首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Increases in several ceramide species have been shown by non-targeted lipid profiling (lipidomics) of the rat hippocampus after kainate lesions (Guan et al. FASEB J 20:1152–1161, 2006). This study was carried out to examine possible effects of ceramide species on exocytosis. Significant increase in membrane capacitance in voltage-clamped rat pheochromocytoma (PC12) cells, an indication of exocytosis, was detected immediately after external application of C2, C6, and C18 ceramide. In contrast, no increase in capacitance was found after addition of C16 and C20 ceramide, or DMSO vehicle. The effect of ceramide on exocytosis was dependent on the integrity of lipid rafts. Treatment of cells with the cholesterol binding agent/disruptor of lipid rafts, methyl β cyclodextrin, prior to addition of C18 ceramide suppressed the increase in capacitance induced by this lipid species. The ability of C2, C6 and C18 ceramide to trigger exocytosis was confirmed using total internal reflection fluorescence microscopy (TIRFM) experiments. External application of these species caused an exponential decrease in the number of subplasmalemmal neuropeptide Y (NPY)-enhanced green fluorescence protein (EGFP) labeled vesicles, indicating exocytosis. Interestingly, C18 is also the ceramide species that showed the greatest increase in the rat hippocampus after kainate excitotoxicity. It is postulated that C18 ceramide might facilitate exocytosis of glutamate from damaged neurons, thus propagating neuronal injury.  相似文献   

2.
Increase in levels of oxysterols or cholesterol oxidation products have been detected in brain areas undergoing neuroinflammation after excitotoxic injury, and the present study was carried out to elucidate possible effects of these products on exocytosis in rat pheochromocytoma-12 (PC12) cells. An increase in vesicle fusion with the cell membrane indicating exocytosis was observed by total internal reflection microscopy (TIRFM), and confirmed by capacitance measurements, after addition of 7 ketocholesterol, 24 hydroxycholesterol or cholesterol 5, 6 beta epoxide. 7 ketocholesterol induced exocytosis was attenuated by pretreatment with a disruptor of cholesterol-rich domains or “lipid rafts”, methyl-β-cyclodextrin (MβCD) as demonstrated by capacitance and amperometry measurements of neurotransmitter release. Moreover, treatment of cells with thapsigargin to deplete intracellular calcium, or treatment of cells with lanthanum chloride to block calcium channels resulted in attenuation of 7 ketocholesterol induced exocytosis. Fura-2 imaging showed that 7 ketocholesterol induced rapid and sustained increases in intracellular calcium concentration, and that this effect was attenuated in cells that were pre-treated with MβCD, thapsigargin or lanthanum chloride. Together, the results suggest that neurotransmitter release triggered by 7 ketocholesterol is dependent on the integrity of cholesterol rich lipid domains on cellular membranes and a rise in intracellular calcium, either through release from internal stores or influx via calcium channels. Increased cholesterol oxidation product concentrations in brain areas undergoing neuroinflammation may enhance exocytosis and neurotransmitter release, thereby aggravating excitotoxicity.  相似文献   

3.
We have characterized a recently established mouse pheochromocytoma cell line (MPC 9/3L) as a useful model for studying neurotransmitter release and neuroendocrine secretion. MPC 9/3L cells express many of the proteins involved in Ca2+-dependent neurotransmitter release but do not express functional endogenous Ca2+-influx pathways. When transfected with recombinant N-type Ca2+ channel subunits alpha1B,beta2a,alpha2delta (Cav2.2), the cells expressed robust Ca2+ currents that were blocked by omega-conotoxin GVIA. Activation of N-type Ca2+ currents caused rapid increases in membrane capacitance of the MPC 9/3L cells, indicating that the Ca2+ influx was linked to exocytosis of vesicles similar to that reported in chromaffin or PC12 cells. Synaptic protein interaction (synprint) sites, like those found on N-type Ca2+ channels, are thought to link voltage-dependent Ca2+ channels to SNARE proteins involved in synaptic transmission. Interestingly, MPC 9/3L cells transfected with either LC-type (alpha1C, beta2a, alpha2delta, Cav1.2) or T-type (alpha1G, beta2a, alpha2delta, Cav3.1) Ca2+ channel subunits, which do not express synprint sites, expressed appropriate Ca2+ currents that supported rapid exocytosis. Thus MPC 9/3L cells provide a unique model for the study of exocytosis in cells expressing specific Ca2+ channels of defined subunit composition without complicating contributions from endogenous channels. This model may help to distinguish the roles that different Ca2+ channels play in Ca2+-dependent secretion.  相似文献   

