首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Medium spiny neurons in the dorsal striatum receive glutamatergic excitatory synaptic inputs from the cerebral cortex. These synapses undergo long-term depression that requires release of endocannabinoids from medium spiny neurons and activation of cannabinoid CB1 receptors. However, it remains unclear how cortico-striatal synapses exhibit endocannabinoid-mediated short-term suppression, which has been found in various brain regions including the hippocampus and cerebellum. Endocannabinoids are released from postsynaptic neurons by strong depolarization and resultant Ca2+ elevation or activation of postsynaptic Gq/11-coupled receptors such as group I metabotropic glutamate receptors (mGluRs) and M1/M3 muscarinic acetylcholine receptors. Moreover, endocannabioids are effectively released when weak depolarization is combined with Gq/11-coupled receptor activation. We found that muscarinic activation induced transient suppression of excitatory synaptic transmission to medium spiny neurons, which was independent of retrograde endocannabinoid signaling but was mediated directly by presynaptic muscarinic receptors. Neither postsynaptic depolarization alone nor depolarization and muscarinic activation caused suppression of cortico-striatal synapses. In contrast, activation of group I mGluRs readily suppressed cortico-striatal excitatory synaptic transmission. Furthermore, postsynaptic depolarization induced clear suppression when combined with group I mGluR activation. These results indicate that group I mGluRs but not muscarinic receptors contribute to endocannabinoid-mediated short-term suppression of cortico-striatal excitatory synaptic transmission.  相似文献   

2.
Lacey CJ  Boyes J  Gerlach O  Chen L  Magill PJ  Bolam JP 《Neuroscience》2005,136(4):1083-1095
Although multiple effects of GABA(B) receptor activation on synaptic transmission in the striatum have been described, the precise locations of the receptors mediating these effects have not been determined. To address this issue, we carried out pre-embedding immunogold electron microscopy in the rat using antibodies against the GABA(B) receptor subunits, GABA(B1) and GABA(B2). In addition, to investigate the relationship between GABA(B) receptors and glutamatergic striatal afferents, we used antibodies against the vesicular glutamate transporters, vesicular glutamate transporter 1 and vesicular glutamate transporter 2, as markers for glutamatergic terminals. Immunolabeling for GABA(B1) and GABA(B2) was widely and similarly distributed in the striatum, with immunogold particles localized at both presynaptic and postsynaptic sites. The most commonly labeled structures were dendritic shafts and spines, as well as terminals forming asymmetric and symmetric synapses. In postsynaptic structures, the majority of labeling associated with the plasma membrane was localized at extrasynaptic sites, although immunogold particles were also found at the postsynaptic specialization of some symmetric, putative GABAergic synapses. Labeling in axon terminals was located within, or at the edge of, the presynaptic active zone, as well as at extrasynaptic sites. Double labeling for GABA(B) receptor subunits and vesicular glutamate transporters revealed that labeling for both GABA(B1) and GABA(B2) was localized on glutamatergic axon terminals that expressed either vesicular glutamate transporter 1 or vesicular glutamate transporter 2. The patterns of innervation of striatal neurons by the vesicular glutamate transporter 1- and vesicular glutamate transporter 2-positive terminals suggest that they are selective markers of corticostriatal and thalamostriatal afferents, respectively. These results thus provide evidence that presynaptic GABA(B) heteroreceptors are in a position to modulate the two major excitatory inputs to striatal spiny projection neurons arising in the cortex and thalamus. In addition, presynaptic GABA(B) autoreceptors are present on the terminals of spiny projection neurons and/or striatal GABAergic interneurons. Furthermore, the data indicate that GABA may also affect the excitability of striatal neurons via postsynaptic GABA(B) receptors.  相似文献   

