首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The native envelope glycoproteins of primary HIV-1 virions have weaker antigenicity than do T-cell laboratory-adapted (TCLA) viruses. These antigenic properties require further evaluation if recombinant envelope glycoproteins are produced as part of a vaccine strategy. In this study, we compared the antigenicity of recombinant envelope glycoproteins derived from three primary isolates (PI) (HIV-1(BX08), HIV-1(CHA), and HIV-1(133)) and two TCLA viruses (HIV-1(HXB2) and HIV-1(MN)) produced using the Semliki Forest virus (SFV) system. This analysis was performed by radioimmunoprecipitation assays and flow cytometry. The results suggest that the SFV produces envelope glycoproteins with features in common with the envelopes found in naturally occurring virions. In particular, the PI envelopes had weak heterogeneous antigenic properties. However, the cytometric analysis also showed that there was less envelope glycoprotein on the cell surface for the PI envelopes than for those of TCLA viruses, suggesting differences in their intracellular trafficking. The immunogenic properties of the various envelope glycoproteins were evaluated in mice using recombinant SFV particles as vaccine vectors. The PI envelopes were less immunogenic than the TCLA envelopes, probably due to both their low antigenicity and cell surface expression level. Thus, it may be difficult to design an effective vaccine based on native recombinant PI envelopes.  相似文献   

2.
We have recently shown that the level of cell surface expression of envelope glycoproteins derived from various human immunodeficiency virus type 1 (HIV-1) primary isolates (PI) was lower than those of envelope glycoproteins derived from T-cell laboratory-adapted (TCLA) HIV-1 (D. Brand et al., 2000, Virology 271, 350-362). We investigated this phenomenon by comparing the cell surface expression of chimeric envelope glycoproteins constructed by swapping the gp120 surface and gp41 transmembrane glycoproteins of the TCLA HIV-1MN and the PI HIV-1(133), HIV-1G365, or HIV-1EFRA. We found that each chimeric envelope construct had a cell surface-specific pattern of expression similar to that of the parental envelope glycoproteins corresponding to the gp41. Thus, the difference in cell surface expression observed between TCLA viruses and various PI is probably due to a signal located in gp41. Identification of this signal may be important for the design of PI envelope-derived immunogens and may increase our understanding of the mechanisms by which HIV-1 escapes from the immune system.  相似文献   

3.
A major challenge in developing an HIV-1 vaccine is to identify immunogens and their delivery methods that can elicit broad neutralizing antibodies against primary isolates of different genetic subtypes. Recently, we demonstrated that priming with DNA vaccines expressing primary HIV-1 envelope glycoprotein (Env) followed by recombinant Env protein boosting was successful in generating positive neutralizing antibody responses against a clade B primary HIV-1 isolate, JR-FL, that was not easily neutralized. In the current study, we examined whether the DNA priming plus recombinant protein boosting approach delivering a polyvalent primary Env formulation was able to generate neutralizing antibodies against primary HIV-1 viral isolates from various genetic subtypes. New Zealand White rabbits were first immunized with DNA vaccines expressing one, three or eight primary HIV-1 gp120 antigens delivered by a gene gun followed by recombinant gp120 protein boosting. Neutralizing antibody responses were examined by two independently executed neutralization assays: the first one was a single round infection neutralization assay against a panel of 10 primary HIV-1 isolates of subtypes A, B, C and E and the second one used the PhenoSense assay against a panel of 12 pseudovirues expressing primary HIV-1 Env antigens from subtypes A, B, C, D and E as well as 2 pseudoviruses expressing the Env antigens from MN and NL4-3 viruses. Rabbit sera immunized with the DNA priming plus protein boosting approach, but not DNA vaccine alone or Env protein alone, were capable of neutralizing 7 of 10 viruses in the first assay and 12 of 14 viruses in the second assay. More importantly, sera immunized with the polyvalent Env antigens were able to neutralize a significantly higher percentage of viruses than the sera immunized with the monovalent antigens. Our results suggest that DNA priming followed by recombinant Env protein boosting can be used to deliver polyvalent Env-antigen-based HIV-1 vaccines to elicit neutralizing antibody responses against viruses with diverse genetic sequence variations.  相似文献   

