首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The aim of this study is to report the pharmacokinetics of omeprazole after intravenous (20 mg/kg) and oral (40 mg/kg) administration to rats with liver cirrhosis induced by dimethylnitrosamine (cirrhotic rats) with respect to CYP isozyme changes. The expressions of CYP1A2 and 3A1 decreased in cirrhotic rats and omeprazole is reported to be mainly metabolized via CYP1A1/2, 2D1, and 3A1/2 in male Sprague–Dawley rats. Hence, the pharmacokinetics of omeprazole could be changed in cirrhotic rats. After intravenous administration to cirrhotic rats, the AUC (1180 μg min/ml versus 474 μg min/ml) and CLNR (17.4 ml/min/kg versus 42.3 ml/min/kg) of omeprazole were significantly greater and slower, respectively, than the controls. This could be due to decrease in the expressions of CYP1A2 and 3A1 in cirrhotic rats. The significantly slower CLNR could be supported by significantly slower in vitro CLint for the disappearance of omeprazole from hepatic microsomal study (0.102 ml/min/mg protein versus 0.144 ml/min/mg protein) and slower hepatic blood flow rate in cirrhotic rats. After oral administration to cirrhotic rats, the AUC difference was considerably greater (451% versus 149%) than that after intravenous administration, possibly due to decrease in intestinal first-pass effect of omeprazole in addition to decrease in hepatic metabolism of omeprazole in cirrhotic rats.  相似文献   

2.
In rats pretreated with dexamethasone (an inducer of CYP3A1/2 in rats) and troleandomycin (an inhibitor of CYP3A1/2 in rats), the area under the plasma concentration-time curve from time zero to time infinity (AUC) values of clarithromycin were significantly smaller (365 compared with 600 micro g min/ml) and greater (1410 compared with 581 micro g min/ml), respectively, than those in control rats. This indicated that clarithromycin was metabolized via CYP3A1/2 in rats. The expression of CYP3A1(23) increased in rats with acute renal failure induced by uranyl nitrate (rats with U-ARF). Hence, it could be expected that AUC of clarithromycin could be smaller in rats with U-ARF. However, after intravenous administration of clarithromycin at a dose of 20mg/kg, the AUC and time-averaged total body (Cl) and nonrenal (Cl(nr)) clearance values were comparable between the two groups of rats. The 9000 x g supernatant fraction of liver homogenates in rats with U-ARF had comparable metabolic activities for clarithromycin compared with those in control rats, suggesting that the CYP3A isozyme responsible for metabolism of clarithromycin seemed not to be expressed considerably in the rats. This could explain the comparable AUC, Cl and Cl(nr) values of clarithromycin between the two groups of rats.  相似文献   

3.
It was reported that the expression of CYP3A1 increased in rats with acute renal failure induced by uranyl nitrate (rat model of U-ARF) compared with controls. It was shown that telithromycin was mainly metabolized via CYP3A1/2 in rats in this study. Hence, the pharmacokinetic parameters of telithromycin were compared after both intravenous and oral administration at a dose of 50 mg/kg to control rats and a rat model of U-ARF. After intravenous administration of telithromycin to rats with U-ARF, the AUC and renal clearance (Cl(r)) were significantly greater (35.0% increase) and slower (99.1% decrease), respectively, than the controls. Unexpectedly, the nonrenal clearance (Cl(nr)) of telithromycin was comparable between the two groups of rats, suggesting that CYP3A isozyme responsible for the metabolism of telithromycin seemed not to be expressed considerably in the rat model of U-ARF. After oral administration of telithromycin to rats with U-ARF, the AUC was also significantly greater (127% increase) than the controls and the value, 127%, was considerably greater than 35.0% after intravenous administration of telithromycin. This may be due mainly to the decrease in the intestinal first-pass effect of telithromycin compared with controls in addition to significantly slower Cl(r) than controls.  相似文献   