3.
Wittmann M  Hubert GW  Smith Y  Conn PJ 《Neuroscience》2001,105(4):881-889
The substantia nigra pars reticulata is a primary output nucleus of the basal ganglia motor circuit and is controlled by a fine balance between excitatory and inhibitory inputs. The major excitatory input to GABAergic neurons in the substantia nigra arises from glutamatergic neurons in the subthalamic nucleus, whereas inhibitory inputs arise mainly from the striatum and the globus pallidus. Anatomical studies revealed that metabotropic glutamate receptors (mGluRs) are highly expressed throughout the basal ganglia. Interestingly, mRNA for group I mGluRs are abundant in neurons of the subthalamic nucleus and the substantia nigra pars reticulata. Thus, it is possible that group I mGluRs play a role in the modulation of glutamatergic synaptic transmission at excitatory subthalamonigral synapses. To test this hypothesis, we investigated the effects of group I mGluR activation on excitatory synaptic transmission in putative GABAergic neurons in the substantia nigra pars reticulata using the whole cell patch clamp recording approach in slices of rat midbrain. We report that activation of group I mGluRs by the selective agonist (R,S)-3,5-dihydroxyphenylglycine (100 microM) decreases synaptic transmission at excitatory synapses in the substantia nigra pars reticulata. This effect is selectively mediated by presynaptic activation of the group I mGluR subtype, mGluR1. Consistent with these data, electron microscopic immunocytochemical studies demonstrate the localization of mGluR1a at presynaptic sites in the rat substantia nigra pars reticulata.From this finding that group I mGluRs modulate the major excitatory inputs to GABAergic neurons in the substantia nigra pars reticulata we suggest that these receptors may play an important role in basal ganglia functions. Studying this effect, therefore, provides new insights into the modulatory role of glutamate in basal ganglia output nuclei in physiological and pathophysiological conditions.  相似文献   

4.
Glutamate and GABA neurotransmission is mediated through various types of ionotropic and metabotropic receptors. In this review, we summarise some of our recent findings on the subcellular and subsynaptic localisation of GABAB and group I metabotropic glutamate receptors in the striatopallidal complex of monkeys. Polyclonal antibodies that specifically recognise GABABR1, mGluR1a and mGluR5 receptor subtypes were used for immunoperoxidase and pre‐embedding immunogold techniques at the light and electron microscope levels. Both subtypes of group I mGluRs were expressed postsynaptically in striatal projection neurons and interneurons where they aggregate perisynaptically at asymmetric glutamatergic synapses and symmetric dopaminergic synaptic junctions. Moreover, they are also strongly expressed in the main body of symmetric synapses established by putative intrastriatal GABAergic terminals. In the globus pallidus, both receptor subtypes are found postsynaptically in the core of striatopallidal GABAergic synapses and perisynaptically at subthalamopallidal glutamatergic synapses. Finally, extrasynaptic labelling was commonly seen in the globus pallidus and the striatum. Moderate to intense GABABR1 immunoreactivity was observed in the striatopallidal complex. At the electron microscope level, GABABR1 immunostaining was commonly found in neuronal cell bodies and dendrites. Many striatal dendritic spines also displayed GABABR1 immunoreactivity. Moreover, GABABR1‐immunoreactive axons and axon terminals were frequently encountered. In the striatum, GABABR1‐immunoreactive boutons resembled terminals of cortical origin, while in the globus pallidus, subthalamic‐like terminals were labelled. Pre‐embedding immunogold data showed that postsynaptic GABABR1 receptors are concentrated at extrasynaptic sites on dendrites, spines and somata in the striatopallidal complex, perisynaptically at asymmetric synapses and in the main body of symmetric striatopallidal synapses in the GPe and GPi. Consistent with the immunoperoxidase data, immunoparticles were found in the presynaptic grid of asymmetric synapses established by cortical‐ and subthalamic‐like glutamatergic terminals. These findings indicate that both GABA and glutamate metabotropic receptors are located to subserve various modulatory functions of the synaptic transmission in the primate striatopallidal complex. Furthermore, their pattern of localisation raises issues about their roles and mechanisms of activation in normal and pathological conditions. Because of their ‘modulatory’ functions, these receptors are ideal targets for chronic drug therapies in neurodegenerative diseases such as Parkinson's disease.  相似文献   