4.
Serum antibody responses were studied in detail in four vaccinia-naive volunteers in a phase I trial evaluating primary vaccination with a recombinant vaccinia virus expressing the HIV-1 gp160 envelope glycoprotein (HIVAC-1e, Oncogen/Bristol-Myers Squibb), followed by booster immunization with baculovirus-derived rgp160 (VaxSyn, MicroGeneSys). Prior to boosting, low-titer Fc receptor (FcR)-mediated, antibody-dependent enhancing (ADE) activity was detected in two of four volunteers but no IgM, IgG, IgA, neutralizing activity, or complement-mediated ADE activity was detected. Two weeks after boosting, all four volunteers developed HIV-1-specific IgG with titers of 1:160 to 1:640 by immunofluorescence assay. IgG1 was present in sera from each individual, while IgG2 and IgG3 were present in sera from two individuals, and IgG4 was present in serum from one individual. IgM and IgA were undetectable in all sera. Only one volunteer had IgG to the heterologous HIV-1 isolates, RF, MN, and SF2, after boosting. Serum from this volunteer neutralized the vaccine strain, LAV/IIIB, but not the heterologous strains, RF, MN, and SF2. Antibodies from the remaining volunteers had no neutralizing activity. The neutralizing serum had a positive reaction in a peptide-based ELISA utilizing a peptide corresponding to the principal neutralizing domain of the third hypervariable region (i.e., V3 loop) of the envelope glycoprotein. Neutralizing activity was partially removed by adsorption to this peptide, suggesting that it contained a type-specific neutralizing vaccine epitope. A low titer (1:40 to 1:80) of complement-mediated ADE activity to HIV-1 IIIB was present in sera from three vaccinees after boosting. FcR-ADE activity for HIV-1 SF2 and SF-128A were present in sera from two of these three vaccinees. None of the volunteers developed antisyncytial antibodies. These results indicate that inoculation with recombinant vaccinia followed by rgp160 boosting is the most effective strategy to date for inducing serum antibodies to the envelope glycoproteins of HIV-1, but further study is needed to optimize the functionality and cross-reactivity of these responses.  相似文献   

5.
HIV-1 envelopes from two series of primary isolates (from Swedish patients 5 and 6), from JR-FL and BaL (prototypic monocyte/macrophage tropic viruses) and from HXB-2 (a prototypic T-cell-line-adapted virus), have been screened for their ability to elicit neutralizing antibody to HIV-1. Rabbits were primed by gene gun inoculation with plasmids expressing secreted monomeric (gp120) and oligomeric (gp140) forms of each Env. After four to six DNA immunizations administered over a 1-year period, rabbits were boosted with 108plaque-forming units of a mixture of seven recombinant vaccinia viruses which express chimeric gp140 Envs (primary clade B sequences in a IIIb-related BH10 backbone). Neutralizing antibodies were assayed against two T-cell-line-adapted viruses (MN and IIIb), two non-syncytium-inducing (NSI) and two syncytium-inducing (SI) primary isolates, and two HIV-1-NL4-3-recombinants with patient 5 or 6 Envs (NL4-3/5A, NL4-3/6C). The DNA priming and recombinant vaccinia virus boosting raised low titers of neutralizing antibody in 10 of 19 rabbits. The highest titers of neutralizing activity (1:150 for MN) were raised in rabbits DNA primed with Envs from Swedish patient 5. These sera cross-neutralized IIIb and MN but did not neutralize the primary isolates or the NL4-3 recombinant with the homologous 5A Env. Sera from rabbits primed with the HXB-2 Env DNA were, for the most part, type-specific for neutralization of IIIb. In one of three assays, sera from rabbits primed with plasmids expressing the JR-FL and BaL Envs had possible low titer neutralizing activity for two NSI, but not two SI, primary isolates. Our results highlight the low immunogenic potential of the HIV-1 Env and demonstrate that different Envs have different potentials to raise low titer neutralizing antibody.  相似文献   

