首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reflexes in visceral preganglionic motility-regulating (MR) neurons which project in the lumbar splanchnic nerves were investigated in acutely spinalized cats. Some neurons were analyzed before and after spinalization. The stimuli used were mechanical stimulation of mucosal skin of the anus and of perianal (perigenital) hairy skin, and distension and contraction of urinary bladder and colon. Most MR neurons exhibited a reflex pattern which consists of the following components: excitation upon bladder distension, inhibition or no effect upon colon distension and excitation (or, rarely, no effect) upon anal stimulation. This is the reflex pattern of MR1 neurons. Some neurons were excited by anal stimulation but not affected from the colon and urinary bladder. Some were inhibited by anal and perianal stimulation but otherwise exhibited the reflex patterns of the MR1 neurons. Analysis of the reflexes before and after spinalization showed that, in particular, inhibition elicited by anal, perianal and bladder stimulation was abolished; inhibition elicited from the colon was enhanced after spinalization. It is concluded that the reflexes elicited in preganglionic lumbar visceral neurons by the natural stimuli probably use spinal pathways, with the afferent input occurring at the sacral spinal cord. These spinal reflex pathways are probably controlled by descending inhibitory and excitatory spinal systems from the supraspinal neuraxis.  相似文献   

2.
Lesions of limb nerves in man may be associated with a variety of painful disorders with trophic changes described by the generic term 'reflex sympathetic dystrophy'. Our hypothesis is that pain and trophic changes are produced by an abnormal discharge pattern in postganglionic neurons supplying the limb (see refs. 3,24). In relation to this hypothesis, reflex patterns in postganglionic vasoconstrictor neurons supplying the skin (CVC) and the skeletal muscle (MVC) of the cat hindlimb were investigated at various times after a peripheral nerve lesion had been produced. These reflex patterns were compared with those in animals without nerve lesions (control preparations). The following lesions were made: cutting and ligating the superficial peroneal nerve (skin nerve) with subsequent neuroma formation, suturing the central stump of the superficial peroneal nerve to the peripheral stumps of muscle branches of the deep peroneal nerve, suturing the central stumps of muscle branches of the deep peroneal nerve to the peripheral stump of the superficial peroneal nerve, cutting and resuturing the superficial peroneal nerve, deafferentation of the whole hindlimb. The responses of vasoconstrictor neurons to stimulation of arterial chemoreceptors, arterial baroreceptors (cardiac rhythmicity of postganglionic activity) and cutaneous nociceptors were tested. In the animals with nerve lesions, the following groups of postganglionic vasoconstrictor neurons were analyzed: neurons projecting to the lesioned nerve, neurons projecting to hairy skin through an intact skin nerve (sural nerve) and neurons projecting to skeletal muscle through intact muscle nerves. In control preparations without nerve lesions, MVC neurons were excited by stimulation of arterial chemoreceptors and cutaneous nociceptors and inhibited by stimulation of arterial baroreceptors. Most CVC neurons were inhibited by stimulation of chemoreceptors and nociceptors and weakly inhibited by stimulation of baroreceptors. In animals with nerve lesions a and b, many CVC neurons in the lesioned nerves, as well as in the non-lesioned cutaneous nerve nearby, behaved in the same manner as MVC neurons. With respect to the control, this difference proved to be statistically significant. In preparations with lesions a, b and c, MVC neurons did not change their reflex patterns. After nerve lesions d and e, no major changes of reflex patterns were observed in CVC and MVC neurons. The inhibitory influence of arterial baroreceptors on CVC activity decreased in deafferented preparations (lesion e).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Viscero-sympathetic reflex responses to mechanical stimulation of urinary bladder and colon were studied in cutaneous vasoconstrictor (CVC) neurones supplying hairy skin, in muscle vasoconstrictor (MVC) neurones supplying skeletal muscle and in sudomotor (SM) neurones supplying the sweat glands of the central paw pad of the cat hindlimb. The cats were anaesthetized, paralysed and artificially ventilated. The vasoconstrictor activity was recorded from the axons of the postganglionic fibres that were isolated in filaments from the respective peripheral hindlimb nerves. The activity in the sudomotor neurones was monitored by recording the fast skin potential changes occurring on the surface of the central paw pad. Afferents from the urinary bladder and from the colon were stimulated by isotonic distension and isovolumetric contraction of the organs. Most CVC neurones with ongoing activity were inhibited by these stimuli; only a few CVC neurones were excited. The MVC and SM neurones were generally excited by the visceral stimuli, yet the size of the evoked skin potential changes was variable. The reflex responses elicited in the sympathetic outflow to the cat hindlimb by stimulation of visceral afferents from the pelvic organs are uniform with respect to the different types of afferent input system but differentiated with respect to the efferent output systems. Graded stimulation of the visceral afferents from the urinary bladder by isotonic pressure steps elicited graded reflex responses in CVC (threshold less than 30 mmHg) and MVC neurones (threshold less than 20 mmHg) and a graded increase of the arterial blood pressure (threshold less than 20 mmHg). These graded reflex responses are closely related to the quantitative activation of sacral afferent neurones with thin myelinated axons innervating the urinary bladder that are also responsible for eliciting the micturition reflex, but not to the quantitative activation of sacral afferent neurones with unmyelinated axons. The latter have thresholds of 40-50 mmHg intravesical pressure at which the size of the vesico-sympathetic reflexes in the vasoconstrictor neurones was about 50% of maximal size. This does not exclude the fact that activation of unmyelinated vesical afferents contributes to the vesico-sympathetic reflexes.  相似文献   