5.
Group III metabotropic glutamate receptors (mGluRs) are selectively activated by L-2-amino-4-phosphonobutyrate (L-AP4), which produces depression of synaptic transmission. The relative contribution of different group III mGluRs to the effects of L-AP4 remains to be clarified. Here, we assessed the distribution of mGluR4 in the rat and mouse brain using affinity-purified antibodies raised against its entire C-terminal domain. The antibodies reacted specifically with mGluR4 and not with other mGluRs in transfected COS 7 cells. No immunoreactivity was detected in brains of mice with gene-targeted deletion of mGluR4. Pre-embedding immunocytochemistry for light and electron microscopy showed the most intense labelling in the cerebellar cortex, basal ganglia, the sensory relay nuclei of the thalamus, and some hippocampal areas. Immunolabelling was most intense in presynaptic active zones. In the basal ganglia, both the direct and indirect striatal output pathways showed immunolabelled terminals forming mostly type II synapses on dendritic shafts. The localisation of mGluR4 on GABAergic terminals of striatal projection neurones suggests a role as a presynaptic heteroreceptor. In the cerebellar cortex and hippocampus, mGluR4 was also localised in terminals establishing type I synapses, where it probably operates as an autoreceptor. In the hippocampus, mGluR4 labelling was prominent in the dentate molecular layer and CA1-3 strata lacunosum moleculare and oriens. Somatodendritic profiles of some stratum oriens/alveus interneurones were richly decorated with mGluR4-labelled axon terminals making either type I or II synapses. This differential localisation suggests a regulation of synaptic transmission via a target cell-dependent synaptic segregation of mGluR4.Our results demonstrate that, like other group III mGluRs, presynaptic mGluR4 is highly enriched in the active zone of boutons innervating specific classes of neurones. In addition, the question of alternatively spliced mGluR4 isoforms is discussed.  相似文献   

6.
The existence of a neuronal-glial signalling through the activation of neurotransmitter receptors expressed in glia is well-documented. In excitatory synapses, glutamate released from presynaptic terminals activates not only postsynaptic receptors, but also ionotropic and metabotropic glutamate receptors localized in the glia ensheathing the synapses. The medial nucleus of the trapezoid body of the auditory system is involved in the localization of sounds in the space. In this nucleus, the large excitatory synaptic terminals formed by the calyces of Held on the principal globular cell bodies are wrapped by astrocytic processes. Since these synapses are functional from early postnatal days, glia receiving excitatory synaptic signals from the calyces may participate in modulating the maturation and development of the system.Groups I and II of metabotropic glutamate receptors (mGluRs) have been localized in glial cells in different brain regions. To investigate whether group II mGluRs are present in the medial nucleus of the trapezoid body, we have studied the pattern of expression of mGluR2/3 in the developing and mature nucleus by means of immunocytochemichal methods. The most remarkable finding was the switch in the occurrence of mGluR2/3 from glial to neuronal compartments. Thus, a preferential localization of mGluR2/3 immunoreactivity was observed in astrocytic processes surrounding the calyces of Held during the early postnatal development. In contrast, the main feature in adult rats was the presence of the group II mGluRs in presynaptic calyces of Held and postsynaptic principal globular cells.From these observations we suggest a role for group II mGluRs in neuronal-glial signalling in the calyx of Held-principal globular neuron synapses. Activation of these receptors might be relevant to the maturation and modulation of synaptic transmission in the medial nucleus of the trapezoid body.  相似文献   

7.
The olfactory input to the brain is carried out by olfactory nerve axons that terminate in the olfactory bulb glomeruli and make synapses onto dendrites of glutamatergic projection neurons, mitral and tufted cells, and GABAergic interneurons, periglomerular cells. The dendrites are reciprocally connected through asymmetric synapses of mitral/tufted cells with periglomerular cells and symmetric synapses of the opposite direction. Transmission at the first synapse in the olfactory pathway is regulated presynaptically, and this regulation is mediated, in part, by metabotropic GABAB receptors that, when activated, inhibit transmitter release from the olfactory nerve. Functional GABAB receptors are heterodimers composed of the GABAB1 and GABAB2 subunits. Studies using double immunofluorescence have shown colocalization of both subunits in the glomerular neuropil, and ultrastructural studies have localized GABAB1 to extrasynaptic, synaptic, and perisynaptic sites on the plasma membrane of olfactory nerve terminals. We studied the subcellular localization of GABAB2 in the mouse olfactory glomeruli using a subunit-specific antibody and preembedding immunogold labeling. Immunoreactivity for GABAB2 was associated with symmetric dendrodendritic synapses of periglomerular cells with mitral/tufted cells and was localized to the extrasynaptic plasma membrane of presynaptic dendrites, and extrasynaptic, synaptic, and perisynaptic sites on the plasma membrane of postsynaptic dendrites. The results suggest that postsynaptic, and perhaps presynaptic, GABAB receptors may be expressed at GABAergic synapses between dendrites of periglomerular interneurons and projection neurons. Immunolabeling was observed at junctions of the olfactory nerve with mitral/tufted cell dendrites, providing ultrastructural evidence for the expression of the GABAB2 subunit at the primary olfactory synapse.  相似文献   