6.
The elicitation of broadly neutralizing antibodies directed against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, gp120 and gp41, remains a major challenge. Attempts to utilize monomeric gp120 as an immunogen to elicit high titers of neutralizing antibodies have been disappointing. Envelope glycoprotein constructs that better reflect the trimeric structure of the functional envelope spike have exhibited improved immunogenicity compared with monomeric gp120. We have described soluble gp140 ectodomain constructs with a heterologous trimerization motif; these have previously been shown to elicit antibodies in mice that were able to neutralize a number of HIV-1 isolates, among them primary isolate viruses. Recently, solid-phase proteoliposomes retaining the envelope glycoproteins as trimeric spikes in a physiologic membrane setting have been described. Here, we compare the immunogenic properties of these two trimeric envelope glycoprotein formulations and monomeric gp120 in rabbits. Both trimeric envelope glycoprotein preparations generated neutralizing antibodies more effectively than gp120. In contrast to monomeric gp120, the trimeric envelope glycoproteins elicited neutralizing antibodies with some breadth of neutralization. Furthermore, repeated boosting with the soluble trimeric formulations resulted in an increase in potency that allowed neutralization of a subset of neutralization-resistant HIV-1 primary isolates. We demonstrate that the neutralization is concentration-dependent, is mediated by serum IgG and that the major portion of the neutralizing activity is not directed against the gp120 V3 loop. Thus, mimics of the trimeric envelope glycoprotein spike described here elicit HIV-1-neutralizing antibodies that could contribute to a protective immune response and provide platforms for further modifications to improve the efficiency of this process.  相似文献   

7.
To determine if and when the antibody-dependent cell-mediated cytotoxic (ADCC) response of human serum exhibits broad reactivity across HIV-1 strains, multiple sera were tested for their ability to mediate ADCC against target cells infected with recombinant vaccinia vectors expressing envelope genes of HTLV-IIIB or HTLV-IIIRF. These vectors were found to express the envelope glycoproteins of the two HIV-1 strains and so were appropriate targets for ADCC assays. All the HIV-1-positive sera were able to mediate ADCC against both HTLV-IIIB and HTLV-IIIRF envelope-expressing targets at similar titer. In sera from early seroconverters, the ADCC response was again broadly reactive, even in those sera that exhibited strain-specific neutralizing antibody responses. The ADCC response to natural infection with HIV-1 is therefore broadly reactive and precedes the development of a broad neutralizing antibody response. The broad reactivity of HIV-1-specific ADCC responses may be important for protection against cell-associated virus in vaccine development.  相似文献   

8.
Li H  Liu ZQ  Ding J  Chen YH 《Immunology letters》2002,84(2):153-157
Monoclonal antibody 2F5 recognizing ELDKWA-epitope on HIV-1 gp41 has significant neutralization potency against 90% of the investigated viruses of African, Asia, American and European strains, but antibodies responses to ELDKWA-epitope in HIV-1 infected individuals were very low. Based on the epitope-vaccine strategy suggested by us, a recombinant glutathione S-transferase (GST) fusion protein (GST-MELDKWAGELDKWAGELDKWAVDIGPGRAFYGPGRAFYGPGRAFY) as vaccine antigen containing three repeats of neutralizing epitope ELDKWA on gp41 and GPGRAFY on gp120 was designed and expressed in Escherichia coli. After vaccination course, the recombinant multi-epitope vaccine could induce high levels of predefined multi-epitope-specific antibodies in mice. These antibodies in sera could bind to both neutralizing epitopes on gp41 peptide, V3 loop peptide and recombinant soluble gp41 (aa539-684) in ELISA assay (antisera dilution: 1:1,600-25,600), while normal sera did not. Moreover, these antibodies in sera could recognize the CHO-WT cells which expressed HIV-1 envelope glycoprotein on the cell surfaces, indicating that the predefined epitope-specific antibodies could recognize natural envelope protein of HIV-1 though these antibodies were induced by recombinant multi-epitope-vaccine. These experimental results suggested a possible way to develop recombinant multi-epitope vaccine inducing multi-antiviral activities against HIV-1.  相似文献   