4.
It is well known that there are various changes in the expression of hepatic and intestinal CYPs in mutant Nagase analbuminemic rats (NARs). It has been reported that the protein expression of hepatic CYP1A2 was increased, whereas that of hepatic CYP3A1 was not altered, and it was also found that the protein expression of the intestinal CYP1A subfamily significantly increased in NARs from our other study. In addition, in this study additional information about CYP changes in NARs was obtained; the protein expression of the hepatic CYP2D subfamily was not altered, but that of the intestinal CYP3A subfamily increased in NARs. Because omeprazole is metabolized via hepatic CYP1A1/2, 2D1, 3A1/2 in rats, it could be expected that the pharmacokinetics of omeprazole would be altered in NARs. After intravenous administration of omeprazole to NARs, the Clnr was significantly faster than in the controls (110 versus 46.6 ml/min/kg), and this could be due to an increase in hepatic metabolism caused by a greater hepatic CYP1A2 level in addition to greater free fractions of the drug in NARs. After oral administration of omeprazole to NARs, the AUC was also significantly smaller (80.1% decrease) and F was decreased in NARs. This could be primarily due to increased hepatic and intestinal metabolism caused by greater hepatic CYP1A2 and intestinal CYP1A and 3A levels. In particular, the smaller F could mainly result from greater hepatic and intestinal first‐pass effect in NARs than in the controls. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Effects of water deprivation on the pharmacokinetics of metformin in rats   总被引:1,自引:0,他引:1  
It was reported that metformin was mainly metabolized via hepatic CYP2C11, 2D1 and 3A1/2 in rats, and in a rat model of dehydration, the expressions of hepatic CYP2C11 and 3A1/2 were not changed. Hence, it could be expected that the Cl(nr) of metformin is comparable between two groups of rats if the contribution of CYP2D1 in the rat model of dehydration is not considerable. It was also reported that the timed-interval renal clearance of metformin was dependent on the urine flow rate in rats. In the rat model of dehydration, the 24 h urine output was significantly smaller than in the controls. Hence, the urinary excretion of metformin was expected to be smaller than the controls. The above expectations were proven as follows. After intravenous administration of metformin (100 mg/kg) to the rat model of dehydration, the Cl(nr) were comparable between the two groups of rats. After both intravenous and oral administration of metformin (both 100 mg/kg) to the rat model of dehydration, the 24 h urinary excretion of the drug was significantly smaller than in the controls. After oral administration of metformin to the rat model of dehydration, the AUC was significantly greater (99.2% increase) than the controls.  相似文献   

6.
It has been reported that the expressions of hepatic microsomal cytochrome P450 (CYP) 1A1/2, 2B1/2 and 3A1/2 were not changed in rats with water deprivation for 72 h (rat model of dehydration) compared with the controls. It has been also reported that 1,3-dimethyluric acid (1,3-DMU) was formed from theophylline via CYP1A1/2 in rats. Hence, it could be expected that the formation of 1,3-DMU could be comparable between the two groups of rats. As expected, after both intravenous and oral administration of theophylline at a dose of 5 mg/kg to the rat model of dehydration, the AUC of 1,3-DMU was comparable to the controls. After both intravenous and oral administration of theophylline to the rat model of dehydration, the Cl(r) of both theophylline and 1,3-DMU was significantly slower than the controls. This could be due to significantly smaller urinary excretions of both theophylline and 1,3-DMU since the AUC of both theophylline and 1,3-DMU were comparable between the two groups of rats. The smaller urinary excretion of both theophylline and 1,3-DMU could be due to urine flow rate-dependent timed-interval renal clearance of both theophylline and 1,3-DMU in rats.  相似文献   

7.
Omeprazole is a commonly used drug in patients with ulcerative colitis (UC). This study investigated the pharmacokinetics of omeprazole in rats with UC induced by dextran sulfate sodium (DSS). The pharmacokinetics of intravenously administered omeprazole (20 mg/kg) was investigated in normal and UC rats using LC-MS/MS. The formation of 5-OH omeprazole, a main metabolite of omeprazole, in rat liver microsomes (RLMs) from normal and UC rats was compared. The protein levels of CYP1A2, CYP2D1, and CYP3A1 in the liver were measured by Western blot. Compared with normal rats, UC rats had increased plasma concentrations of omeprazole, resulting in an increased AUC0–240 min and decreased CL. DSS treatment decreased the formation rate of 5-OH omeprazole in RLMs but did not change the affinity of the enzymes. The Vmax and CLint of RLMs from UC rats were 62% and 48% those of RLMs from normal rats, respectively. The hepatic CYP1A2 and CYP3A1 protein levels in UC rats were 42.6 and 45.2% lower than those in normal rats, respectively; however, the protein levels of CYP2D1 in the two groups were similar. The activity and expression of some hepatic CYP450 isoforms were decreased by UC, leading to changes in the pharmacokinetics of omeprazole.  相似文献   

