic defect.

Results

Three novel non‐synonymous substitutions in protein‐coding genes, 4681T→C in MT‐ND2, 9891T→C in MT‐CO3 and 14122A→G in MT‐ND5, and one novel substitution in the 12S rRNA gene, 686A→G, were found. The definitely pathogenic mutation 3460G→A was identified in an 18‐year‐old woman who had severe isolated complex I deficiency and progressive myopathy.

Conclusions

Bioinformatic analyses suggest a pathogenic role for the novel 4681T→C substitution found in a boy with Leigh''s disease. These results show that the clinical phenotype caused by the primary Leber''s hereditary optic neuropathy mutation 3460G→A is more variable than has been thought. In the remaining 23 patients, the role of mtDNA mutations as a cause of the OXPHOS system deficiency could be excluded. The deficiency in these children probably originates from mutations in the nuclear genes coding for respiratory enzyme subunits or assembly factors.The oxidative phosphorylation (OXPHOS) system consists of five enzyme complexes composed of >70 subunits encoded by the nuclear genome and 13 subunits encoded by mitochondrial DNA (mtDNA). Both isolated and combined enzyme complex deficiencies have been reported in children with various clinical phenotypes. Defects in the OXPHOS system are common causes of inborn errors in energy metabolism, with an estimated incidence of 1 per 10 000 live births.1 The inheritance pattern is autosomal recessive in most cases, but autosomal dominant and X‐chromosomal inheritance has also been described. Maternal inheritance points to a mutation in mtDNA as the cause of the disease.2More than 2000 human mtDNA‐coding region sequences have been reported since 2000, and about half of these sequences are from Europeans.3,4,5,6,7,8 The total number of non‐synonymous mutations leading to an amino acid replacement in mtDNA of European origin has been estimated to be 1081, but as many as 18 100 sequences should be analysed to identify 95% of these substitutions.9 Sequencing of the complete mtDNA from patients with an OXPHOS system deficiency will evidently lead to the identification of novel pathogenic mutations. This approach has already yielded several novel mutations in MT‐ND genes so far, and some of them—for example, 10191T→C and 14487T→C—may not be uncommon causes of disease.10,11

Key points

  • Enzyme deficiencies of the oxidative phosphorylation (OXPHOS) system may be caused by mutations in the mitochondrial DNA (mtDNA) or in the nuclear DNA. The sequence of mtDNA‐coding region was analysed in 25 patients with OXPHOS system deficiency to identify the underlying genetic defect.
  • 4681T→C, a novel substitution in MT‐ND2, was found in a patient with Leigh''s disease. Further analyses suggested a pathogenic role for this substitution.
  • 3460G→A, one of the mutations causing Leber''s hereditary optic neuropathy, was identified in a patient with progressive myopathy. The finding suggests that the clinical phenotype caused by this mutation is more variable than what has been known.
There is a growing need to analyse complete mtDNA sequences with a high throughput and in a cost‐efficient manner. We analysed the entire coding region of mtDNA in 28 patients (consisting of children and young adults) with OXPHOS system deficiency using a protocol consisting of conformation‐sensitive gel electrophoresis (CSGE) of amplified mtDNA fragments and subsequent sequencing of those fragments that differed in mobility in CSGE. Obtained sequences were compared with previously reported mtDNA sequences to identify haplotype‐specific or novel variants, and to detect possible sequencing errors.12 The quality of the sequences was confirmed by comparison of the sequences obtained using the CSGE protocol with those obtained using direct mtDNA sequencing, and by correct identification of three samples with a known pathogenic mutation. Three novel non‐synonymous substitutions and one novel rRNA substitution were detected, and their pathogenic potential was estimated on several criteria.  相似文献   

11.
Diseases caused by nuclear genes affecting mtDNA stability   总被引:10,自引:0,他引:10  
Diseases caused by nuclear genes that affect mitochondrial DNA (mtDNA) stability are an interesting group of mitochondrial disorders, involving both cellular genomes. In these disorders, a primary nuclear gene defect causes secondary mtDNA loss or deletion formation, which leads to tissue dysfunction. Therefore, the diseases clinically resemble those caused by mtDNA mutations, but follow a Mendelian inheritance pattern. Several clinical entities associated with multiple mtDNA deletions have been characterized, the most frequently described being autosomal dominant progressive external ophthalmoplegia (adPEO). MtDNA depletion syndrome (MDS) is a severe disease of childhood, in which tissue-specific loss of mtDNA is seen. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) patients may have multiple mtDNA deletions and/or mtDNA depletion. Recent reports of thymidine phosphorylase mutations in MNGIE and adenine nucleotide translocator mutations in adPEO have given new insights into the mechanisms of mtDNA maintenance in mammals. The common mechanism underlying both of these gene defects could be disturbed mitochondrial nucleoside pools, the building blocks of mtDNA. Future studies on MNGIE and adPEO pathogenesis, and identification of additional gene defects in adPEO and MDS will provide further understanding about the mammalian mtDNA maintenance and the crosstalk between the nuclear and mitochondrial genomes.  相似文献   

12.