9.
Pancera M  Wyatt R 《Virology》2005,332(1):145-156
A critical component of an effective HIV vaccine will be the induction of broadly neutralizing antibodies. Comprising the HIV spike, the exterior envelope glycoprotein gp120 and the transmembrane glycoprotein gp41 mediate receptor binding, viral entry, and are the targets for neutralizing antibodies. The gp120 and gp41 glycoproteins are derived from the gp160 precursor glycoprotein and following gp160 glycosylation, oligomerization and cleavage in the endoplasmic reticulum and Golgi, remain as non-covalently associated trimers of heterodimers. Previously, using cell-surface envelope glycoproteins derived from infection of a laboratory-adapted HIV-1 strain, a correlation had been established between the binding of gp120-directed antibodies to the viral glycoprotein and the ability of the antibodies to neutralize laboratory-adapted isolates. However, this has been more difficult to demonstrate for glycoproteins derived from primary patient isolates. Here, using a FACS-based method, we report that only gp120-directed neutralizing antibodies and the neutralizing ligand soluble CD4 efficiently bind to glycoproteins derived from the JR-FL primary isolate provided that the gp160 precursor protein is efficiently cleaved. Precursor cleavage was demonstrated by cell-surface biotinylation and Western blotting. In stark contrast, both non-neutralizing and neutralizing antibodies bind non-cleaved envelope glycoproteins from JR-FL and YU2 isolates. These data imply that significant changes in Env spike structure are dependent upon precursor gp160 cleavage and are consistent with a restricted-binding-to-Env model of neutralization. The data also have implications in regards to the use and design of non-cleaved envelope glycoprotein trimeric immunogens as a means to selectively and preferentially present neutralizing epitopes to the host immune system.  相似文献   

10.
The Semliki Forest virus (SFV) vector system is a new approach for in vivo expression of heterologous proteins and can also be used to generate specific immune responses in animal models. HIV-1 envelope glycoprotein produced using the SFV expression system is correctly folded, cleaved, transported to the cell surface and exhibits functional activity. We evaluated a recombinant Semliki Forest virus naked RNA-based immunization protocol for generation of monoclonal antibodies against the HIV-1 envelope glycoprotein. In vitro-transcribed RNA encoding for the SFV replicase complex and Env protein of HIV-1 (HXB2 strain) was injected intramuscularly to mice. This approach elicited an Env-specific antibody response in four mice out of five and a monoclonal antibody, 12H2, directed against gp41 was produced. Our results show that recombinant SFV RNA immunization can potentially be used as a quick and direct method to produce monoclonal antibodies, with the particular advantage that vectored RNA, rather than purified antigen, delivers a complex oligomer produced correctly.  相似文献   

11.
The human immunodeficiency virus (HIV-1) exterior envelope glycoprotein, gp120, mediates receptor binding and is the major target for neutralizing antibodies. Primary HIV-1 isolates are characteristically more resistant to broadly neutralizing antibodies, although the structural basis for this resistance remains obscure. Most broadly neutralizing antibodies are directed against functionally conserved gp120 regions involved in binding to either the primary virus receptor, CD4, or the viral coreceptor molecules that normally function as chemokine receptors. These antibodies are known as CD4 binding site (CD4BS) and CD4-induced (CD4i) antibodies, respectively. Inspection of the gp120 crystal structure reveals that although the receptor-binding regions lack glycosylation, sugar moieties lie proximal to both receptor-binding sites on gp120 and thus in proximity to both the CD4BS and the CD4i epitopes. In this study, guided by the X-ray crystal structure of gp120, we deleted four N-linked glycosylation sites that flank the receptor-binding regions. We examined the effects of selected changes on the sensitivity of two prototypic HIV-1 primary isolates to neutralization by antibodies. Surprisingly, removal of a single N-linked glycosylation site at the base of the gp120 third variable region (V3 loop) increased the sensitivity of the primary viruses to neutralization by CD4BS antibodies. Envelope glycoprotein oligomers on the cell surface derived from the V3 glycan-deficient virus were better recognized by a CD4BS antibody and a V3 loop antibody than were the wild-type glycoproteins. Absence of all four glycosylation sites rendered a primary isolate sensitive to CD4i antibody-mediated neutralization. Thus, carbohydrates that flank receptor-binding regions on gp120 protect primary HIV-1 isolates from antibody-mediated neutralization.  相似文献   