8.
Purpose  It has been reported that telithromycin is primarily metabolized via hepatic CYP3A1/2 in rats, the expression and/or mRNA level of hepatic CYP3A1/2 increase in rat model of diabetes mellitus induced by alloxan (DMIA) or streptozotocin (DMIS), and intestinal CYP3A1/2 enzyme activity decreases in rat model of DMIS. Thus, the pharmacokinetic changes of telithromycin in both models of diabetes mellitus compared with those in the control rats were evaluated. Methods  Telithromycin was administered (50 mg/kg) intravenously or orally to both rat models of diabetes and their respective control rats. Results  After intravenous administration of telithromycin to both models of diabetes, the non-renal clearance (CLNR) was significantly faster (32.3 and 53.1% increase for rat models of DMIA and DMIS, respectively) and the AUC was significantly smaller (25.0 and 33.8% decrease, respectively) than those in their respective controls. However, after oral administration of telithromycin, the AUC was comparable to that in their respective controls. Conclusions  The faster CLNR after intravenous administration was due to increased hepatic CYP3A1/2 in both models of diabetes. The comparable AUC after oral administration was mainly due to decreased intestinal CYP3A1/2 activity. Alloxan and streptozotocin appear to influence some pharmacokinetics of telithromycin in a different fashion.  相似文献   

9.
It has been reported that ondansetron is primarily metabolized via hepatic CYP2D and 3A1/2 in male Sprague-Dawley rats, and CYP2D1 and 3A2 are male dominant and male specific isozymes, respectively, in rats. Thus, it could be expected that the pharmacokinetics of ondansetron would be changed in male rats compared with those in female rats. Thus, gender-different ondansetron pharmacokinetics were evaluated after its intravenous or oral administration at a dose of 8 mg/kg to male and female Sprague-Dawley rats. After intravenous administration of ondansetron to male rats, the AUC and time-averaged non-renal clearance (Clnr) of the drug were significantly smaller (22.6% decrease) and faster (27.3% increase), respectively, than those in female rats. This probably could be due to faster hepatic blood flow rate in male rats. After oral administration of ondansetron to male rats, the AUC of the drug was also significantly smaller (58.8% decrease) than that in female rats, and this could have been due mainly to increased intestinal metabolism of ondansetron in addition to increased hepatic metabolism of the drug in male rats.  相似文献   

10.
It was reported that paclitaxel is an inhibitor of hepatic P-glycoprotein (P-gp) and hepatic microsomal cytochrome P450 (CYP) 3A1/2, and that naringin is an inhibitor of biliary P-gp and CYP3A1/2 in rats. The purpose of this study was to report the effects of oral naringin on the pharmacokinetics of intravenous paclitaxel in rats. Oral naringin (3.3 and 10 mg/kg) was pretreated 30 min before intravenous (3 mg/kg) administration of paclitaxel. After intravenous administration of paclitaxel, the AUC was significantly greater (40.8% and 49.1% for naringin doses of 3.3 and 10 mg/kg, respectively), and Cl was significantly slower (29.0% and 33.0% decrease, respectively) than controls. The significantly greater AUC could be due mainly to an inhibition of metabolism of paclitaxel via CYP3A1/2 by oral naringin. The inhibition of hepatic P-gp by oral naringin could also contribute to the significantly greater AUC of intravenous paclitaxel by oral naringin.  相似文献   

11.
It has been reported that omeprazole is mainly metabolized via hepatic cytochrome P450 (CYP) 1A1/2, CYP2D1 and CYP3A1/2 in male Sprague-Dawley rats, and the expression of hepatic CYP3A1 is increased in male Sprague-Dawley rats with acute renal failure induced by uranyl nitrate (U-ARF rats). Thus, the metabolism of omeprazole would be expected to increase in U-ARF rats. After intravenous administration of omeprazole (20 mgkg(-1)) to U-ARF rats, the area under the plasma concentration-time curve from time zero to infinity (AUC) was significantly reduced (371 vs 494 microg min mL(-1)), possibly due to the significantly faster non-renal clearance (56.6 vs 41.2 mL min(-1) kg(-1)) compared with control rats. This could have been due to increased expression of hepatic CYP3A1 in U-ARF rats. After oral administration of omeprazole (40 mgkg(-1)) to U-ARF rats, the AUC was also significantly reduced (89.3 vs 235 microg min mL(-1)) compared with control rats. The AUC difference after oral administration (62.0% decrease) was greater than that after intravenous administration (24.9% decrease). This may have been primarily due to increased intestinal metabolism of omeprazole caused by increased expression of intestinal CYP1A and 3A subfamilies in U-ARF rats, in addition to increased hepatic metabolism.  相似文献   