4.
Bovine adrenal chromaffin cells share many characteristics with neurons and are often used as a simple model system to study ion channels and neurotransmitter release. We infected bovine adrenal chromaffin cells with a replication deficient adenovirus that induces expression of the common reporters beta-galactosidase and Green Fluorescent Protein via a bicistronic sequence. In perforated-patch recordings performed 48-h postinfection, peak calcium currents were reduced 32%, primarily due to loss of omega-conotoxin-GVIA-sensitive current. In contrast, sodium currents were increased 17%. Exocytosis, detected as an increase in membrane capacitance immediately after a single step depolarization, was reduced in proportion to the decrease in calcium influx. However, capacitance continued to increase for seconds after the depolarization. The amplitude of this poststimulus drift, or asynchronous exocytosis, was approximately three times that which occurred in a small fraction of control cells. Exocytosis evoked by repetitive stimulation with a train of brief depolarizations was increased 50%. Intracellular calcium levels measured during and after stimulation were lower, not higher, in adenovirus-infected cells. Electroporated cells showed reduced calcium currents but no enhancement of exocytosis. Cells infected with UV-irradiated virus showed reduced calcium currents and enhancement of exocytosis, but the changes were smaller than those caused by intact virus. Our results are consistent with the idea that adenovirus capsid and adenoviral DNA contribute to a Ca2+ influx- and [Ca2+]i-independent enhancement of exocytosis in bovine chromaffin cells.  相似文献   

5.
Secretory phospholipases A2 (sPLA2) are released in the blood of patients with various inflammatory diseases and exert proinflammatory activities by releasing arachidonic acid (AA), the precursor of eicosanoids. We examined the ability of four sPLA2 to activate blood and synovial fluid monocytes in vitro. Monocytes were purified from blood of healthy donors or from synovial fluid of patients with rheumatoid arthritis by negative immunoselection and by adherence to plastic dishes, respectively. The cells were incubated with group IA, IB, IIA and III sPLA2 and the release of TNF-alpha, IL-6 and IL-12 was determined by ELISA. Group IA, IB and IIA sPLA2 induced a concentration-dependent release of TNF-alpha and IL-6 from blood monocytes. These sPLA2 activated IL-12 production only in monocytes preincubated with IFN-gamma. Group IA and IIA sPLA2 also induced TNF-alpha and IL-6 release from synovial fluid monocytes. TNF-alpha and IL-6 release paralleled an increase in their mRNA expression and was independent from the capacity of sPLA2 to mobilize AA. These results indicate that sPLA2 stimulate cytokine release from blood and synovial fluid monocytes by a mechanism at least partially unrelated to their enzymatic activity. This effect may concur with the generation of AA in the proinflammatory activity of sPLA2 released during inflammatory diseases.  相似文献   

6.
Compound exocytosis of granules in human neutrophils   总被引:1,自引:0,他引:1  
Human neutrophils are of prime importance for the immune defense. Recent data from eosinophils and pancreatic beta cells have indicated that granules, upon exocytosis, occasionally fuse with each other in the cytosol prior to their subsequent fusion with the plasma membrane. This is termed compound exocytosis. We therefore studied exocytosis of single granules from human neutrophils by the high-resolution cell-attached patch-clamp capacitance technique. We found that 1.5% of the capacitance steps was greater than 5 fF, i.e., significantly larger than steps expected for exocytosis of single granules. The mean step size of these events was 20.5 fF, corresponding to compounds formed by at least five granules. The capacitance input from compound steps contributed more than 20% of the total capacitance increase. Electron microscopy captured morphological manifestations of transient exocytic events, confirming the functional results obtained by capacitance measurements. Compound exocytosis may be a mechanism for efficient targeting of release during exocytosis.  相似文献   