Background

Detection of mutations in the mitochondrial DNA (mtDNA) is usually limited to common mutations and the transfer RNA genes. However, mutations in other mtDNA regions can be an important cause of oxidative phosphorylation (OXPHOS) disease as well.

Objective

To investigate whether regions in the mtDNA are preferentially mutated in patients with OXPHOS disease.

Methods

Screening of the mtDNA for heteroplasmic mutations was performed by denaturing high‐performance liquid chromatography analysis of 116 patients with OXPHOS disease but without the common mtDNA mutations.

Results

An mtDNA sequence variant was detected in 15 patients, 5 of which were present in the ND5 gene. One sequence variant was new and three were known, one of which was found twice. The novel sequence variant m.13511A→T occurred in a patient with a Leigh‐like syndrome. The known mutation m.13513G→A, associated with mitochondrial encephalomyopathy lactic acidosis and stroke‐like syndrome (MELAS) and MELAS/Leigh/Leber hereditary optic neuropathy overlap syndrome, was found in a relatively low percentage in two patients from two different families, one with a MELAS/Leigh phenotype and one with a MELAS/chronic progressive external ophthalmoplegia phenotype. The known mutation m.13042G→A, detected previously in a patient with a MELAS/myoclonic epilepsy, ragged red fibres phenotype and in a family with a prevalent ocular phenotype, was now found in a patient with a Leigh‐like phenotype. The sequence variant m.12622G→A was reported once in a control database as a polymorphism, but is reported in this paper as heteroplasmic in three brothers, all with infantile encephalopathy (Leigh syndrome) fatal within the first 15 days of life. Therefore, a causal relationship between the presence of this sequence variant and the onset of mitochondrial disease cannot be entirely excluded at this moment.

Conclusions

Mutation screening of the ND5 gene is advised for routine diagnostics of patients with OXPHOS disease, especially for those with MELAS‐ and Leigh‐like syndrome with a complex I deficiency.Mitochondria are key for many cellular processes. One of the most important mechanisms is oxidative phosphorylation (OXPHOS) resulting in the production of cellular energy in the form of ATP. The OXPHOS system consists of five multiprotein complexes (I–V) and two mobile electron carriers (coenzyme q and cytochrome c) embedded in the lipid bilayer of the mitochondrial inner membrane.1,2 The mitochondrial genome encodes 13 essential polypeptides of the OXPHOS system and the necessary RNA machinery (two ribosomal RNAs and 22 transfer RNAs (tRNA)). The remaining structural proteins and proteins involved in import, assembly and mitochondrial DNA (mtDNA) replication are encoded by the nucleus and specifically targeted to the mitochondria. OXPHOS disease is characterised by a wide variety of clinical symptoms, in which one or more organs can be involved, and by genetic and clinical heterogeneity.2,3 With an estimated total number of about 1500 nuclear mitochondrial genes of which 600 have been identified so far,4 this complicates the process of identification of the underlying genetic defect. Although mutations in the mtDNA tRNA genes have been reported far more often than other mutations in mtDNA protein‐coding genes,2 this figure is highly biased by a preferential screening of these genes.In this study, the complete mtDNA was screened for heteroplasmic mutations using denaturing high‐performance liquid chromatography (DHPLC) analysis in a group of 116 unrelated patients suspected for OXPHOS disease but without the common mutations for mitochondrial encephalomyopathy, lactic acidosis and stroke‐like syndrome (MELAS) m.3243A→G, myoclonic epilepsy, ragged red fibres (MERRF) m.8344A→G, Leigh/neuropathy, ataxia and retinitis pigmentosa m.8993T→G/C or large deletions. For this group of patients, we report that the ND5 gene is a commonly mutated gene.  相似文献   

