首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.

Objective:

The prevalence of oxidative stress may be implicated in the etiology of many pathological conditions. Protective antioxidant action imparted by many plant extracts and plant products make them a promising therapeutic drug for free-radical-induced pathologies. In this study, we assessed the antioxidant potential and suppressive effects of Achyranthes aspera by evaluating the hepatic diagnostic markers on chemical-induced hepatocarcinogenesis.

Materials and Methods:

The in vivo model of hepatocarcinogenesis was studied in Swiss albino rats. Experimental rats were divided into five groups: control, positive control (NDEA and CCl4), A. aspera treated (100, 200, and 400 mg/kg b.w.). At 20 weeks after the administration of NDEA and CCl4, treated rats received A. aspera extract (AAE) at a dose of 100, 200, and 400 mg/kg once daily route. At the end of 24 weeks, the liver and relative liver weight and body weight were estimated. Lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and reduced glutathione (GSH) were assayed. The hepatic diagnostic markers namely serum glutamic oxaloacetic transminase (AST), serum glutamic pyruvate transminase (ALT), serum alkaline phosphatase (ALP), gamma glutamyl transpeptidase (GGT), and bilirubin (BL) were also assayed, and the histopathological studies were investigated in control, positive control, and experimental groups.

Results:

The extract did not show acute toxicity and the per se effect of the extract showed decrease in LPO, demonstrating antioxidant potential and furthermore no change in the hepatic diagnosis markers was observed. Administration of AAE suppressed hepatic diagnostic and oxidative stress markers as revealed by decrease in NDEA and CCl4 -induced elevated levels of SGPT, SGOT, SALP, GGT, bilirubin, and LPO. There was also a significant elevation in the levels of SOD, CAT, GPx, GST, and GSH as observed after AAE treatment. The liver and relative liver weight were decreased after treatment with AAE in comparison to positive control group. The architecture of hepatic tissue was normalized upon treatment with extract at different dose graded at 100, 200, and 400 mg/kg. b.w. in comparison to positive control group.

Conclusion:

These results suggest that A. aspera significantly alleviate hepatic diagnostic and oxidative stress markers which signify its protective effect against NDEA and CCl4-induced two-stage hepatocarcinogenesis.  相似文献   

2.
Oxidative damage is involved in the pathogenesis of various hepatic injuries. In the present study the capacity of Commiphora berryi (Arn) Engl bark as an antioxidant to protect against CCl(4)-induced oxidative stress and hepatotoxicity in Albino Wistar rats was investigated. Intraperitoneal injection of CCl(4), administered twice a week, produced a marked elevation in the serum levels of aspartate transaminase, alanine transaminase, alkaline phosphatase and bilirubin. Histopathological analysis of the liver of CCl(4)-induced rats revealed marked liver cell necrosis with inflammatory collections that were conformed to increase in the levels of SOD, GPx and CAT. Daily oral administration of methanolic extract of C. berryi (Arn) Engl bark at 100 and 200mg/kg doses for 15 days produced a dose-dependent reduction in the serum levels of liver enzymes. Treatment with C. berryi normalized various biochemical parameters of oxidative stress and was compared with standard Silymarin. Therefore, the results of this study show that C. berryi (Arn) Engl bark can be proposed to protect the liver against CCl(4)-induced oxidative damage in rats, and the hepatoprotective effect might be correlated with its antioxidant and free radical scavenger effects.  相似文献   

3.
The oil of tea seed (Camellia oleifera Abel.) is used extensively in China for cooking. This study was designed to evaluate the effects of tea seed oil on CCl(4)-induced acute hepatotoxicity in rats. Male SD rats (200+/-10 g) were pre-treated with tea seed oil (50, 100, and 150 g/kg diet) for six weeks before treatment with a single dose of CCl(4) (50% CCl(4), 2 mL/kg of bw, intraperitoneally), the rats were sacrificed 24h later, and blood samples were collected for assaying serum biochemical parameters. The livers were excised for evaluating peroxidation products and antioxidant substances, as well as the activities of antioxidant enzymes. Pathological histology was also performed. The results showed that a tea seed oil diet significantly (p<0.05) lowered the serum levels of hepatic enzyme markers (alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase), inhibited fatty degeneration, reduced the content of the peroxidation product malondialdehyde, and elevated the content of GSH. Pre-treatment of animals with tea seed oil (150 g/kg diet) could increase the activities of glutathione peroxidase, glutathione reductase and glutathione S transferase in liver when compared with CCl(4)-treated group (p<0.05). Therefore, the results of this study show that a tea seed oil diet can be proposed to protect the liver against CCl(4)-induced oxidative damage in rats, and the hepatoprotective effect might be correlated with its antioxidant and free radical scavenger effects.  相似文献   