7.
The molecular organization of presynaptic active zones is important for the neurotransmitter release that is triggered by depolarization-induced Ca2+ influx. Here, we demonstrate a previously unknown interaction between two components of the presynaptic active zone, RIM1 and voltage-dependent Ca2+ channels (VDCCs), that controls neurotransmitter release in mammalian neurons. RIM1 associated with VDCC beta-subunits via its C terminus to markedly suppress voltage-dependent inactivation among different neuronal VDCCs. Consistently, in pheochromocytoma neuroendocrine PC12 cells, acetylcholine release was significantly potentiated by the full-length and C-terminal RIM1 constructs, but membrane docking of vesicles was enhanced only by the full-length RIM1. The beta construct beta-AID dominant negative, which disrupts the RIM1-beta association, accelerated the inactivation of native VDCC currents, suppressed vesicle docking and acetylcholine release in PC12 cells, and inhibited glutamate release in cultured cerebellar neurons. Thus, RIM1 association with beta in the presynaptic active zone supports release via two distinct mechanisms: sustaining Ca2+ influx through inhibition of channel inactivation, and anchoring neurotransmitter-containing vesicles in the vicinity of VDCCs.  相似文献   

8.
The sec6/8 (exocyst) complex is implicated in targeting of vesicles for regulated exocytosis in various cell types and is believed to play a role in synaptogenesis and brain development. We show that the subunits sec6 and sec8 are present at significant levels in neurons of adult rat brain, and that immunoreactivity for the two subunits has a differential subcellular distribution. We show that in developing as well as mature neurons sec6 is concentrated at the inside of the presynaptic plasma membrane, while sec8 immunoreactivity shows a diffuse cytoplasmic distribution. Among established, strongly synaptophysin-positive neuronal boutons, sec6 displays highly differential concentrations, indicating a role for the complex independent of the ongoing synaptic-vesicle release activity. Sec6 is transported along neurites on secretogranin II-positive vesicles, while sec6-negative/secretogranin II-positive vesicles stay in the cell body. In PC12 cells, sec6-positive vesicles accumulate at the plasma membrane at sites of cell-cell contact. Neuronal induction of the PC12 cells with nerve growth factor shows that sec8 is not freely soluble, but may probably interact with cytoskeletal elements. The complex may facilitate the targeting of membrane material to presynaptic sites and may possibly shuttle vesicles from the cytoskeletal transport machinery to presynaptic membrane sites. Thus, we suggest that the exocyst complex serves to modulate exocytotic activity, by targeting membrane material to its presynaptic destination.  相似文献   

9.
The active zone protein CAST binds directly to the other active zone proteins RIM, Bassoon and Piccolo, and it has been suggested that these protein-protein interactions play an important role in neurotransmitter release. To further elucidate the molecular mechanism, we attempted to examine the function of CAST using PC12 cells as a model system. Although PC12 cells do not express CAST, they do express ELKS, a protein structurally related to CAST. Endogenous and exogenously expressed ELKS, RIM2 and Bassoon were colocalized in punctate signals in PC12 cells. Over-expression of full-length ELKS resulted in a significant increase in stimulated exocytosis of human growth hormone (hGH) from PC12 cells, similar to the effect of full-length RIM2. This increase was not observed following over-expression of deletion constructs of ELKS that lacked either the last three amino acids (IWA) required for binding to RIM2 or a central region necessary for binding to Bassoon. Moreover, over-expression of the NH(2)-terminal RIM2-binding domain of Munc13-1, which is known to inhibit the binding between RIM and Munc13-1, inhibited the stimulated increase in hGH secretion by full-length RIM2. Furthermore, this construct also inhibited the stimulated increase in hGH secretion induced by full-length ELKS. These results suggest that ELKS is involved in Ca(2+)-dependent exocytosis from PC12 cells at least partly via the RIM2-Munc13-1 pathway.  相似文献   