12.
A series of experiments using various inducers and inhibitors of the hepatic microsomal cytochrome P450 (CYP) isozymes were conducted to find CYP isozymes responsible for the metabolism of omeprazole in male Sprague-Dawley rats. Omeprazole, 20 mg/kg, was administered intravenously. In rats pretreated with SKF 525-A (a nonspecific CYP isozyme inhibitor in rats), the time-averaged nonrenal clearance (Cl(nr)) was significantly slower (77.1% decrease) than that in untreated rats. This indicated that omeprazole is metabolized via CYP isozymes in rats. Hence, rats were pretreated with various enzyme inducers and inhibitors. In rats pretreated with 3-methylcholanthrene and dexamethasone (main inducers of CYP1A1/2 and 3A1/2 in rats, respectively), the Cl(nr) values were significantly faster (43.8% and 26.3% increase, respectively). In rats pretreated with troleandomycin and quinine (main inhibitors of CYP3A1/2 and 2D1 in rats, respectively), the Cl(nr) values were significantly slower (20.9% and 12.9% decrease, respectively). However, the Cl(nr) values were not significantly different in rats pretreated with orphenadrine, isoniazid and sulfaphenazole (main inducers of CYP2B1/2 and 2E1, and a main inhibitor of 2C11, respectively, in rats) compared with those of respective control rats. The above data suggested that omeprazole could be mainly metabolized via CYP1A1/2, 3A1/2 and 2D1 in male rats.  相似文献   

13.
Abstract

1. Prediction of human pharmacokinetics might be made more precise by using species with similar metabolic activities to humans. We had previously reported the species differences in intestinal and hepatic metabolic activities of 43 cytochrome P450 (CYP) substrates between cynomolgus monkeys and humans. However, the species differences between humans and rats or dogs had not yet been determined using comparable data sets with sufficient number of compounds.

2. Here, we investigated metabolic stabilities in intestinal and liver microsomes obtained from rats, dogs and humans using 43 substrates of human CYP1A2, CYP2J2, CYP2C, CYP2D6 and CYP3A.

3. Hepatic intrinsic clearance (CLint) values for most compounds in dogs were comparable to those in humans (within 10-fold), whereas in rats, those for the human CYP2D6 substrates were much higher and showed low correlation with humans. In dog intestine, as with human intestine, CLint values for almost all human CYP1A2, CYP2C, CYP2D6 substrates were not determined because they were very low. Intestinal CLint values for human CYP3A substrates in rats and dogs appeared to be lower for most of the compounds and showed moderate correlation with those in humans.

4. In conclusion, dogs showed the most similar metabolic activity to humans.  相似文献   

14.
Objectives It has been reported that mirodenafil is primarily metabolized via hepatic cytochrome P450 (CYP) 1A1/2, 2B1/2, 2D1 and 3A1/2 in rats. It has also been reported that the protein expression of hepatic CYP3A1 and intestinal CYP1A1 and 3A1/2 increases and that of hepatic CYP2D1 decreases in rats with acute renal failure induced by uranyl nitrate (U‐ARF rats). Thus, the pharmacokinetics of mirodenafil were studied in control and U‐ARF rats. Methods The pharmacokinetic parameters of mirodenafil and SK3541 (a metabolite of mirodenafil) were compared after the intravenous and oral administration of mirodenafil at a dose of 20 mg/kg to U‐ARF and control rats. Key findings After interavenous administration of mirodenafil to U‐ARF rats, the total area under the concentration–time curve (AUC) of mirodenafil was significantly smaller (36.5% decrease) than controls, possibly due to the significantly faster non‐renal clearance (66.1% increase; because of increase in the protein expression of hepatic CYP3A1) than controls. After the oral administration of mirodenafil to U‐ARF rats, the AUC of mirodenafil was also significantly smaller (47.8% decrease) due to the increase in the protein expression of hepatic CYP3A1 and intestinal CYP1A1 and 3A1/2 compared with controls. Conclusions After both intravenous and oral administration of mirodenafil to U‐ARF rats, the AUCSK3541/AUCmirodenafil ratios were comparable with that in controls and this could be due to further metabolism of SK3541 in rats.  相似文献   