4.
Reflex patterns in preganglionic neurons projecting in the cervical sympathetic trunk (CST) were analyzed in response to stimulation of various afferent systems. We focused on the question whether these preganglionic neurons can be classified into functionally distinct subpopulations. Reflex responses were elicited by stimulation of trigeminal and spinal nociceptive, thermoreceptive as well as baroreceptor and chemoreceptor afferents. Multi- and single fiber preparations were studied in baroreceptor intact and sino-aortically denervated animals. Spontaneous activity of 36 preganglionic single neurons ranged from 0.2 to 3.5 imp/s (median= 1.11 imp/s). The degree of cardiac rhythmicity (CR) in the activity of sympathetic neurons was 69.5+/-13% (mean+/-S.D.; N=52; range=39-95%). Noxious stimulation of acral skin activated the majority (67%) of sympathetic preparations by 37+/-25% (N=35) above pre-stimulus activity; 15% were inhibited. In these neurons the response to noxious stimulation of acral skin was significantly correlated with the degree of CR (P<0.001, N=52) in that neurons showing the strongest excitation to noxious stimulation displayed the strongest CR. Noxious mechanical stimulation of body trunk skin (N=60) inhibited the majority (80%) of fiber preparations tested (by 34+/-18% of pre-stimulus activity, N=48); an activation was not observed. Cold stimulation of acral (N=9) and body trunk skin (N=42) activated most fiber preparations. Trigeminal stimulation evoked a uniform reflex activation of preganglionic neurons (+79+/-73% of pre-stimulus activity, N=32). Chemoreceptor stimulation by systemic hypercapnia elicited inhibitory (-31+/-19%, N=8) as well as excitatory (+59+/-5%, N=4) responses. These results show that preganglionic sympathetic neurons projecting to target organs in the head exhibit distinct reflex patterns to stimulation of various afferent systems; however, a clear classification into different functional subgroups did not emerge. Furthermore, reflex patterns showed a segmental organization to noxious cutaneous stimulation of acral parts and body trunk reflecting a differential central integration of spinal afferent input. Compared with the cat the reflex organization of sympathetic neurons projecting to the head seems to be less differentiated in the anesthetized rat.  相似文献   