10.
11.
Although alterations in the function of the neurotransmitter system have been implicated in the pathology of Alzheimer's disease (AD), the mechanisms that underlie this pathological change are not well understood. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a key protease in the generation of beta-amyloid, an important trigger protein in the pathogenesis of AD. The expression and activity of BACE1 are increased in the brains of sporadic AD patients, and a role for BACE1 in neurotransmission has been suggested recently. This study examines whether BACE1 plays a role in regulated exocytosis in PC12 cells. Treatment of PC12 cells with a beta-secretase inhibitor reduced stimulus-dependent secretion of neurotransmitters, suggesting a potential role of BACE1 in regulated exocytosis. Using transfected human growth hormone as a reporter for a regulated secretory pathway in PC12 cells, we found that the transient overexpression of BACE1 increased basal secretion in the absence of a stimulus and reduced stimulus-dependent secretion in intact PC12 cells. In digitonin-permeabilized PC12 cells, an overexpression of BACE1 enhanced the Ca2+-independent and ATP-independent component of the secretory pathway. Furthermore, expression of the glycosylation-deficient mutant of BACE1, BACE1N354Q, led to an elevation of basal secretions over that by BACE1 wild-type, suggesting a role of BACE1 glycosylation in basal secretion. These results demonstrate an unknown role for BACE1 in secretion, and suggest that elevated levels of BACE1 in AD brains may contribute to the altered neurotransmitter pathology of AD through stimulation of spontaneous basal secretion under resting conditions.  相似文献   

12.
Hearing relies on fast and sustained neurotransmitter release from inner hair cells (IHCs) onto the afferent auditory nerve fibres. The temperature dependence of Ca2+ current and transmitter release at the IHCs ribbon synapse has not been investigated thus far. To assess the influence of temperature on calcium-triggered exocytosis, patch-clamp recordings of voltage-gated L-type Ca2+ influx and exocytic membrane capacitance changes were performed at room (25°C) and physiological (35–37°C) temperatures. An increase in temperature within this range increased the L-type Ca2+ current amplitude of IHCs ( Q 10= 1.3) and accelerates the activation kinetics. Fast exocytosis, probed by 20 ms depolarization, was enhanced at physiological temperature with a Q 10 of 2.1. The amplitude of fast release was elevated disproportionately to the increase in Ca2+ influx. In contrast, the rate of sustained exocytosis (exocytic rate between 20 and 100 ms of depolarization) did not show a significant increase at physiological temperature. Altogether, these data indicate that the efficiency of fast exocytosis is higher at physiological temperature than at room temperature and suggest that the number of readily releasable vesicles available at the active zone is higher at physiological temperature.  相似文献   

13.
Secretory phospholipases A(2) (sPLA(2)s) are molecules released in plasma and biologic fluids of patients with systemic inflammatory, autoimmune, and allergic diseases. Several sPLA(2) isoforms are expressed and released by such human inflammatory cells as neutrophils, eosinophils, basophils, T cells, monocytes, macrophages, and mast cells. Certain sPLA(2)s release arachidonic acid, thereby providing the substrate for the biosynthesis of proinflammatory eicosanoids. However, there are other mechanisms by which sPLA(2)s might participate in the synthesis of lipid mediators. Interestingly, sPLA(2)s activate inflammatory cells through mechanisms unrelated to their enzymatic activity. Several sPLA(2)s induce degranulation of mast cells and eosinophils and activate exocytosis in macrophages. Furthermore, sPLA(2)s promote cytokine and chemokine production from macrophages, neutrophils, eosinophils, monocytes, and endothelial cells. Some of these effects are mediated by the binding of sPLA(2)s to specific receptors expressed on effector cells. Thus sPLA(2)s might play important roles in the initiation and amplification of the inflammatory reaction. Selective inhibitors of sPLA(2)s and specific antagonists of sPLA(2) receptors might prove useful in the treatment of allergic and autoimmune diseases, such as bronchial asthma and rheumatoid arthritis.  相似文献   