15.
It was reported that the area under the plasma concentration-time curve from time zero to time infinity (AUC) of parathion was significantly smaller, and the time-averaged total body clearance (Cl) of parathion was significantly faster after intravenous administration of parathion to rats pretreated with dexamethasone than those in control rats. This was supported by significantly faster intrinsic clearance of parathion to form paraoxon in hepatic microsomal fraction of rats pretreated with dexamethasone. The above data suggested that parathion was metabolized to paraoxon by dexamethasone-inducible hepatic cytochrome P450 (CYP) 3A in rats. The purpose of this study is to explain the protective effects of physostigmine against paraoxon toxicity by suppressing CYP3A, and hence, decreasing formation of a toxic metabolite, paraoxon. The pharmacokinetic changes of parathion and paraoxon were investigated after intravenous administration of parathion, 3 mg/kg, to control Sprague-Dawley rats, and the rats pretreated with physostigmine (100 microg/kg, intraperitoneal injection 30 min before parathion administration). After a 1-min intravenous infusion of parathion to rats pretreated with physostigmine, the AUC of parathion (60.4 compared with 73.7 microg min/mL) was significantly greater, Cl of parathion (49.7 compared with 40.7 mL/min/kg) was significantly slower, and amount of paraoxon recovered from liver, mesentery and large intestine at 5 min was smaller than those in control rats. Based on in vitro rat hepatic microsomal studies, physostigmine inhibited significantly the erythromycin N-demethylase activity (1.03 compared with 0.924 nmol/mg protein/min), mainly mediated by hepatic cytochrome P450 3A in rats. The above data suggested that the formation of paraoxon was inhibited in rats pretreated with physostigmine by inhibiting CYP3A.  相似文献   

16.
Paclitaxel is a P-gp substrate and metabolized via CYP2C and 3A subfamily in rats. It has been reported that cysteine causes the changes in expression of CYP isozymes and intestinal P-gp mediated efflux activity in rats. Thus, the effects of cysteine on the pharmacokinetics of intravenous and oral paclitaxel were investigated in rats. After intravenous administration of paclitaxel (30 mg/kg) to control (CON), single cysteine treatment (ST) and cysteine treatment for a week (CT) rats, the pharmacokinetic parameters were comparable among three groups of rats. Also the pharmacokinetic parameters between CON and ST rats were comparable after oral administration of paclitaxel (30 mg/kg) to rats. These results are consistent with that oral cysteine supplement on a single day did not considerably inhibit the metabolism of paclitaxel via hepatic and/or intestinal CYP3A subfamily and P-gp mediated efflux of paclitaxel in the liver and/or intestine both after intravenous and oral administration to rats. After oral administration of paclitaxel (30 mg/kg) to rats, the greater AUC06 h in CT rats was mainly due to that oral cysteine supplement for seven consecutive days enhanced the gastrointestinal absorption of paclitaxel compared with those in CON and ST rats.  相似文献   

17.
  1. The time-dependent (2-h, 24-h, and 96-h) effects of Escherichia coli lipopolysaccharide (ECLPS) on the intravenous (100?mg kg?1) and oral (100?mg kg?1) metformin pharmacokinetics were evaluated in rats.

  2. After the intravenous administration of metformin to 24-h and 96-h ECLPS rats, the total area under the plasma concentration–time curve from time zero to time infinity (AUCs) and time-averaged non-renal clearances (CLNRs) of metformin were significantly greater and slower, respectively, than the controls. However, after the oral administration of metformin, the AUCs of metformin were comparable among four groups of rats.

  3. The greater (slower) intravenous AUCs (CLNRs) of metformin in 24-h and 96-h ECLPS rats were due to the slower hepatic intrinsic clearance (CLint) because of a decrease in the protein expression of hepatic cytochrome P450 (CYP) 2C11 and/or CYP3A subfamily than controls. The comparable oral AUCs among four groups of rats were mainly due to the comparable gastrointestinal metabolism (CLint).