5.
Electrical stimulation of the phrenic nerve afferents evoked excitatory responses in the right inferior cardiac sympathetic nerve in chloralose-anaesthetized cats. The reflex was recorded in intact and spinal cats. The latency and threshold of the volley recorded from the phrenic nerve as well as of the cord dorsum potentials evoked by electrical stimulation of the phrenic nerve indicated that group III afferents were responsible for this reflex. The phrenicocardiac sympathetic reflex recorded in intact cats was followed by a silent period. The maximum amplitude of the reflex discharges was 800 microV, the latency was 83 ms and the central transmission time 53 ms. Duration of the silent period lasted up to 0.83 s. In spinal cats the reflex was recorded 5.5-8 h after spinalization. The maximum amplitude of the spinal reflex discharges ranged from 22 to 91 microV and the latency from 36 to 66 ms.  相似文献   

6.
In chloralose-anaesthetized cats, sympathetic reflex responses were recorded in left cardiac and renal nerve during stimulation of afferent fibres in the ipsilateral phrenic nerve. In cardiac nerve, a late reflex potential with a mean onset latency of 75.6 +/- 13.8 ms was regularly recorded which, in 20% of the experiments, was preceded by an early, very small reflex component (latency between 35 and 52 ms). In contrast, in renal nerve only a single reflex component after a mean latency of 122.1 +/- 13.1 ms was observed. Bilateral microinjections of the GABA-agonist muscimol into the rostral ventrolateral medulla oblongata resulted in a nearly complete abolition of sympathetic background activity and in an 88% reduction of the late reflex amplitude with only small effects on the latency of the evoked potentials. Under this condition, an early reflex component was never observed to appear. After subsequent high cervical spinalization, the residual small potentials which persisted after bilateral muscimol injections were completely abolished and in cardiac nerve an early reflex potential with a mean latency of 45 +/- 10 ms was observed in all but one experiment. The early reflex was therefore referred to as a spinal reflex component which, however, is suppressed in most animals with an intact neuraxis. In the renal nerve a spinal response was only observed in one experiment after spinalization. The results suggest that sympathetic reflexes evoked by stimulation of phrenic nerve afferent fibres possess similar spinal and supraspinal pathways as previously described for somato-sympathetic and viscero-sympathetic reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The influence of midthoracic spinalization on thermally and mechanically induced spinal withdrawal reflex responses was studied in the rat. There were three experimental groups of rats: healthy controls, rats with a spinal nerve ligation-induced unilateral neuropathy, and rats with a carrageenan-induced inflammation of one hindpaw. Tail flick response was induced by radiant heat. Hindlimb withdrawal was induced by radiant heat, ice water, and innocuous or noxious mechanical stimulation of the paw. Prior to spinalization, spinal nerve ligated and carrageenan-treated animals had a marked unilateral allodynia and hyperalgesia. Spinalization tended to induce a facilitation of noxious heat-evoked reflexes. This spinalization-induced facilitation was stronger on tail than hindlimb withdrawal. Spinalization-induced skin temperature change did not explain the facilitation of noxious heat-evoked reflexes. In contrast, spinal withdrawal responses induced by noxious cold or mechanical stimulation were significantly suppressed following spinalization. The spinalization-induced facilitatory effects as well as inhibitory ones on spinal reflexes were enhanced in inflamed/neuropathic animals. The results indicate that the tonic descending control of spinal nocifensive responses varies depending on the submodality of the test stimulus, the segmental level of the reflex (tail vs. hindlimb), and on the pathophysiological condition.  相似文献   

8.
Summary Spinal rats and rats with an intact neuraxis received an intrathecal injection of an enantiomer of baclofen. TheR-enantiomer was 100–1000 times more potent than its antipode in inhibiting the tail-flick reflex, both in intact rats and in spinal rats. Spinalization enhanced the inhibitory effects of both enantiomers without altering their dose-response relations. The findings show that baclofen enantiomers have direct actions on stereoselective spinal mechanisms and that spinalization fails to alter the stereoselectivity of spinal mechanisms towards the enantiomers.  相似文献   