8.
Mateo Z  Porter JT 《Neuroscience》2007,146(3):1062-1072
Thalamocortical synapses provide a strong glutamatergic excitation to cortical neurons that is critical for processing sensory information. Unit recordings in vivo indicate that metabotropic glutamate receptors (mGluRs) reduce the effect of thalamocortical input on cortical circuits. However, it is not known whether this reduction is due to a reduction in glutamate release from thalamocortical terminals or from a decrease in cortical neuron excitability. To directly determine whether mGluRs act as autoreceptors on thalamocortical terminals, we examined the effect of mGluR agonists on thalamocortical synapses in slices. Thalamocortical excitatory postsynaptic currents (EPSCs) were recorded in layer IV cortical neurons in developing mouse brain slices. The activation of group II mGluRs with (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) reduced thalamocortical EPSCs in both excitatory and inhibitory neurons, while the stimulation of group I or group III mGluRs had no effect on thalamocortical EPSCs. Consistent with a reduction in glutamate release, DCG IV increased the paired pulse ratio and the coefficient of variation of the EPSCs. The reduction induced by DCG IV was reversed by the group II mGluR antagonist, LY341495, and mimicked by another selective group II agonist, (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylic acid (APDC). The mGluR2 subtype appears to mediate the reduction of thalamocortical EPSCs, since the selective mGluR3 agonist, N-acetylaspartylglutamate (NAAG), had no effect on the EPSCs. Consistent with this, we showed that mGluR2 is expressed in the barrels. Furthermore, blocking group II mGluRs with LY341495 reduced the synaptic depression induced by a short stimulus train, indicating that synaptically released glutamate activates these receptors. These results indicate that group II mGluRs modulate thalamocortical processing by inhibiting glutamate release from thalamocortical synapses. This inhibition provides a feedback mechanism for preventing excessive excitation of cortical neurons that could play a role in the plasticity and refinement of thalamocortical connections during this early developmental period.  相似文献   

9.
Two group I metabotropic glutamate receptor subtypes, mGluR1 and mGluR5, have been reported to occur in highest concentration in an annulus surrounding the edge of the postsynaptic membrane specialisation. In order to determine whether such a distribution is uniform amongst postsynaptic mGluRs, their distribution was compared quantitatively by a pre-embedding silver-intensified immunogold technique at electron microscopic level in hippocampal pyramidal cells (mGluR5), cerebellar Purkinje cells (mGluR1α) and Golgi cells (mGluR2). The results show that mGluR1α, mGluR5 and mGluR2 each have a distinct distribution in relation to the glutamatergic synaptic junctions. On dendritic spines, mGluR1α and mGluR5 showed the highest receptor density in a perisynaptic annulus (defined as within 60 nm of the edge of the synapse) followed by a decreasing extrasynaptic (60–900 nm) receptor level, but the gradient of decrease and the proportion of the perisynaptic pool (mGluR1α, 50%; vs mGluR5, 25%) were different for the two receptors. The distributions of mGluR1α and mGluR5 also differed significantly from simulated random distributions. In contrast, mGluR2 was not closely associated with glutamatergic synapses in the dendritic plasma membrane of cerebellar Golgi cells and its distribution relative to synapses is not different from simulated random distribution in the membrane. The somatic membrane, the axon and the synaptic boutons of the GABAergic Golgi cells also contained immunoreactive mGluR2 that is not associated with synaptic specialisations. In the hippocampal CA1 area the distribution of immunoparticles for mGluR5 on individual spines was established using serial sections. The results indicate that dendritic spines of pyramidal cells are heterogeneous with respect to the ratio of perisynaptic to extrasynaptic mGluR5 pools and about half of the immunopositive spines lack the perisynaptic pool. The quantitative comparison of receptor distributions demonstrates that mGluR1α and mGluR5, but not mGluR2, are highly compartmentalised in different plasma membrane domains. The unique distribution of each mGluR subtype may reflect requirements for different transduction and effector mechanisms between cell types and different domains of the same cell, and suggests that the precise placement of receptors is a crucial factor contributing to neuronal communication.  相似文献   