14.
The release of neurotransmitter via exocytosis is a highly conserved, fundamental feature of nervous system function. At conventional synapses, neurotransmitter release occurs as a brief burst of exocytosis triggered by an action potential. By contrast, at the first synapse of the vertebrate visual pathway, not only is the calcium-dependent release of neurotransmitter typically graded with respect to the presynaptic membrane potential, but release can be maintained throughout the duration of a sustained stimulus. The specializations that provide for graded and sustained release are not well-defined. However, recent advances in our understanding of basic synaptic vesicle dynamics and the calcium sensitivity of the release process at these and other central, glutamatergic neurons have shed some light on the photoreceptor's extraordinary abilities.  相似文献   

15.
After exocytosis, synaptic vesicle components are selectively retrieved by clathrin-mediated endocytosis and then re-used in future rounds of transmitter release. Under some conditions, synaptic terminals in addition perform bulk endocytosis of large membranous sacs. Bulk endocytosis is less selective than clathrin-mediated endocytosis and probably internalizes components normally targeted to the plasma membrane. Nonetheless, this process plays a major role in some tonic ribbon-type synapses, which release neurotransmitter for prolonged periods of time. We show here, that large endosomes formed after strong and prolonged stimulation undergo stimulated exocytosis in retinal bipolar neurons. The result suggests how cells might return erroneously internalized components to the plasma membrane, and also demonstrates that synaptic vesicles are not the only neuronal organelle that stains with styryl dyes and undergoes stimulated exocytosis.  相似文献   

16.
This review attempts to touch on the history and application of amperometry at PC12 cells for fundamental investigation into the exocytosis process. PC12 cells have been widely used as a model for neural differentiation and as such they have been used to examine the effects of differentiation on exocytotic release and specifically release at varicosities. In addition, dexamethasone-differentiated cells have been shown to have an increased number of releasable vesicles with increased quantal size, thereby allowing for an even broader range of applications including neuropharmacological and neurotoxicological studies. PC12 cells exhibiting large numbers of events have two distinct pools of vesicles, one about twice the quantal size of the other and each about half the total releasable vesicles. As will be outlined in this review, these cells have served as an extremely useful model of exocytosis in the study of the latency of stimulation-release coupling, the role of exocytotic proteins in regulation of release, effect of drugs on quantal size, autoreceptors, fusion pore biophysics, environmental factors, health and disease. As PC12 cells have some advantages over other models for neurosecretion, including chromaffin cells, it is more than likely that in the following decade PC12 cells will continue to serve as a model to study exocytosis.  相似文献   

17.
Novel aspects of the molecular mechanisms controlling insulin secretion   总被引:1,自引:0,他引:1  
Pancreatic β-cells secrete insulin by Ca2+-dependent exocytosis of secretory granules. β-cell exocytosis involves SNARE (soluble NSF-attachment protein receptor) proteins similar to those controlling neurotransmitter release and depends on the close association of L-type Ca2+ channels and granules. In most cases, the secretory granules fuse individually but there is ultrastructural and biophysical evidence of multivesicular exocytosis. Estimates of the secretory rate in β-cells in intact islets indicate a release rate of ∼15 granules per β-cell per second, 100-fold higher than that observed in biochemical assays. Single-vesicle capacitance measurements reveal that the diameter of the fusion pore connecting the granule lumen with the exterior is ∼1.4 nm. This is considerably smaller than the size of insulin and membrane fusion is therefore not obligatorily associated with release of the cargo, a feature that may contribute to the different rates of secretion detected by the biochemical and biophysical measurements. However, small molecules like ATP and GABA, which are stored together with insulin in the granules, are small enough to be released via the narrow fusion pore, which accordingly functions as a molecular sieve. We finally consider the possibility that defective fusion pore expansion accounts for the decrease in insulin secretion observed in pathophysiological states including long-term exposure to lipids.  相似文献   