4.
Effects of cytochrome b(5) (b(5)) on catalytic activities of human cytochrome P450 (CYP) 3A5, CYP3A4, and CYP3A7 coexpressed with human NADPH-cytochrome P450 reductase in Escherichia coli membranes were investigated using 14 substrates. The activities of CYP3A5 were enhanced by addition of b(5) in approximately one third of the substrates employed in this study. Such enhancement by b(5) was roughly similar to that of CYP3A4, while the activities of CYP3A7 were not enhanced by b(5) with any substrates employed. V(max) values for midazolam 1'-hydroxylation and amitriptyline N-demethylation by CYP3A5 were increased about twice by addition of b(5), which was also seen with CYP3A4, although the extent of the effects of b(5) on S(50) (K(m)) and Hill coefficient differed dependent on substrates used. In contrast, b(5) did not alter any of these kinetic parameters of CYP3A7. The effects of b(5) on kinetic parameters of CYP3A5 were similar to those of CYP3A4 but not CYP3A7. These results suggest that roles of b(5) in drug oxidation activities of CYP3A5 and CYP3A4 are different from those of CYP3A7.  相似文献   

5.
The protective effects of MegaHydrate™ silica hydride against liver damage were evaluated by its attenuation of carbon tetrachloride (CCl4)-induced hepatotoxicity in mice. Male ICR mice were orally treated with silica hydride (104, 208 and 520 mg/kg) or silymarin (200 mg/kg) daily, with administration of CCl4 (1 mL/kg, 20% CCl4 in olive oil) twice a week for eight weeks. The results showed that oral administration of silica hydride significantly reduced the elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), triglyceride (TG), and cholesterol and the level of malondialdehyde (MDA) in the liver that were induced by CCl4 in mice. Moreover, the silica-hydride treatment was also found to significantly increase the activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px), as well as increase the GSH content, in the liver. Liver histopathology also showed that silica hydride reduced the incidence of liver lesions induced by CCl4. The results suggest that silica hydride exhibits potent hepatoprotective effects on CCl4-induced liver damage in mice, likely due to both the increase of antioxidant-defense system activity and the inhibition of lipid peroxidation.  相似文献   

6.
The antioxidant effects of chestnut inner shell extract (CISE) were investigated in a tert-butylhydroperoxide (t-BHP)-treated HepG2 cells, and in mice that were administered carbon tetrachloride (CCl4) and fed a high-fat diet (HFD). Pre-incubation with CISE significantly blocked the oxidative stress induced by t-BHP treatment in HepG2 cells (< 0.05) and preserved the activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase compared to group treated with t-BHP only. Similarly, the CCl4- and HFD-induced reduction of antioxidant enzymes activities in liver was prevented by CISE treatment compared to control groups. Furthermore, hepatic lipid peroxidation were remarkably lower (< 0.05) in the CISE-treated groups with t-BHP or HFD. To determine the active compound of CISE, the fractionation of CISE has been conducted and scoparone and scopoletin were identified as main compounds. These compounds were also shown to inhibit the t-BHP-induced ROS generation and reduction in antioxidant enzyme activity in an in vitro model system. From these results, it was demonstrated that CISE has the ability to protect against damage from oxidative stressors such as t-BHP, CCl4 and HFD in in vitro and in vivo models. The CISE might be useful for the prevention of oxidative damage in liver cells and tissues.  相似文献   

7.
Conflicting data on the anticancer properties of the polyphenolic natural product resveratrol (RSV) have been reported. Since the inhibition of “bioactivating” Phase-I xenobiotic metabolizing enzymes (XMEs) and/or induction of “detoxifying” Phase-II XMEs have long been considered important cancer chemopreventive strategies, in the current study we investigated the effect of RSV treatment on several Cytochrome P450 (CYP)-dependent oxidations and Phase-II markers in liver and lung subcellular preparations from CD1 male mice. These mice were i.p treated with RSV (25 or 50 mg/Kg b.w.) daily for one or for seven consecutive days. Using either specific probes for different CYPs, or the regio- and stereo-selective metabolism of testosterone, we found that most of the Phase-I XMEs were significantly suppressed (up to ∼61% loss for the CYP3A1/2-linked 6 β-hydroxylation of testosterone in liver and up to ∼97% loss for 2 α-hydroxylase in lung) following RSV treatment for 7 days at 50 mg/kg b.w. Glutathione S-transferase was significantly inhibited, particularly in lung (∼76% loss of activity) after single administration of 25 mg/kg b.w. A different response for the UDP-glucuronosyl transferase was observed, where a significant induction was seen (∼83%) in the liver and a significant reduction was observed in the lung (up to ∼83% loss) following treatment with 25 mg/kg b.w. for seven days. These data indicate that murine XMEs are altered by RSV, and that this alteration is dependent on the RSV dose, duration and way of administration. These results could provide mechanistic explanations for the conflicting chemopreventive results reported for RSV.  相似文献   