10.
The nucleus tractus solitarius (NTS) is essential for coordinating baroreflex control of blood pressure. The baroreceptor sensory fibers make glutamatergic synapses onto second-order NTS neurons. Glutamate spillover activates Group II and III presynaptic metabotropic glutamate receptors (mGluRs) on the baroreceptor central terminals to inhibit synaptic transmission, but the role of postsynaptic mGluRs is less understood. We used whole cell patch-clamping in anatomically identified second-order baroreceptor neurons in a brain stem slice to test whether Group I, II, and III mGluRs had postsynaptic effects at this first central synapse in the baroreceptor afferent pathway. The Group I agonist DHPG induced a depolarization and spiking that was mimicked by endogenous glutamate. Group I mGluR blockade prevented the depolarization and slightly hyperpolarized the neurons, suggesting a small tonic Group I mGluR activation. The DHPG-induced inward current consisted of voltage-dependent and -independent components; the former was blocked by TEA and the latter was blocked by replacing extracellular NaCl with LiCl or Tris-HCl. The DHPG current was potentiated in a Ca2+-free external solution and was diminished by intracellular dialysis with BAPTA and by perfusion with Na+-Ca2+ exchanger blockers, KB-R7943 or 3',4'-dichlorobenzamil. Intracellular dialysis with GDPbetaS or heparin and perfusion with the PLC inhibitor U-73122 or the Ca2+-calmodulin inhibitor W-7 significantly decreased the DHPG current. The data suggest that Group I mGluRs on baroreceptor neurons are functional; are activated by endogenous glutamate; and activate a Na+-Ca2+ exchanger through G-protein, PLC, IP3, and Ca2+-calmodulin mechanisms to excite the cell, thus providing postsynaptic mechanisms to enhance or prolong baroreceptor signal transmission.  相似文献   

11.
Alexander GM  Godwin DW 《Neuroscience》2006,141(1):501-513
The thalamic reticular nucleus (TRN) is a sheet of GABAergic neurons that project to other TRN neurons and to associated thalamocortical relay nuclei. The TRN receives glutamatergic synaptic inputs from cortex as well as reciprocal inputs from the collaterals of thalamocortical neurons. In addition to ionotropic glutamate receptors, metabotropic glutamate receptors (mGluRs) are present in the TRN circuitry. Using whole cell voltage clamp recordings, we pharmacologically characterized unique pre- and postsynaptic functions for Group II mGluRs (mGluR 2 and mGluR 3) within the TRN circuitry in ferrets. mGluR 2 was found on presynaptic cortical axon terminals in the TRN, where it reduced glutamate release, while mGluR 3 acted postsynaptically on TRN cells to increase membrane conductance. Using miniature inhibitory postsynaptic current analysis, we also found that picrotoxin-sensitive intra-TRN GABA-mediated neurotransmission was not affected by administration of a Group II mGluR agonist, indicating that neither mGluR 2 nor 3 acts on presynaptic GABA-containing terminals within the TRN. Because strong corticothalamic activation is implicated in abnormal thalamic rhythms, we used extracellular recordings in the lateral geniculate nucleus to study the effect of Group II mGluR agonists upon these slow oscillations. We induced approximately 3 Hz spike-and-wave discharge activity through corticothalamic stimulation, and found that such activity was reduced in the presence of the Group II mGluR agonist, (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268). These data indicate that Group II mGluR reduce the impact of corticothalamic excitation, and that they may be a useful target in the reduction of absence-like rhythms.  相似文献   

12.
Layer 1 of the rat olfactory cortex has been studied with the electron microscope at birth and at several consecutive postnatal days up to 14 days of age. Special attention was directed towards synaptic structures and axons of the lateral olfactory tract (LOT). Numerous mature synapses are seen at birth and estimates were made of their subsequent increase in number. In addition, immature synapses are seen and mature postsynaptic sites occur with atypical, partial, multiple or no contact. The findings suggest: (1) considerable prenatal synaptogenesis in contrast to other cortical systems; (2) the maturation of the postsynaptic site may precede that of the presynaptic contact and vesicle accumulation; (3) there may be competition by more than one process for one postsynaptic specialization; (4) the non-innervated sites may result from deafferentation caused by prenatal cell death, although no degeneration was seen, and the atypical contacts may be a stage in the reinnervation of these sites; (5) the LOT develops in parallel with the synaptic neuropil and (6) by 14 days of age the area closely resembles adult tissue.  相似文献   