9.
Synaptic processes evoked in various functional groups of thoracic interneurons (Th10,11) by stimulation of ipsi- and contralateral bulbar reticular formation were studied in anesthetized cats with lesions of the spinal cord that remained intact only the ipsilateral funiculus. Activation of reticulospinal fibres of the lateral funiculus with conduction velocities of 30-100 m/s evoked monosynaptic EPSPs in the following types of cells tested: monosynaptically excited by group la muscle afferents; excited by flexor reflex afferents; excited mainly by descending systems; excited by low-threshold cutaneous afferents to a less extent. All these neurons with responses to reticular stimulation were located predominantly in the central and lateral regions of Rexed's lamina VII. Most of the cells in the dorsal horn were not affected by short-latency reticulofugal influences. The only exception were 6 neurons located in the horn most dorsal laminae. Functional organization of connections between the lateral reticulospinal pathways and spinal neurons is discussed as compared to that of medial reticulo-spinal pathways as well as to the organization of "lateral" descending systems: cortico- and rubro-spinal.  相似文献   

10.
The role of left ventricular receptors with sympathetic afferent fibers in the reflex response to myocardial ischemia is controversial, particularly in the canine model. Previous experiments have shown that reflex excitatory responses mediated by left ventricular sympathetic afferents can be detected in sinoaortic denervated and vagotomized dogs during transmural myocardial ischemia. The purpose of these experiments was to determine if reflex excitatory responses occur in dogs with intact left ventricular vagal afferents. Experiments were performed in 27 chloralose-anesthetized dogs with sinoaortic denervation. Responses of efferent renal sympathetic nerve activity, arterial, and left atrial pressures to transmural and non-transmural inferoposterior myocardial ischemia were measured before and after interruption of left ventricular sympathetic afferents by stellectomy. The adequacy of sympathetic deafferentation was assessed by measurement of renal nerve responses to epicardial bradykinin. Prior to stellectomy, excitatory responses were observed in 10 animals and inhibitory responses in 9 animals. The remaining animals had no responses and were excluded from analysis. In the excitatory group, reflex increases in renal nerve activity during both transmural and non-transmural inferoposterior ischemia were abolished by stellectomy and not replaced by inhibitory responses. In the inhibitory group, non-transmural inferoposterior ischemia elicited greater reflex decreases in renal nerve activity when left ventricular sympathetic afferents were intact. After stellectomy, transmural ischemia elicited greater reflex inhibition of renal nerve activity. Renal nerve responses to epicardial bradykinin were abolished by stellectomy. These results indicate that reflex excitatory responses mediated by left ventricular receptors with sympathetic afferent fibers can be elicited in dogs with intact vagal afferents. These excitatory responses are most apparent during transmural myocardial ischemia. In dogs with inhibitory responses to coronary occlusion, activation of sympathetic afferents during transmural ischemia appears to attenuate reflex inhibitory responses mediated by left ventricular vagal afferents.  相似文献   

11.
In artificially ventilated, paralyzed rats anesthetized with Nembutal or urethane, power density spectral analysis (PDS), using direct FFT algorithm, was used to quantify rhythmicities in the sympathetic cervical and lumbar nerves after bilateral microinjections into rostral ventrolateral medulla (RVLM) of CoCl2 and MgCl2--unspecific synaptic transmission blockers. Later overall sympathetic activity, phrenic nerve discharge, heart rate and arterial blood pressure were recorded. Block of synaptic transmission in RVLM was tested by elimination of sympathoinhibitory or sympathoexcitatory reflex responses to aortic nerve and vagal afferents stimulation respectively. In animals vagotomized with bilateral section of carotid sinus nerve the power in all frequency bands was very significantly reduced to a level not different from that which remained after spinal cord transsection. If carotid baroreceptors were intact, a small peak corresponding to cardiac frequency band persisted. Overall, non-synchronized sympathetic activity and arterial blood pressure increased. All effects were transient, lasted up to 15 min, and could be reproduced several times in one experiment. Respiratory rhythmic activity was unchanged yet respiratory-sympathetic synchronization was abolished. It is concluded that RVLM reticulospinal sympathoexcitatory neurons are responsible for non-synchronized tonic sympathetic activity but are not able to generate synchronized sympathetic rhythms. Synaptic input, presumably inhibitory, either from local neuronal circuits within ventral medulla and/or from other brain stem neuronal circuitries is needed to shape out the flexible pattern of sympathetic oscillations.  相似文献   