8.
Seafood is an important source of nutrients for many populations worldwide. Unfortunately the contamination of seafood with methylmercury (MeHg) has raised health concerns, particularly for developing infants. The modification of MeHg toxicity by nutrients, including antioxidants, has been reported in both epidemiological and animal exposure studies. We used a rat perinatal exposure model to investigate the modulation of developmental MeHg toxicity by an extract of Rhododendron tomentosum ssp. subarcticum, a plant rich in antioxidants traditionally consumed by Inuit. Sprague-Dawley rat dams were exposed daily to 2 mg MeHg/kg bw and 100 mg R. tomemtosum extract/kg bw administered either separately or jointly, from the first day of gestation until weaning. MeHg exposure was associated with impaired pup growth and survival, decreased grip strength, hyperactivity and altered exploratory behaviour, delayed acoustic startle response, elevated brain N-methyl-d-aspartate receptor (NMDA-R) levels, and increased serum lipid peroxidation. R. tomemtosum extract co-exposure modulated MeHg’s effects on oxidative stress and brain NMDA-R levels and may have affected MeHg pharmacokinetic. However, modulation of these molecular endpoints did not lead to significant alterations of MeHg’s effects on rat neurobehaviour.  相似文献   

9.
Liver dysfunction affects the pharmacokinetics of drugs. The liver plays an important role in drug excretion as well as drug metabolism and pharmacokinetics. In the present study, the relationship between changes in the cefmetazole (CMZ) excretory pathway and the degree of liver dysfunction induced by CCl(4) treatment was investigated. CMZ is mainly excreted as an unchanged form in feces in control rats. Depending on the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), urinary CMZ excretion was increased, whereas fecal CMZ excretion was decreased in rat with liver dysfunction. The AUC of CMZ in rats with severe liver dysfunction was approximately 2-fold higher than that in control rats. Since drug transporters could be involved in drug excretion, changes in the expression of representative hepatic drug transporters in liver dysfunction were investigated by rat DNA microarray. Basolateral solute carrier transporters such as Ntcp, Oct1, and Oatp2 were decreased and basolateral ATP-binding cassette transporters such as Mrp3 and Mrp4 were increased by the CCl(4) treatment. On the other hand, canalicular Mrp2 and Bsep were decreased, but Mdr1 was increased. However, the transporter system for CMZ has not been identified yet. In conclusion, we clarified that the fecal and urinary excretory profiles of CMZ were changed clearly depending on the serum AST and ALT levels in liver dysfunction. The changes in the CMZ excretory pathway might be responsible for the changes in the expression of drug transporters.  相似文献   

10.
A study on the protective effect of alcoholic extract of the leaves of Ocimum sanctum on 3-methylcholanthrene (MCA), 7,12-dimethylbenzanthracene (DMBA) and aflatoxin B1 (AFB1) induced skin tumorigenesis in a mouse model has been investigated. The study involved pretreatment of mice with the leaf extract prior to either MCA application or tetradecanoyl phorbol acetate (TPA) treatment in a two-stage tumor protocol viz a viz, DMBA/TPA and AFB1/TPA. The results of the present study indicate that the pretreatment with alcoholic extract of the leaves of O. sanctum decreased the number of tumors in MCA, DMBA/TPA and AFB1/TPA treated mice. The skin tumor induced animals pretreated with alcoholic extract led to a decrease in the expression of cutaneous gamma-glutamyl transpeptidase (GGT) and glutathione-S-transferase-P (GST-P) protein. The histopathological examination of skin tumors treated with leaf extract showed increased infiltration of polymorphonuclear, mononuclear and lymphocytic cells, decreased ornithine decarboxylase activity with concomitant enhancement of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) in the serum, implying the in vivo antiproliferative and immunomodulatory activity of leaf extract. The decrease in cutaneous phase I enzymes and elevation of phase II enzymes in response to topical application of leaf extract prior to MCA, AFB1, DMBA/TPA and AFB1/TPA treatment indicate the possibility of impairment in reactive metabolite(s) formation and thereby reducing skin carcinogenicity. Furthermore, pretreatment of leaf extract in the carcinogen induced animals resulted in elevation of glutathione levels and decrease in lipid peroxidation along with heat shock protein expression, indicating a scavenging or antioxidant potential of the extract during chemical carcinogenesis. Thus it can be concluded that leaf extract of O. sanctum provides protection against chemical carcinogenesis in one or more of the following mechanisms: (i) by acting as an antioxidant; (ii) by modulating phase I and II enzymes; (iii) by exhibiting antiproliferative activity.  相似文献   