13.
Maturation of many synapses of the CNS is characterized by a reduction in initial release probability and associated alterations in short-term plasticity (STP). We investigated the role of tonic activity of metabotropic glutamate receptors (mGluRs) in this process in glutamatergic synapses of rat neocortex. Consistent with previous reports, STP of excitatory postsynaptic currents (EPSCs) evoked by five-pulse stimulation was found to switch from depression at postnatal days 13-17 (P13-17) to facilitation at postnatal days 28-42 (P28-42). (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine, a specific mGluR2/3 agonist, strongly depressed EPSCs both at the early stage and the late stage of cortical development. This was accompanied by a switch from depression to facilitation of STP at the early stage and an increase in facilitation at the late stage. While application of 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl) propanoic acid (LY341495), an mGluR antagonist that is most potent at mGluR2/3, had no significant effect at the early stage, it significantly enhanced EPSC amplitude and reduced short-term facilitation at the late stage. Blocking glutamate transporter activity with l-trans-pyrrolidine-2,4-dicarboxylate (tPDC) significantly reduced EPSC amplitude and short-term depression in the younger group but had no effect in the older specimens. The effect of tPDC was blocked by LY341495. These results suggest that a progressive increase in tonic mGluR activity during postnatal development contributes to a reduction of release probability in excitatory cortical synapses. They also indicate that glutamate transporter activity in the neocortex decreases during postnatal development. This may play a role in increasing tonic activity of mGluRs by increasing ambient glutamate levels in the perisynaptic extracellular space.  相似文献   

14.
Activation of metabotropic glutamate receptors (mGluRs) with the group I mGluR selective agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) induces a long-term depression (LTD) of excitatory synaptic transmission in the CA1 region of the hippocampus. Here we investigated the potential roles of pre- and postsynaptic processes in the DHPG-induced LTD at excitatory synapses onto hippocampal pyramidal cells in the mouse hippocampus. Activation of mGluRs with DHPG, but not ACPD, induced LTD at both Schaffer collateral/commissural fiber synapses onto CA1 pyramidal cells and at associational/commissural fiber synapses onto CA3 pyramidal cells. DHPG-induced LTD was blocked when the G-protein inhibitor guanosine-5'-O-(2-thiodiphosphate) was selectively delivered into postsynaptic CA1 pyramidal cells via an intracellular recording electrode, suggesting that DHPG depresses synaptic transmission through a postsynaptic, GTP-dependent signaling pathway. The effects of DHPG were also strongly modulated, however, by experimental manipulations that altered presynaptic calcium influx. In these experiments, we found that elevating extracellular Ca(2+) concentrations ([Ca(2+)](o)) to 6 mM almost completely blocked the effects of DHPG, whereas lowering [Ca(2+)](o) to 1 mM significantly enhanced the ability of DHPG to depress synaptic transmission. Enhancing Ca(2+) influx by prolonging action potential duration with bath applications of the K(+) channel blocker 4-aminopyridine (4-AP) also strongly reduced the effects of DHPG in the presence of normal [Ca(2+)](o) (2 mM). Although these findings indicate that alterations in Ca(2+)-dependent signaling processes strongly regulate the effects of DHPG on synaptic transmission, they do not distinguish between potential pre- versus postsynaptic sites of action. We found, however, that while inhibiting both pre- and postsynaptic K(+) channels with bath-applied 4-AP blocked the effects of DHPG; inhibition of postsynaptic K(+) channels alone with intracellular Cs(+) and TEA had no effect on the ability of DHPG to inhibit synaptic transmission. This suggests that presynaptic changes in transmitter release contribute to the depression of synaptic transmission by DHPG. Consistent with this, DHPG induced a persistent depression of both AMPA and N-methyl-D-aspartate receptor-mediated components of excitatory postsynaptic currents in voltage-clamped pyramidal cells. Together our results suggest that activation of postsynaptic mGluRs suppresses transmission at excitatory synapses onto CA1 pyramidal cells through presynaptic effects on transmitter release.  相似文献   