12.
Reflex changes in heart rate and arterial blood pressure can be elicited in pigeons with high cervical transection by stimulation of brachial or lumbosacral peripheral and spinal nerves. This extends the phenomenon of spinally mediated, somatosympathetic reflexes to another vertebrate class. In a preliminary attempt to explore the spinal circuitry mediating these reflexes, the responses of single sympathetic postganglionic neurons were studied during spinal and peripheral nerve stimulation. With stimulation and recording at the same spinal segment, calculation of the central delay suggests the segmental reflex circuitry may be relatively simple, possibly trisynaptic. As the distance between stimulating and recording sites increases, postganglionic neuronal responsiveness decreases and becomes more variable. However, there is clear evidence that lumbosacral afferents can activate postganglionic neurons at brachial levels, indicating an effective propriospinal circuitry for somatosympathetic reflexes. Experiments on birds with intact spinal cords demonstrate that these spino-spinal pathways are also functional in the intact animal. While the segmental reflex is not different in the intact bird, the propriospinal pathways do behave somewhat differently, possible suggesting tonic central control.  相似文献   

13.
P. Szulczyk  M. Wilk 《Brain research》1985,326(2):261-271
The reflex responses evoked in the postganglionic nerves to the heart were tested in chloralose-anaesthetized cats. Electrical stimulation of the A delta afferent fibres from the left inferior cardiac nerve evoked spinal and supraspinal reflex responses with the onset latencies of 36 ms and 77 ms respectively. The most effective stimulus was a train of 3-4 electrical pulses with the intratrain frequency of 200-300 Hz. Electrical stimulation of the high threshold afferent fibres (C-fibres) from the left inferior cardiac nerve evoked the reflex response with the onset latency of 200 ms. The C-reflex was present in intact animals and disappeared after spinalization. The most effective stimulus to evoke this reflex was a train of electrical pulses delivered at a frequency of 1-2 Hz with an intratrain frequency of 20-30 Hz. The most prominent property of the C-reflex was its marked increase after prolonged repeated electrical stimulation. We conclude that: (1) viscero-cardiac sympathetic reflexes may be organized at the spinal and supraspinal level; (2) viscero-cardiac sympathetic reflexes evoked by stimulation of the A delta and C afferent fibres from the left inferior cardiac nerve have different central organization.  相似文献   

14.
Neuromuscular patterns of scratching and the paw-shake response were studied in normal kittens from birth to postnatal day 60. Onset of both behaviors coincided with the development of secure weight-bearing posture and occurred on postnatal day 21 for scratching and postnatal day 26 for paw shaking. At onset, cycle periods for scratching (5-6 Hz) and paw shaking (8-10 Hz) were similar to that for adult cats, and EMG patterns were adult-like. The scratch cycle consisted of reciprocal flexor and extensor bursts of equal duration, while the shake cycle consisted of coactive knee extensor and ankle flexor bursts alternately active with ankle extensor bursts. The lack of scratching and paw shaking during the first 3 postnatal weeks and the adult-like EMG patterns at onset are consistent with the hypothesis that pattern-generating circuits within lumbosacral segments are available early in development but inhibited by the rostral neuraxis until postural control is sufficient to accommodate the response. To eliminate rostral inputs, including descending input critical for postural control, kittens were spinalized at the T12 level, and onset of paw shaking was accelerated. In kittens spinalized at birth, paw-shake onset occurred on postnatal day 14, while in kittens spinalized on postnatal day 14, onset occurred 48 h after spinalization. In all spinal kittens, however, knee extensor activity was disrupted and not normal by postnatal day 60. Mature neuromuscular patterns for scratching and paw shaking are available at onset of the behavior during normal development. Spinalization hastens the onset of paw shaking but the normal neuromuscular synergy is disrupted as well as the temporal structure of the multi-cycle response. Disruptions following spinalization may be due to altered development of spinal pattern generators or aberrant feedback from atypical hindlimb motions due to a retardation of hindlimb growth and an alteration of muscle contractile properties in spinal kittens.  相似文献   