12.
To examine antibody-mediated neutralization of HIV-1 primary isolates in vitro, we tested sera and plasma from infected individuals against four clade B primary isolates. These isolates were analyzed further for neutralization by a panel of several human anti-HIV-1 mAb in order to identify the neutralizing epitopes of these viruses. Each of the HIV-1+ serum and plasma specimens tested had neutralizing activities against one or more of the four primary isolates. Of the three individual sera, one (FDA-2) neutralized all of the four isolates, while the other two sera were effective against only one virus. The pooled plasma and serum samples reacted broadly with these isolates. Based on the neutralizing activities of the mAb panel, each virus isolate exhibited a distinct pattern of reactivity, suggesting antigenic diversity among clade B viruses. Neutralizing epitopes were found in the V3 loop and CD4- binding domain of gp120, as well as near the transmembrane region (cluster II epitope) of gp41. A mAb directed to the cluster I epitope of gp41 near the immunodominant disulfide loop weakly neutralized one primary isolate. None of the mAb in the panel affected one primary isolate, US4, although this virus was sensitive to neutralization by some of the polyclonal antibody specimens. This isolate was also resistant to neutralization by a cocktail of 10 mAb, most of which individually inhibited at least one of the other three viruses tested. These results suggest that neutralizing activity for this latter virus is present in certain HIV-1+ sera/plasma, but is not exhibited by the mAb in the panel. Thus, effective neutralizing antibodies against primary isolates can be generated by humans upon exposure to HIV-1, but not all of these antigenic specificities are represented in a large panel of human anti-HIV-1 mAb.   相似文献   

13.
Brian Burke  Ying Lian 《Virology》2009,387(1):147-1173
Improving the potency, breadth, and durability of neutralizing antibody responses to HIV are major challenges for HIV vaccine development. To address these challenges, the studies described evaluate in rabbits the titers, breadth, and epitope specificities of antibody responses elicited by HIV envelope subunit vaccines adjuvanted with MF59 with or without CpG oligodeoxynucleotide (ODN). Animals were immunized with trimeric o-gp140ΔV2 derived from subtype B HIV-1SF162 or subtype C HIV-1TV1, or proteins from both strains. Immunization with SF162 or TV1 with MF59/CpG elicited higher titers of binding and neutralizing antibodies to SF162 than monovalent immunization with MF59 alone (P < 0.01). Bivalent immunization increased binding and neutralizing antibody titers over single envelope immunization in MF59 (P < 0.01). Bivalent immunization also improved neutralization breadth. Epitope mapping indicated neutralizing activity in rabbits was directed to V3 and V4. Overall, our data suggests that a multivalent vaccination approach with MF59 and CpG can enhance humoral responses to HIV-1.  相似文献   

14.
Enhancement of virus infectivity after sCD4 treatment has been documented for SIVagm and HIV-2. It has been suggested that a similar phenomenon may play a role in HIV-1 infection. In the present study we have analysed biological activities of virus neutralizing polyclonal and monoclonal human antibodies and of sCD4, towards HIV-1 chimeras with envelope proteins derived from one donor, which display different biological phenotypes. The antibodies, which recognize the V3 and/or the CD4 binding domains of the glycoproteins of these viruses and also sCD4 showed different levels of virus neutralizing activity toward the syncytium inducing HIV-1 strains. In contrast, they all dramatically enhanced the infectivity of an HIV-1 chimera with an envelope glycoprotein displaying the non-syncytium-inducing phenotype. Given the relatively conserved nature of non-syncytium-inducing HIV-1 surface glycoproteins early after infection, these data suggest a major role for antibody mediated enhancement of virus infectivity in the early pathogenesis of HIV-1 infection.  相似文献   