13.
PURPOSE: Oxidative phosphorylation is under dual genetic control of the nuclear and the mitochondrial DNA (mtDNA). Oxidative phosphorylation disorders are clinically and genetically heterogeneous, which makes it difficult to determine the genetic defect, and symptom-based protocols which link clinical symptoms directly to a specific gene or mtDNA mutation are falling short. Moreover, approximately 25% of the pediatric patients with oxidative phosphorylation disorders is estimated to have mutations in the mtDNA and a standard screening approach for common mutations and deletions will only explain part of these cases. Therefore, we tested a new CHIP-based screening method for the mtDNA. METHODS: MitoChip (Affymetrix) resequencing was performed on three test samples and on 28 patient samples. RESULTS: Call rates were 94% on average and heteroplasmy detection levels varied from 5-50%. A genetic diagnosis can be made in almost one-quarter of the patients at a potential output of 8 complete mtDNA sequences every 4 days. Moreover, a number of potentially pathogenic unclassified variants (UV) were detected. CONCLUSIONS: The availability of long-range PCR protocols and the predominance of single nucleotide substitutions in the mtDNA make the resequencing CHIP a very fast and reliable method to screen the complete mtDNA for mutations.  相似文献   

14.
Leigh syndrome is a subacute necrotising encephalomyopathy frequently ascribed to mitochondrial respiratory chain deficiency. This condition is genetically heterogeneous, as mutations in both mitochondrial (mt) and nuclear genes have been reported. Here, we report the G13513A transition in the ND5 mtDNA gene in three unrelated children with complex I deficiency and a peculiar MRI aspect distinct from typical Leigh syndrome. Brain MRI consistently showed a specific involvement of the substantia nigra and medulla oblongata sparing the basal ganglia. Variable degrees of heteroplasmy were found in all tissues tested and a high percentage of mutant mtDNA was observed in muscle. The asymptomatic mothers presented low levels of mutant mtDNA in blood leucocytes. This mutation, which affects an evolutionary conserved amino acid (D393N), has been previously reported in adult patients with MELAS or LHON/MELAS syndromes, emphasising the clinical heterogeneity of mitochondrial DNA mutations. Since the G13513A mutation was found in 21% of our patients with Leigh syndrome and complex I deficiency (3/14), it appears that this mutation represents a frequent cause of Leigh-like syndrome, which should be systematically tested for molecular diagnosis in affected children and for genetic counselling in their maternal relatives.  相似文献   

15.
A number of nuclear mutations have been identified in a variety of mitochondrial diseases including progressive external ophthalmoplegia (PEO), Alpers syndrome and other neuromuscular and oxidative phosphorylation defects. More than 50 mutations have been identified in POLG, which encodes the human mitochondrial DNA (mtDNA) polymerase gamma, PEO and Alpers patients. To rapidly characterize the effects of these mutations, we have developed a versatile system that enables the consequences of homologous mutations, introduced in situ into the yeast mtDNA polymerase gene MIP1, to be evaluated in vivo in haploid and diploid cells. Overall, distinct phenotypes for expression of each of the mip1-PEO mutations were observed, including respiration-defective cells with decreased viability, dominant-negative mutant polymerases, elevated levels of mitochondrial and nuclear DNA damage and chromosomal mutations. Mutations in the polymerase domain caused the most severe phenotype accompanied by loss of mtDNA and cell viability, whereas the mutation in the exonuclease domain showed mild dominance with loss of mtDNA. Interestingly, the linker region mutation caused elevated mitochondrial and nuclear DNA damage. The cellular processes contributing to these observations in the mutant yeast cells are potentially relevant to understanding the pathologies observed in human mitochondrial disease patients.  相似文献   

16.
Different tissues display distinct sensitivities to defective mitochondrial oxidative phosphorylation (OXPHOS). Tissues highly dependent on oxygen such as the cardiac muscle, skeletal and smooth muscle, the central and peripheral nervous system, the kidney, and the insulin-producing pancreatic beta-cell are especially susceptible to defective OXPHOS. There is evidence that defective OXPHOS plays an important role in atherogenesis, in the pathogenesis of Alzheimer's disease, Parkinson's disease, diabetes, and aging. Defective OXPHOS may be caused by abnormal mitochondrial biosynthesis due to inherited or acquired mutations in the nuclear (n) or mitochondrial (mt) deoxyribonucleic acid (DNA). For instance, the presence of a mutation of the mtDNA in the pancreatic beta-cell impairs adenosine triphosphate (ATP) generation and insulin synthesis. The nuclear genome controls mitochondrial biosynthesis, but mtDNA has a much higher mutation rate than nDNA because it lacks histones and is exposed to the radical oxygen species (ROS) generated by the electron transport chain, and the mtDNA repair system is limited. Defective OXPHOS may be caused by insufficient fuel supply, by defective electron transport chain enzymes (Complexes I - IV), lack of the electron carrier coenzyme Q10, lack of oxygen due to ischemia or anemia, or excessive membrane leakage, resulting in insufficient mitochondrial inner membrane potential for ATP synthesis by the F0F1-ATPase. Human tissues can counteract OXPHOS defects by stimulating mitochondrial biosynthesis; however, above a certain threshold the lack of ATP causes cell death. Many agents affect OXPHOS. Several nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit or uncouple OXPHOS and induce the 'topical' phase of gastrointestinal ulcer formation. Uncoupled mitochondria reduce cell viability. The Helicobacter pylori induces uncoupling. The uncoupling that opens the membrane pores can activate apoptosis. Cholic acid in experimental atherogenic diets inhibits Complex IV, cocaine inhibits Complex I, the poliovirus inhibits Complex II, ceramide inhibits Complex III, azide, cyanide, chloroform, and methamphetamine inhibit Complex IV. Ethanol abuse and antiviral nucleoside analogue therapy inhibit mtDNA replication. By contrast, melatonin stimulates Complexes I and IV and Gingko biloba stimulates Complexes I and III. Oral Q10 supplementation is effective in treating cardiomyopathies and in restoring plasma levels reduced by the statin type of cholesterol-lowering drugs.  相似文献   