15.
The urethrogenital (UG) reflex is a spinal sexual reflex that consists of autonomic and somatic nerve activity and vaginal, uterine, and anal sphincter contractions. The UG reflex is under tonic descending inhibition by neurons in the region of the nucleus paragigantocellularis (nPGi). The location of spinal neurons activated by the UG reflex was examined in the female rat using the immediate early gene, c-fos. In addition, the descending inputs from the nPGi onto fos-activated neurons was examined using the anterograde tracer biotin dextran amine injected into the nPGi. The UG reflex resulted in a significant increase in fos-positive nuclei in segments T12-S1, compared with experimental controls in which the UG reflex was not activated. Spinal circuits involved in the UG reflex include neurons relaying afferent information from the pudendal sensory nerve, in the dorsal horn and medial cord of L5-S1. Efferent output includes preganglionic neurons located in the lateral gray of L5-S1 and lateral and medial gray of T13-L2. Spinal interneurons involved in the UG reflex were found close to the preganglionic neurons and in the dorsal horn and intermediate and medial gray of T12-S1. NPGi inputs were found primarily on the autonomic efferents and interneurons in the medial and intermediate gray. These studies demonstrate multisegmental spinal circuits activated with the UG reflex and demonstrate that the descending inhibition from the nPGi is by means of preganglionic and somatic efferents and spinal interneurons closely associated with the efferent output.  相似文献   

16.
In chloralose-urethane-anesthetized rats, the effects of somatic stimulation on the adrenal sympathetic efferent nerve activity as well as the adrenal catecholamine secretion were examined. Single shock of the thoracic thirteenth spinal afferent nerve evoked reflex discharges in the adrenal sympathetic efferent nerve. The spinal and supraspinal reflex components evoked by the myelinated and unmyelinated afferent stimulation were identified. The adrenal nerve activity was usually increased reflexly by pinching of the lower chest or upper abdominal skin area in the central nervous system (CNS)-intact animals. Secretion of adrenal epinephrine was noted to be increased reflexly by pinching the lower chest or upper abdominal skin in the central nervous system intact animals.  相似文献   

17.
For many years descending and reflex effects were treated as separate entities, spinal reflex pathways being considered as more or less vestigial. In fact convergence of descending tracts and primary afferents onto common spinal interneurones interposed in spinal reflex pathways is the rule. Such convergences suggest that these spinal interneuronal systems play an important integrative role in motor control: transmission of afferent signals resulting from movement can be modified by the descending command and, in turn, impulses in primary afferents can modify the descending command and contribute to the final shaping of movement. How these convergences are used in motor control, however, cannot be known from acute animal experiments. This would require experiments performed during natural movement. Now that it is possible to investigate spinal pathways in man, such experiments can be undertaken. Several spinal pathways can be studied in man with reasonably reliable methods: Ia excitatory pathways from muscle spindle primary endings, the pathway of reciprocal la inhibition, the circuitry of the recurrent inhibition through Renshaw cells and the pathways fed by Ib fibres from Golgi tendon organs.  相似文献   