15.
Hippocampal CA1 inhibitory interneurones control the excitability and synchronization of pyramidal cells, and participate in hippocampal synaptic plasticity. Pairing theta-burst stimulation (TBS) with postsynaptic depolarization, we induced long-term potentiation (LTP) of putative single-fibre excitatory postsynaptic currents (EPSCs) in stratum oriens/alveus (O/A) interneurones of mouse hippocampal slices. LTP induction was absent in metabotropic glutamate receptor 1 (mGluR1) knockout mice, was correlated with the postsynaptic presence of mGluR1a, and required a postsynaptic Ca2+ rise. Changes in paired-pulse facilitation and coefficient of variation indicated that LTP expression involved presynaptic mechanisms. LTP was synapse specific, occurring selectively at synapses modulated by presynaptic group II, but not group III, mGluRs. Furthermore, the TBS protocol applied in O/A induced a long-term increase of polysynaptic inhibitory responses in CA1 pyramidal cells, that was absent in mGluR1 knockout mice. These results uncover the mechanisms of a novel form of interneurone synaptic plasticity that can adaptively regulate inhibition of hippocampal pyramidal cells.  相似文献   

16.
By immunocytochemical study by both light and electron microscopy of the hippocampus of patients with mesial temporal lobe epilepsy, we have shown that mGluR2/3 and mGluR4 immunoreaction product was mainly localised in the molecular layer of the dentate gyrus and CA2 area. Electron microscopy showed that most of the immunoreaction product due to mGluR2/3, 4a and 8 was deposited in the postsynaptic elements of the CA2 pyramidal layer and the inner molecular layer of the dentate gyrus. Only mGluR8 immunoreaction product in the CA2 area and mGluR2/3 in the inner molecular layer of the dentate gyrus were demonstrated in presynaptic elements, suggesting that mGluR2/3 and 8 may be involved in presynaptic inhibition of glutamate release in these areas. The demonstration of some degenerating axon terminals in the inner molecular layer of the dentate gyrus suggests that degeneration of interneurons caused by repeated seizures was still in progress. The finding of mGluR2/3, 4 and 8 immunoreactive astrocytes in patient hippocampus suggests that mGluR2/3, 4 and 8 receptors may be involved in gliosis.  相似文献   

17.
Activation of metabotropic glutamate receptors (mGluRs) has diverse effects on the functioning of vertebrate synapses. The cellular mechanisms that underlie these changes, however, are largely unknown. The role of presynaptic mGluRs in modulating Ca(2+) dynamics and regulating neurotransmitter release was investigated at the vestibulospinal-reticulospinal (VS-RS) synapse in the lamprey brain stem. Application of the specific Group I mGluRs antagonist 7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) reduced the amplitude of consecutive high-frequency evoked excitatory postsynaptic currents (EPSCs). A series of experiments using techniques of electrophysiology and calcium imaging were carried out to determine the cellular mechanisms by which this phenomenon occurs. Concentration-dependent increases in the pre- and postsynaptic [Ca(2+)](i) were seen with the application of mGluR agonists. Similarly, high-frequency stimulation of axons caused a Group I mGluR-dependent enhancement in presynaptic Ca(2+) transients. Application of mGluR agonist caused a depolarization of the presynaptic elements, while thapsigargin decreased the high-frequency stimulus- and agonist-induced rises in [Ca(2+)](i). These data suggest that both membrane depolarization and the release of Ca(2+) from intracellular stores potentially play a role in mGluR-induced Ca(2+) signaling. To determine the effect of this modulation of Ca(2+) dynamics on spontaneous glutamate release, miniature EPSCs were recorded from postsynaptic reticulospinal neurons. A potent Group I mGluR agonist, (S)-homoquisqualic acid, caused a large increase in the frequency of events. These results demonstrate the presence of presynaptic Group I mGluRs at the VS-RS synapse. Activation of these receptors leads to a rise in [Ca(2+)](i) and enhances the spontaneous and evoked release of glutamate. Taken together, these studies highlight the importance of synaptic activation of these facilitatory autoreceptors in both short-term plasticity and synaptic transmission.  相似文献   