15.
A D Osterhaus  P de Vries 《Immunobiology》1992,184(2-3):180-192
Several viruses may cause more or less severe acute respiratory infections in man, some of which are followed by systemic infection. Only for influenza and measles are licensed vaccines available at present. The protection induced by influenza vaccines, which are based on inactivated whole virus or viral subunits, depends largely on the matching of vaccine strain and circulating virus. Measles vaccines, which are based on attenuated live virus, have been quite effective in controlling the disease in vaccinated populations in the industrialized world. In developing countries, severe measles infections occur in infants from six to nine months of age, which necessitates the vaccination of children of less than six months. At that time maternal antibodies, that may interfere with the induction of protection, may still be present. Therefore, instead of using the parenteral route, the possibility to use the mucosal route of primary immunization is also investigated for vaccination with attenuated live measles vaccines. The use of inactivated measles vaccines has resulted in a state of immunity which upon exposure to the virus may induce an atypical measles syndrome including a severe pneumonia. Measles virus proteins presented in an iscom matrix have recently been shown to induce functional B and T cell responses to both the surface glycoproteins of the virus. These responses could also be induced in the presence of virus neutralizing antibodies and they proved to be protective in several animal model systems. Many of the problems that have been encountered in the development of measles vaccines, proved to be similar in the development of vaccines against other paramyxoviruses causing acute respiratory infections in man, including respiratory syncytial virus. Parenteral application of inactivated and attenuated live vaccines against these paramyxoviruses has generally had little success. Topical application of attenuated live vaccines has been more successful, and also the use of vaccinia recombinant viruses expressing foreign paramyxoviral glycoproteins has shown promising results in laboratory animals. Live vaccines based on adenovirus types 4 and 7 in oral enteric-coated vaccines, which lead to virus replication in the intestines but not in the respiratory tract have been included in military vaccination programs. The possibility to replace e.g. the E3 region with foreign DNA makes adenoviruses also suitable as cloning vectors for proteins of other respiratory viruses. Although live attenuated vaccines against some of the serotypes of rhinoviruses have shown promising results, the generation of a multivalent vaccine against this epidemiologically most significant cause of acute respiratory infections will be almost impossible, due to the multiplicity of serotypes involved.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
A few neutralizing antibodies against human immunodeficiency virus-1 (HIV-1) envelope proteins have been shown to be highly effective at neutralizing different strains in vitro, and exist at very low levels in the sera of HIV-1-infected individuals. Based on our hypothesis that epitope vaccination may be a novel strategy for inducing high levels of antibodies against HIV-1, we prepared multiepitope vaccines using three neutralizing epitopes (GPGRAFY, ELDKWA and RILAVERYLKD) on HIV-1 envelope proteins. The PI [C-G-(ELDKWA-GPGRAFY)2-K] and PII (CG-GPGRAFY-G-ELDKWA-G-RILAVERYLKD) peptides were synthesized and conjugated to a carrier protein, bovine serum albumin (BSA). After vaccination, both the PI-BSA and PII-BSA multiepitope vaccines induced high levels of epitope-specific antibodies to the three neutralizing epitopes (antibody titre: 1 : 12,800-102,400). The recombinant glycoprotein 160 (rgp160) subunit vaccine induced strong antibody responses to rgp160, but only very weak epitope-specific antibody responses to the three epitopes. The epitope-specific antibodies were isolated from rabbit sera by single epitope-peptide-conjugated sepharose columns. A yield of 51 microg of epitope-specific antibodies/ml of serum (mean value) was obtained and identified to recognize these epitopes, while 0.35 microg of protein was isolated from 1 ml of pooled preserum by C-(ELDKWAG)4- or C-(RILAVERYLKD-G)2-K- and C-(GPGRAFY)4-sepharose columns. The levels of these epitope-specific antibodies induced in rabbits were much greater than 1 microg/ml, a level that is considered to confer long-term protection against some viruses. Moreover, these antibodies recognized the neutralizing epitopes on peptides and rgp41. Based on the fact that a very low level of ELDKWA epitope-specific antibodies exist in HIV-1-infected individuals, these results suggesting that synthetic epitope vaccines could induce high levels of multiepitope-specific neutralizing antibodies indicate a new strategy for developing an effective neutralizing antibody-based epitope/peptide vaccine against HIV-1.  相似文献   

17.
Patients infected with HIV-1 develop a potent humoral immune response against the virus, but HIV-1 primary isolates are remarkably resistant to neutralizing antibodies. Considering that the envelope glycoprotein of HIV-1 (gp120/41) is heavily glycosylated, we investigated whether anti-carbohydrate antibodies could inhibit HIV-1 infection in vitro. We studied the neutralizing activity of three monoclonal antibodies (mAbs) raised to carbohydrates of Schistosoma mansoni, against seven primary isolates of HIV-1. Assays were performed infecting peripheral blood mononuclear cells from normal donors with viral isolates previously treated with mAbs. Viral strains used were tropic for the coreceptors CCR5, CXCR4, and dual-tropic ones. We found that the anti-glycan mAbs vigorously inhibited HIV-1 infection, regardless of the preferential coreceptor usage of the isolate, in a dose-response manner. Importantly, five isolates were resistant to neutralization by two HIV-1 antibody-positive human sera endowed with potent anti-HIV-1 inhibitory activity. Our findings suggest that carbohydrates of the HIV-1 viral envelope may be a target of an effective humoral immune response elicited by vaccination.The first two authors contributed equally to this work  相似文献   