18.
The sympathetic innervation of lumbar dorsal root ganglia (DRGs) and the possible presence of spinal cord circuits connecting primary sensory afferents to the sympathetic outflow to DRGs were investigated. We used simultaneous tracing of the sympathetic input to and sensory output from DRGs. Adult male rats received unilateral microinjections of the Bartha strain of pseudorabies virus into four lumbar DRGs. At 24 h post-inoculation, productive infection was detected in both DRG neurons and sympathetic postganglionic neurons. Infection of spinal cord neurons was first observed in sympathetic preganglionic neurons of the intermediolateral column. Subsequently, the infection spread to the contralateral intermediolateral column, the area around the central canal and the superficial dorsal horn layers. To investigate the relationship between infected spinal cord neurons and primary afferents from the corresponding DRGs, we injected pseudorabies virus for retrograde tracing together with cholera toxin B for anterograde tracing. We found that infected LIV/LV and LX neurons were in close apposition to cholera toxin B labeled afferents. Importantly, immunohistochemical detection of bassoon, a pre-synaptic zone protein, identified such contacts as synapses. Together, this suggests synaptic contacts between primary sensory afferents and neurons regulating sympathetic outflow to corresponding DRGs.  相似文献   

19.
Spinal and supraspinal controls can tonically or phasically modulate the output of spinal nociceptive neurons. Alterations of these modulatory systems have been described during the acute stage of inflammation. In the present study in the rat, tonic descending controls were assessed during acute (24--48 h) and chronic (3--4 weeks) stages of monoarthritis of the ankle. The electrophysiological properties of spinal convergent neurons with ankle input were compared before and after spinalization. In a parallel series of experiments, spinal convergent neurons were recorded from the normal side in order to assess the propriospinal and supraspinal inhibitory controls triggered by nociceptive stimulation of the inflamed ankle. Tonic descending inhibition of convergent neurons with input from the inflamed ankle was enhanced during the acute stage and then decreased during the chronic stage of monoarthritis. Contralateral-induced inhibitions exhibited a similar temporal evolution. Time-dependent changes in the spinal transmission of nociceptive signals were shown by removing descending modulation in animals with monoarthritis; sensitization of spinal neurons with input from the inflamed ankle was demonstrated during the acute stage of monoarthritis, whereas a crossed transmission between inflamed and normal sides was observed during the chronic stage of the disease. These results show that dynamic and stage-dependent modifications of descending controls tend to dampen the central changes associated with inflammation.  相似文献   

20.
Adult skin sensory neurons exhibit characteristic projection patterns in the dorsal horn of the spinal gray matter that are tightly correlated with modality. However, little is known about how these patterns come about during the ontogeny of the distinct subclasses of skin sensory neurons. To this end, we have developed an intact ex vivo somatosensory system preparation in neonatal mice, allowing single, physiologically identified cutaneous afferents to be iontophoretically injected with Neurobiotin for subsequent histological analyses. The present report, centered on rapidly adapting mechanoreceptors, represents the first study of the central projections of identified skin sensory neurons in neonatal animals. Cutaneous afferents exhibiting rapidly adapting responses to sustained natural stimuli were encountered as early as recordings were made. Well-stained representatives of coarse (tylotrich and guard) and fine-diameter (down) hair follicle afferents, along with a putative Pacinian corpuscle afferent, were recovered from 2-7-day-old neonates. All were characterized by narrow, uninflected somal action potentials and generally low mechanical thresholds, and many could be activated via deflection of recently erupted hairs. The central collaterals of hair follicle afferents formed recurrent, flame-shaped arbors that were essentially miniaturized replicas of their adult counterparts, with identical laminar terminations. The terminal arbors of down hair afferents, previously undescribed in rodents, were distinct and consistently occupied a more superficial position than tylotrich and guard hair afferents. Nevertheless, the former extended no higher than the middle of the incipient substantia gelatinosa, leaving a clear gap more dorsally. In all major respects, therefore, hair follicle afferents display the same laminar specificity in neonates as they do in adults. The widely held misperception that their collaterals extend exuberant projections into pain-specific regions of the dorsal horn during early postnatal life is shown to have multiple, deep-rooted underpinnings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号