18.
Dvl, an important component of the Wnt signalling pathway, is thought to be involved in synaptogenesis. In this study, we investigated whether Dvl regulates neurotransmitter release. Knockdown of Dvl in PC12 cells suppressed K(+)-induced dopamine release, and this phenotype was restored by expression of Dvl-1. We identified synaptotagmin (Syt) I, which is involved in neurotransmitter release, as a Dvl-binding protein. Dvl directly bound to the C2B domain of Syt I. Dvl colocalized with Syt I at the tip of neurites of differentiated PC12 cells and of neurons in the rat dorsal root ganglion. Dvl and Syt I was located in large dense-core vesicles, which contain dopamine. In addition, endocytosis of vesicles containing Syt I was suppressed in Dvl knockdown PC12 cells. Dvl inhibited the binding of Syt I to the complex consisting of syntaxin-1A and SNAP-25. Furthermore, micro2-adaptin of AP-2, which is known to play a role in endocytosis, formed a complex with Dvl and Syt I. Taken together, these results suggest that Dvl is involved in endo- and exocytotic processes through the binding to Syt I.  相似文献   

19.
 α-Latrotoxin (α-LT), from black widow spider venom, is a potent enhancer of the spontaneous quantal release of neurotransmitter from a variety of nerve terminals and clonal neurosecretory cells. Using electrochemical amperometry and estimation of membrane impedance by phase detection, we present evidence that α-LT induces exocytosis of catecholamines from rat adrenal chromaffin cells beginning as rapidly as 30 s after close application of the toxin. This release is largely dependent on adequate levels of extracellular Ca2+ ([Ca2+]o). Lowering [Ca2+]o from 2 mM to ≤ 10–20 μM reduces the α-LT-induced rise in membrane capacitance by at least sixfold, on average, and nearly abolishes α-LT-induced quantal amperometric events, while still permitting insertion of non-selective cation channels. Based on these experiments, we argue that the rapid onset of α-LT action in promoting massive quantal release from chromaffin cells is primarily due to an increase in the Ca2+ permeability of the plasma membrane through non-selective cation channels. Received: 22 April 1996 / Accepted: 10 June 1996  相似文献   

20.
At the synapse, SNAP-25, along with syntaxin/HPC-1 and synaptobrevin/VAMP, forms SNARE N-ethylmaleimide-sensitive factor [soluble (NSF) attachment protein receptor] complexes that are thought to catalyze membrane fusion. Results from neuronal cultures of synaptobrevin-2 knockout (KO) mice showed that loss of synaptobrevin has a more severe effect on calcium-evoked release than on spontaneous release or on release evoked by hypertonicity. In this study, we recorded neurotransmitter release from neuronal cultures of SNAP-25 KO mice to determine whether they share this property. In neurons lacking SNAP-25, as those deficient in synaptobrevin-2, we found that approximately 10-12% of calcium-independent excitatory and inhibitory neurotransmitter release persisted. However, in contrast to synaptobrevin-2 knockouts, this remaining readily releasable pool in SNAP-25-deficient synapses was virtually insensitive to calcium-dependent-evoked stimulation. Although field stimulation reliably evoked neurotransmitter release in synaptobrevin-2 KO neurons, responses were rare in neurons lacking SNAP-25, and unlike synaptobrevin-2-deficient synapses, SNAP-25-deficient synapses did not exhibit facilitation of release during high-frequency stimulation. This severe loss of evoked exocytosis was matched by a reduction, but not a complete loss, of endocytosis during evoked stimulation. Moreover, synaptic vesicle turnover probed by FM-dye uptake and release during hypertonic stimulation was relatively unaffected by the absence of SNAP-25. This last difference indicates that in contrast to synaptobrevin, SNAP-25 does not directly function in endocytosis. Together, these results suggest that SNAP-25 has a more significant role in calcium-secretion coupling than synaptobrevin-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号