11.

Objectives:

The present study was aimed at assessing the hepatoprotective activity of 1:1:1 petroleum ether, diethyl ether, and methanol (PDM) extract of Scoparia dulcis L. against carbon tetrachloride-induced acute liver injury in mice.

Materials and Methods:

The PDM extract (50, 200, and 800 mg/kg, p.o.) and standard, silymarin (100 mg/kg, p.o) were tested for their antihepatotoxic activity against CCl4-induced acute liver injury in mice. The hepatoprotective activity was evaluated by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total proteins in serum, glycogen, lipid peroxides, superoxide dismutase, and glutathione reductase levels in liver homogenate and by histopathological analysis of the liver tissue. In addition, the extract was also evaluated for its in vitro antioxidant activity using 1, 1-Diphenyl-2-picrylhydrazyl scavenging assay.

Results:

The extract at the dose of 800 mg/kg, p.o., significantly prevented CCl4-induced changes in the serum and liver biochemistry (P < 0.05) and changes in liver histopathology. The above results are comparable to standard, silymarin (100 mg/kg, p.o.). In the in vitro 1, 1-diphenyl-2-picrylhydrazyl scavenging assay, the extract showed good free radical scavenging potential (IC 50 38.9 ± 1.0 μg/ml).

Conclusions:

The results of the study indicate that the PDM extract of Scoparia dulcis L. possesses potential hepatoprotective activity, which may be attributed to its free radical scavenging potential, due to the terpenoid constituents.  相似文献   

12.
Acetylation and deacetylation of histones, catalysed by histone acetyl transferases and histone deacetylases (HDAC), respectively, are known to be involved in gene expression regulation. Here, the effect on the activity and expression of several apoptosis-related proteins of trichostatin A (TSA), a well-known HDAC inhibitor, were studied in short-term (conventional monolayer) and long-term cultured (collagen I gel sandwich cultures and co-cultures) adult rat hepatocytes. No significant effects of TSA on the caspase-3-like activity were seen in rat hepatocytes cultured in a sandwich configuration or in a co-culture with rat liver epithelial cells of primitive biliary origin. In both culture models, the basal level of apoptosis was found to be much lower than in control monolayer cultures. In the latter system, it was found that, after 4 days of culture, TSA decreased the levels of caspase-3 (both proform and p17 fragment) and of the pro-apoptotic protein Bid. No effect of TSA was found on the expression of Bax. As expected, a TSA-mediated increase of acetylated histones H3 and H4 was observed in all culture systems examined. In addition, in the presence of TSA, increased albumin secretion and cytochrome P450 1A1/2 and 2B1-dependent enzyme activities were found in conventional cultures after 7 days. In conclusion, TSA delayed the occurrence of apoptosis and loss of liver specific functions in conventional hepatocyte monolayers. In contrast, in hepatocyte culture models in which spontaneous apoptosis is already minimised through the addition of either extracellular matrix components (sandwich cultures) or non-parenchymal liver cells (co-cultures), TSA did not have any additional anti-apoptotic effect.  相似文献   