18.
Fast glutamatergic transmission via ionotropic receptors is critical for the generation of locomotion by spinal motor networks. In addition, glutamate can act via metabotropic glutamate receptors (mGluRs) to modulate the timing of ongoing locomotor activity. In the present study, we investigated whether mGluRs also modulate the intensity of motor output generated by spinal motor networks. Application of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) reduced the amplitude and increased the frequency of locomotor-related motoneuron output recorded from the lumbar ventral roots of isolated mouse spinal cord preparations. Whole cell patch-clamp recordings of spinal motoneurons revealed multiple mechanisms by which group I mGluRs modulate motoneuron output. Although DHPG depolarized the resting membrane potential and reduced the voltage threshold for action potential generation, the activation of group I mGluRs had a net inhibitory effect on motoneuron output that appeared to reflect the modulation of fast, inactivating Na(+) currents and action potential parameters. In addition, group I mGluR activation decreased the amplitude of locomotor-related excitatory input to motoneurons. Analyses of miniature excitatory postsynaptic currents indicated that mGluRs modulate synaptic drive to motoneurons via both pre- and postsynaptic mechanisms. These data highlight group I mGluRs as a potentially important source of neuromodulation within the spinal cord that, in addition to modulating components of the central pattern generator for locomotion, can modulate the intensity of motoneuron output during motor behavior. Given that group I mGluR activation reduces motoneuron excitability, mGluRs may provide negative feedback control of motoneuron output, particularly during high levels of glutamatergic stimulation.  相似文献   

19.
We tested the hypothesis that endogenous N-acetylaspartylglutamate (NAAG) presynaptically inhibits glutamate release at mossy fiber-CA3 synapses. For this purpose, we made use of 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA), an inhibitor of glutamate carboxypeptidase II [GCP II; also known as N-acetylated alpha-linked acidic dipeptidase (NAALADase)], the enzyme that hydrolyzes NAAG into N-acetylaspartate and glutamate. Application of 2-MPPA (1-20 microM) had no effect on intrinsic membrane properties of CA3 pyramidal neurons recorded in vitro in whole cell current- or voltage-clamp mode. Bath application of 10 microM 2-MPPA suppressed evoked excitatory postsynaptic current (EPSC) amplitudes. Attenuation of EPSC amplitudes was accompanied by a significant increase in paired-pulse facilitation (50-ms interpulse intervals), suggesting that a presynaptic mechanism is involved. The group II metabotropic glutamate receptor (mGluR) antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-y l) propanoic acid (LY341495) prevented the 2-MPPA-dependent suppression of EPSC amplitudes. 2-MPPA reduced the frequencies of TTX-insensitive miniature EPSCs (mEPSC), without affecting their amplitudes, further supporting a presynaptic action for GCP II inhibition. 2-MPPA-induced reduction of mEPSC frequencies was prevented by LY341495, reinforcing the role of presynaptic group II mGluR. Because GCP II inhibition is thought to increase NAAG levels, these results suggest that NAAG suppresses synaptic transmission at mossy fiber-CA3 synapses through presynaptic activation of group II mGluRs.  相似文献   

20.
Summary Synaptogenesis in the superficial layers of the rostral pole of the chick optic tectum has been studied using freeze-fracture techniques. The developmental sequence of intramembrane organization at synaptic junctions involves the accumulation and assembly of intramembrane particles into aggregates characteristic of the mature junctions.By embryonic day seven, areas of loosely-arranged clusters of medium-sized particles are observed on the cytoplasmic membrane leaflets (P-faces) of developing neurites. These clusters are characteristic of the intramembrane organization at presynaptic active zones. At later stages, small pits, characteristic of vesicle fusion sites, are observed interspersed among such P-face particle clusters. Complementary intramembrane specializations are also present on the external leaflets (E-faces) of presynaptic membranes at the active zones.Small solitary aggregates of large-sized particles on the E-faces of neurite plasma membranes are also seen at early embryonic stages. As development progresses, these aggregates increase in size and packing density and occupy large oval domains in postsynaptic membranes. These intramembrane specializations may represent the postsynaptic active zones of asymmetric synapses. Another type of intramembrane specialization, observed during the third week of incubation, is characterized by aggregates of small- and medium-sized particles on the P-face of postsynaptic membranes and is often seen directly apposed to the E-face of a presynaptic terminal. This type of intramembrane specialization may represent the postsynaptic active zone region at symmetrical synaptic contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号