17.
18.
The mitochondrial translation system is responsible for the synthesis of 13 proteins required for oxidative phosphorylation (OXPHOS), the major energy-generating process of our cells. Mitochondrial translation is controlled by various nuclear encoded proteins. In 27 patients with combined OXPHOS deficiencies, in whom complex II (the only complex that is entirely encoded by the nuclear DNA) showed normal activities, and mutations in the mitochondrial genome as well as polymerase gamma were excluded, we screened all mitochondrial translation factors for mutations. Here, we report a mutation in mitochondrial elongation factor G1 (GFM1) in a patient affected by severe, rapidly progressive mitochondrial encephalopathy. This mutation is predicted to result in an Arg250Trp substitution in subdomain G' of the elongation factor G1 protein and is presumed to hamper ribosome-dependent GTP hydrolysis. Strikingly, the decrease in enzyme activities of complex I, III and IV detected in patient fibroblasts was not found in muscle tissue. The OXPHOS system defects and the impairment in mitochondrial translation in fibroblasts were rescued by overexpressing wild-type GFM1, establishing the GFM1 defect as the cause of the fatal mitochondrial disease. Furthermore, this study evinces the importance of a thorough diagnostic biochemical analysis of both muscle tissue and fibroblasts in patients suspected to suffer from a mitochondrial disorder, as enzyme deficiencies can be selectively expressed.  相似文献   

19.
We investigated clinical and cellular phenotypes of 24 children with mutations in the catalytic (alpha) subunit of the mitochondrial DNA (mtDNA) gamma polymerase (POLG1). Twenty-one had Alpers syndrome, the commonest severe POLG1 autosomal recessive phenotype, comprising hepatoencephalopathy and often mtDNA depletion. The cellular mtDNA content reflected the genotype more closely than did clinical features. Patients with tissue depletion of mtDNA all had at least one allele with either a missense mutation in a catalytic domain or a nonsense mutation. Four out of 12 patients exhibited a progressive, mosaic pattern of mtDNA depletion in cultured fibroblasts. All these patients had mutations in a catalytic domain in both POLG1 alleles, in either the polymerase or exonuclease domain or both. The tissue mtDNA content of patients who had two linker mutations was normal, and their phenotypes the mildest. Epilepsy and/or movement disorder were major features in all 21. Previous studies have implicated replication stalling as a mechanism for mtDNA depletion. The mosaic cellular depletion that we have demonstrated in cell cultures may be a manifestation of severe replication stalling. One patient with a severe cellular and clinical phenotype was a compound heterozygote with POLG1 mutations in the polymerase and exonuclease domain intrans. This suggests that POLG1 requires both polymerase and 3'-5' exonuclease activity in the same molecule. This is consistent with current functional models for eukaryotic DNA polymerases, which alternate between polymerizing and editing modes, as determined by competition between these two active sites for the 3' end of the DNA.  相似文献   

20.
Although most components of the mitochondrial translation apparatus are encoded by nuclear genes, all known molecular defects associated with impaired mitochondrial translation are due to mutations in mitochondrial DNA. We investigated two siblings with a severe defect in mitochondrial translation, reduced levels of oxidative phosphorylation complexes containing mitochondrial DNA (mtDNA)-encoded subunits, and progressive hepatoencephalopathy. We mapped the defective gene to a region on chromosome 3q containing elongation factor G1 (EFG1), which encodes a mitochondrial translation factor. Sequencing of EFG1 revealed a mutation affecting a conserved residue of the guanosine triphosphate (GTP)-binding domain. These results define a new class of gene defects underlying disorders of oxidative phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号