18.
The role of the humoral immune response in prevention against HIV-1 infection is still incompletely understood. However, neutralizing antibodies to certain epitopes on HIV-1 envelope glycoproteins inhibit HIV-1 infection in vitro and in vivo. Passive administration of these antibodies by themselvesor in combination completely protected hu-PBL-SCID mice or macaques from intravenous, vaginal, as well as maternal-fetal mucosal transmission. All these studies provide direct experimental evidence that neutralizing antibodies are potentenough to prevent HIV infection, and strongly suggest that neutralizing-antibody-based vaccines could provide effective protection against HIV-1, despite the potent action of CTLs. Some neutralizing epitopes have been defined in vitro and in vivo. Unfortunately, none of the neutralizing-antibody-based candidate vaccines has been demonstrated to induce enough protective activity. Weak antigenicity and immunogenicity of neutralizing epitopes on native or recombinant proteins and other factors made it difficult to induce neutralizing-epitope-specific antibody responses in vivo enough to prevent against primary isolates. Recent studies indicated that HIV-1 variations resulted in escape from neutralization or the CTL responses, which may be the principal challenge for HIV-1 prevention. Epitope vaccine as a new strategy activating both arms of the immune system, namely, using the “principal neutralizing epitopes” and the CTL epitopes in combination, should provide new hope for developing an effective vaccine to halt the HIV-1 epidemic.  相似文献   

19.
Live and killed rhabdovirus-based vectors as potential hepatitis C vaccines   总被引:9,自引:0,他引:9  
A highly attenuated, recombinant rabies virus (RV) vaccine strain-based vector was utilized as a new immunization strategy to induce humoral and cellular responses against hepatitis C (HCV) glycoprotein E2. We showed previously that RV-based vectors are able to induce strong immune responses against human immunodeficiency virus type I (HIV-1) antigens. Here we constructed and characterized three replication-competent RV-based vectors expressing either both HCV envelope proteins E1 and E2 or a modified version of E2 which lacks 85 amino acids of its carboxy terminus and contains the human CD4 transmembrane domain and the CD4 or RV glycoprotein cytoplasmic domain. All three constructs stably expressed the respective protein(s) as indicated by Western blotting and immunostaining. Moreover, surface expression of HCV E2 resulted in efficient incorporation of the HCV envelope protein regardless of the presence of the RV G cytoplasmic domain, which was described previously as a requirement for incorporation of foreign glycoproteins into RV particles. Killed and purified RV virions containing HCV E2 were highly immunogenic in mice and also proved useful as a diagnostic tool, as indicated by a specific reaction with sera from HCV-infected patients. In addition, RV vaccine vehicles were able to induce cellular responses against HCV E2. These results further suggest that recombinant RVs are potentially useful vaccine vectors against important human viral diseases.  相似文献   

20.
Antibody mediated and cell mediated immune responses to the envelope glycoproteins gp120 and gp41 of the human immunodeficiency virus (HIV-1) are considered important for protection against infection and for attenuation of disease symptoms after infection. Virus neutralizing antibodies are mostly subtype specific and primarily directed against epitopes on a hypervariable loop from the V3 region of HIV-1 gp120. Such epitopes are recognized by helper and cytotoxic T-cells suggesting that all protective immune responses to HIV-1 are predominantly subtype specific. The extraordinary primary sequence variability of gp120 indicates that a combination of subtype specific components will be required to design a broadly effective protective immunogen against HIV-1. Peptides from hypervariable loops of the V3 region of 21 distinct HIV-1 isolates (clones) were synthesized and used to raise rabbit antisera. The antisera contained high levels of antibodies recognizing the homologous peptides and the parent gp120 sequence. The serological cross-reactivity between the distinct peptides was evaluated and related to amino acid divergence. The corresponding relationship approximated a linear regression with a correlation coefficient r = 0.718. The 21 peptides were combined into a single immunogen which elicited broadly reactive antibodies recognizing all 21 peptides as well as gp120 from the only isolate tested, HIV-1 IIIB. The results suggest the possibility of developing broadly protective HIV-1 immunogens by combining judiciously selected subtype specific peptides derived from envelope glycoproteins of divergent virus isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号