13.
This study was carried out to investigate the chemopreventive effects of immature plum extracts. The methanol extract of immature plums (plum 1), that are picked at 20–40 days before final harvest, has remarkably inhibited the growth of hepatoma HepG2 cells. The effects of immature plum extracts on hepatotoxicity in benzo(α)pyrene (B(α)P, carcinogen)-treated mice were investigated. Male ICR mice were pretreated with immature plum extracts (2.5 or 5 g/kg bw/day, for 5 days, i.p.) before treatment with B(α)P(0.5 mg/kg bw, i.p., single dose). The activities of serum aminotransferase, cytochrome P450 (CYPs) and the hepatic content of lipid peroxide were increased on B(α)P-treatment group than control, but those levels were significantly decreased by the pretreatment of immature plum extracts. The primary CYPs involved in the metabolism and bioactivation of B(α)P are CYP1A1. The pretreatment of immature plum extracts inhibited the induction of CYP1A1 expression. The activities of glutathione peroxidase, superoxide dismutase and catalase were decreased by the pretreatment of immature plum extracts more than with B(α)P alone. Whereas, the hepatic content of glutathione and glutathione S-transferase activity depleted by B(α)P was significantly increased (p > 0.05). These results suggest that immature plum extracts may counteract toxic effects of carcinogens, such as B(α)P, and therefore possess the chemopreventive efficacy.  相似文献   

14.
Coffee drinking appears to reduce cancer risk in liver and colon. Such chemoprevention may be caused by the diterpenes kahweol and cafestol (K/C) contained in unfiltered beverage. In animals, K/C treatment inhibited the mutagenicity/tumorigenicity of several carcinogens, likely explicable by beneficial modifications of xenobiotic metabolism, particularly by stimulation of carcinogen-detoxifying phase II mechanisms. In the present study, we investigated the influence of K/C on potentially carcinogen-activating hepatic cytochrome P450 (CYP450) and sulfotransferase (SULT). Male F344 rats received 0.2% K/C (1:1) in the diet for 10 days or unfiltered and/or filtered coffee as drinking fluid. Consequently, K/C decreased the metabolism of four resorufin derivatives representing CYP1A1, CYP1A2, CYP2B1, and CYP2B2 activities by approximately 50%. For CYP1A2, inhibition was confirmed at the mRNA level, accompanied by decreased CYP3A9. In contrast to K/C, coffee increased the metabolism of the resorufin derivatives up to 7-fold which was only marginally influenced by filtering. CYP2E1 activity and mRNA remained unchanged by K/C and coffee. K/C but not coffee decreased SULT by approximately 25%. In summary, K/C inhibited CYP450s by tendency but not universally. Inhibition of CYP450 and SULT may contribute to chemoprevention with K/C but involvement in the protection of coffee drinkers is unlikely. The data confirm that the effects of complex mixtures may deviate from those of their putatively active components.  相似文献   

15.
Consequences of subchronic exposure to aflatoxin B1 (AFB1) on liver monooxygenase and transferase enzymes were compared in control pigs and pigs given 385, 867 or 1,807 microg AFB1/kg of feed for 4 weeks. Animals exposed to the highest dose of toxin developed clinical signs of aflatoxicosis, like liver fibrosis, hepatic dysfunction and decreased weight gain. This group had significantly lower levels of liver cytochrome P450, ethoxyresorufin O-deethylase (EROD) activity, testosterone metabolism, P450 1A and P450 3A protein expression. By comparison, mild degenerative hepatic changes, no hepatic dysfunction but a similar pattern of liver P450 enzymes activity without changes in P450 3A expression were observed in pigs exposed to 867 microg AFB1/kg of feed. Benzphetamine and aminopyrine N-demethylase activities were increased in pigs exposed to 867 or 1,807microg AFB1/kg of feed. Pigs exposed to 385 microg AFB1/kg of feed had low levels of EROD activity and all other biotransformation and clinical parameters remained at control levels. Aniline hydroxylase activity, P450 2C protein expression, UDP-glucuronosyl and glutathione S-transferase activities were unaffected at all doses of AFB1. In conclusion, P450 1A and P450 3A appear to be specific targets of AFB1 even if pig did not display clinical sign of liver toxicosis.  相似文献   

16.
7,12-Dimethylbenzanthracene (DMBA) is an abundant environmental contaminant, which undergoes bioactivation, primarily by the CYP1 family, both in liver and extra-hepatic tissues. Dietary acetylsalicylic acid (ASA) has been recently reported to inhibit DMBA-mediated mammary tumour formation in rats. Chemopreventive substances may reduce the risk of developing cancer by decreasing metabolic enzymes responsible for generating reactive species (phase I enzymes) and/or increasing phase II enzymes that can deactivate radicals and electrophiles. To test these hypotheses, Sprague-Dawley female rats were orally administered ASA as lysine acetylsalicylate (50mg per capita/day for 21 days in water), DMBA (10mg per capita in olive oil on day 7, 14, and 21), ASA and DMBA in combination, and vehicles only, respectively. Six rats for each group were sacrificed on day 8, 15, and 22. The DMBA-mediated increase in hepatic CYP1A expression and related activities was not significantly affected by ASA, which, conversely, enhanced in a time-dependent manner the liver reduced glutathione content (up to 52%) and the activity of NAD(P)H-quinone oxidoreductase (up to 34%) in DMBA-treated rats. It is proposed that the positive modulation of the hepatic antioxidant systems by ASA may play a role in the chemoprevention of mammary tumourigenesis induced by DMBA in the female rat.  相似文献   