  相似文献   

18.
Under hyperlipidemic conditions, there are likely to be alterations in the pharmacokinetics of CYP2C11 substrates following decreased expression of CYP2C11, which is homologous to human CYP2C9. The pharmacokinetics of tolbutamide (TB) and its metabolite 4‐hydroxy tolbutamide (4‐OHTB) were evaluated as a CYP2C11 probe after intravenous and oral administration of 10 mg/kg tolbutamide to poloxamer 407‐induced hyperlipidemic rats (HL rats). Changes in the expression and metabolic activity of hepatic CYP2C11 and the plasma protein binding of tolbutamide in HL rats were also evaluated. The total area under the plasma concentration–time curve (AUC) of tolbutamide in HL rats after intravenous administration was comparable to that in controls due to their comparable non‐renal clearance (CLNR). The free fractions of tolbutamide in plasma were comparable between the control and HL rats. The 4‐hydroxylated metabolite formation ratio (AUC4‐OHTB/AUCTB) in HL rats was significantly smaller than that in the control rats as a result of the reduced expression of hepatic CYP2C11 (by 15.0%) and decreased hepatic CLint (by 28.8%) for metabolism of tolbutamide to 4‐OHTB via CYP2C11. Similar pharmacokinetic changes were observed in HL rats after oral administration of tolbutamide. These findings have potential therapeutic implications, assuming that the HL rat model qualitatively reflects similar changes in patients with hyperlipidemia. Since other sulfonylureas in clinical use are substrates of CYP2C9, their hepatic CLint changes have the potential to cause clinically relevant pharmacokinetic changes in a hyperlipidemic state. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The pharmacokinetic parameters of 5-fluorouracil were compared after intravenous administration at a dose of 30 mg/kg to control Sprague-Dawley rats and to rats with diabetes mellitus induced by streptozotocin (DMIS). In DMIS rats, the area under the plasma concentration-time curve from time zero to time infinity (AUC) was significantly smaller (603 versus 909 microg min/ml) due to the significantly faster total body clearance (Cl; 47.8 versus 33.0 ml/min/kg). The faster Cl was due to the significantly faster renal (8.54 versus 4.02 ml/min/kg) and nonrenal (38.5 versus 28.7 ml/min/kg) clearances. In DMIS rats, the total amount of unchanged 5-fluorouracil excreted in 24 h urine was significantly greater (34.1% versus 13.0% of intravenous dose) due to the urine flow rate-dependent renal clearance of 5-fluorouracil in rats (the greater the urine flow rate, the greater the urinary excretion of 5-fluorouracil). Greater urinary excretion and a significantly smaller AUC resulted in a significantly faster Cl(r) in DMIS rats. The faster Cl(nr) in DMIS rats could be due to an increase in the expression and mRNA level of CYP1A1/2 in the rats.  相似文献   

20.
In rats, oltipraz is metabolized via hepatic CYP1A1/2, 2B1/2, 2C11, 2D1/2, and 3A1/2, and omeprazole via hepatic CYP1A1/2, 2D1/2, and 3A1/2. Hence, pharmacokinetic interaction between oltipraz and omeprazole were evaluated after simultaneous single i.v. and p.o. administration of both drugs to rats. After i.v. administration of oltipraz (10 mg/kg) and omeprazole (20 mg/kg), the AUC of both drugs was significantly greater (32.3 and 28.1% increase for oltipraz and omeprazole, respectively) than those after each drug alone. This could have been due to a competitive inhibition of metabolism of oltipraz by omeprazole via CYP1A1 and 3A2, and of metabolism of omeprazole by oltipraz via CYP1A1/2, 2D1/2, and 3A1/2. This could be supported by the apparent inhibition constants (Ki) and the concentrations of each drug in the liver. After oral administration of oltipraz (30 mg/kg) and omeprazole (40 mg/kg), the AUC of oltipraz was significantly greater (68.8% increase) than that after oltipraz alone. This could have been primarily due to an inhibition of intestinal metabolism of oltipraz by omeprazole. However, comparable AUC values of omeprazole between p.o. administration of omeprazole alone and both drugs could have been due to insufficient inhibitory effect of oltipraz on omeprazole metabolism in both the liver and intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号