17.
18.
Mitochondria generate ATP and participate in signal transduction and cellular pathology and/or cell death. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) decreases hepatic ATP levels and generates mitochondrial oxidative DNA damage, which is exacerbated by increasing mitochondrial glutathione redox state and by inner membrane hyperpolarization. This study identifies mitochondrial targets of TCDD that initiate and sustain reactive oxygen production and decreased ATP levels. One week after treating mice with TCDD, liver ubiquinone (Q) levels were significantly decreased, while rates of succinoxidase and Q-cytochrome c oxidoreductase activities were increased. However, the expected increase in Q reduction state following TCDD treatment did not occur; instead, Q was more oxidized. These results could be explained by an ATP synthase defect, a premise supported by the unusual finding that TCDD lowers ATP/O ratios without concomitant changes in respiratory control ratios. Such results suggest either a futile cycle in ATP synthesis, or hydrolysis of newly synthesized ATP prior to release. The TCDD-mediated decrease in Q, concomitant with an increase in respiration, increases complex 3 redox cycling. This acts in concert with glutathione to increase membrane potential and reactive oxygen production. The proposed defect in ATP synthase explains both the greater respiratory rates and the lower tissue ATP levels.  相似文献   

19.
An excessive and sustained increase in reactive oxygen species (ROS) production and oxidative stress have been implicated in the pathogenesis of many diseases. In the present study, we have demonstrated that 4-hydroxynonenal (4-HNE), a product of lipid peroxidation, alters glutathione (GSH) pools and induces oxidative stress in PC12 cells in culture. This increase was accompanied by alterations in subcellular ROS and glutathione (GSH) metabolisms. The GSH homeostasis was affected as both mitochondrial and extramitochondrial GSH levels, GSH peroxidase and glutathione reductase activities were inhibited and glutathione S-transferase (GST) activity was increased after 4-HNE treatment. A concentration- and time-dependent increase in cytochrome P450 2E1 (CYP 2E1) activity in the mitochondria and postmitochondrial supernatant was also observed. 4-HNE-induced oxidative stress also caused an increase in the expression of GSTA4-4, CYP2E1 and Hsp70 proteins in the mitochondria. Increased oxidative stress in PC12 cells initiated apoptosis as indicated by the release of mitochondrial cytochrome c, activation of poly-(ADP-ribose) polymerase (PARP), DNA fragmentation and decreased expression of antiapoptotic Bcl-2 proteins. Mitochondrial respiratory and redox functions also appeared to be affected markedly by 4-HNE treatment. These results suggest that HNE-induced oxidative stress and apoptosis might be associated with altered mitochondrial functions and a compromised GSH metabolism and ROS clearance.  相似文献   

20.
The leaves of perilla [Perilla frutescens (L.) Britt. var. japonica (Hassk.) Hara] are often used in Asian gourmet food. The object of this study was to evaluate the protective effects of an aqueous extract of perilla leaves on the tert-butyl hydroperoxide (t-BHP)-induced oxidative injury observed in rat livers. The treatment of the hepatocytes with the perilla leaf extract (PLE) significantly reversed the t-BHP-induced cell cytotoxicity and lipid peroxidation. In addition, PLE exhibited ferric-reducing antioxidant power and 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activities. The in vivo study showed that the pretreatment with PLE (1000 or 3000 mg/kg) for 5 days before a single dose of t-BHP (i.p.; 0.2 mmol/kg) significantly lowered the serum levels of aspartate aminotransferase and alanine aminotransferase, reduced the indicators of oxidative stress in the liver, such as the glutathione disulfide content and lipid peroxidation level in a dose-dependent manner, and remarkably increased the activity of hepatic gamma-glutamylcysteine synthetase. Histopathological examination of the rat livers showed that PLE reduced the incidence of liver lesions induced by t-BHP. Based on the results described above, it is suggested that PLE has the potential to protect liver against t-BHP-induced hepatic damage in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号